第九章 高速和重载列车制动
《列车制动》复习题1-西南交大版

2.紧急制动时,GK型制动机制动缸压力分 3 阶 段上升。
3.F—8分配阀有充气缓解位、常用制动位、制动 保压位、 缓解保压位 、紧急制动位五个作 用位置。
二、简答题
1.简述104型空气制动机紧急阀的作用原理。
答: 由于列车管急剧减压,紧急活塞下移,压开
答:
作用原理。 制动:工→容;副→制 缓解:列→副,列→工;容→大气,制大气
优点: 长大下坡道制动缸漏泄时副风缸可以自动给 制动缸补风而没有发生自然缓解的问题。
闸瓦磨耗后制动缸行程增大时,制动缸压强 不会降低。因为制动缸空气压力参与了第二 活塞的平衡。
第三章 客货车辆制动机
一、填空题
制信号,去控制设在分配阀与制动缸之间的一 个中继阀,再由中继阀来控制制动缸鞲鞴面积 的大小或制动缸压力的大小。
二、综合题
1.与闸瓦制动相比,盘形制动有哪些优缺点? 答: • 优点
–大大减轻车轮踏面的热负荷和机械磨耗; –可按制动要求选择最佳摩擦副; –运行平稳,无噪声。 • 缺点 –轮轨粘着将恶化; –制动盘使簧下重量及其引起的冲击振动增大,
2.简述缓解稳定性和制动灵敏度的概念。
答:
缓解稳定性:制动机不会因列车管的正常泄 漏而造成意外制动的特性。缓解稳定性要求 的减压速度临界值为0.5~1.0kpa/s,意味 着列车管的减压速度在此临界值之下,就不 会发生制动作用。
制动灵敏度指的是当司机施行常用制动而操 纵列车管进行减压时,制动机则必须发生制 动作用。制动灵敏度要求的减压速度临界值 为5~10kpa/s。
放风阀,产生强烈的局部减压。
紧急室的排风时间 规定为15s左右 ;
《高速和重载》课件

绿色发展
重载铁路将注重环保 ,采取节能减排措施 ,降低对环境的影响 。
高速与重载共存场景的发展趋势
协同发展
在共存场景下,高速和重载铁路将实 现协同发展,发挥各自优势,共同推
动交通运输事业的发展。
技术创新
在共存场景下,将进一步推动高速和 重载铁路的技术创新,突破技术瓶颈
,提升整体技术水平。
互联互通
加强高速和重载铁路的互联互通,实 现资源共享、优势互补,提高整体运 输效率。
详细描述
京沪高铁连接北京和上海两大城市,是世界上运营速度最快、里程最长的的高速铁路之一。沪杭磁悬 浮则是我国第一条商业化运营的磁悬浮线路,实现了上海至杭州的快速交通连接。法国TGV高速铁路 则是欧洲最早的高速铁路之一,为法国及周边国家的交通发展做出了巨大贡献。
重载的实际案例分析
案例一
澳大利亚铁矿石运
重载的定义与特性
重载是指交通工具或运输设备承载的货物或乘客 重量超过一定标准。
重载的特性包括大负载、高承载力、高稳定性等 。重载能够大幅度提高运输能力,降低运输成本 ,广泛应用于铁路、公路、水路等运输领域。
高速与重载的关联性
高速和重载在交通工具和运输设备中具有密切的关联性。
高速和重载相互影响,相互制约。在高速列车、高速公路等交通工具中,需要同时考虑速度和承载能力,以达到最佳的运输 效果。同时,随着科技的发展,高速和重载的关联性也在不断加强,如高速重载铁路、高速公路重载货车等新型交通工具的 出现,使得高速和重载的结合更加紧密。
城市轨道交通与公路货运
在城市中,轨道交通为乘客提供快速、高效的出行方式 ,而公路货运则负责城市内部和城郊的货物重载运输, 两者共同构成了城市交通和物流的基础设施。
高速铁路与重载铁路的衔接
铁路运输设备复习题及参考答案

《铁路运输设备》课程复习资料一、填空题:1.重载列车运输方式分为:、、三种。
2.铁路信号设备是、、的总称。
3.铁路车站按业务性质分可分为、、。
4.区段站常见的布置图有、及三类。
5.运输的产品是,以和计量。
6.是铁路的基本标准,我国铁路共划分为个等级。
7.铁路货车按用途可分为和两大类。
8.闭塞方式有、、三种。
9.高速列车制动装置的制动方式主要采用和两种。
10.视觉信号有三种基本颜色,和作为辅助颜色。
11.道岔连接部分包括和。
12.我国铁路线路养护工作分为、和三种。
13.铁路车辆由车体、、、和五个基本部分组成。
14.根据基建程序要求,铁路建设划分为三个阶段,分别为、、。
15.车辆标记分为、产权、、检修四类。
16.货车底架由、、、横梁及端梁等组成。
17.钢轨的断面包括、、三个部分。
18.我国铁路车辆上有两种类型的轴箱,和。
19车辆按用途可分为和两大类。
20.客车定期检修的修程为、和三种。
二、名词解释:1.编组2.机车全周转时间3.车辆换长4.缓和曲线5.车辆制动装置6.单边供电7.站界8.车钩缓冲装置9.动车组10.关门车11.肩回运转制12.铁路线路13.车辆每延米轨道载重14.双边供电15.16.车辆通过最小曲线半径17.车钩开锁位置18.站界三、简答题:1.2.柴油机的基本构造有哪些?3.车钩缓冲装置的作用是什么?它有哪些部件组成?4.简述电力机车的主要优点?我国牵引动力今后发展方向是什么?5.什么是限制坡度?简述限制坡度的意义?6.制动装置的作用是什么?线路大修的施工内容主要有哪些?四、将下列车站图型的股道及道岔进行编号。
5.为什么铁路运输是我国的主要运输方式?6.你认为要如何保证铁路运输的安全。
参考答案一、填空题:1.整列式重载列车、组合式重载列车、单元式重载列车2.信号、联锁、闭塞设备3.客运站、货运站、客货运站4.横列式、纵列式、客货纵列式5.位移、运送旅客所产生的人公里、运送货物所产生的吨公里6.铁路等级、三7.通用货车、专用货车8.自动、半自动、电气路签(牌)、9.摩擦制动、动力制动、10.红色黄色绿色、兰色、白色11.两根直轨、两根导曲线轨12.大修、中修、经常维修13.车底架、走行部、车钩缓冲装置、制动装置14.前期工作阶段、基本建设阶段、投资效果反馈15.运用、制造16.中梁、侧梁、枕梁17.轨头、轨腰、轨底18.滑动轴承、滚动轴承19.客车、货车20.厂修、段修、辅修二、名词解释:1.编组:把停留在调车线上同一去向的车辆,按有关规定连挂起来,编成一个新的车列,则叫编组。
《铁道概论》项目9高速及重载铁路

《铁道概论》项目9高速及重载铁路高速及重载铁路作为现代铁路发展的两个重要方向,已经取得了显著的成就。
本文将对高速及重载铁路的定义、建设和发展进行详细分析,同时探讨其对交通运输和经济发展的影响。
高速铁路,也称为高速列车系统,是指设计时速达到或超过250公里/小时的铁路系统。
高速铁路的建设是为了满足城市之间快速、高效、安全的交通需求。
它拥有较小的车长、车宽以及车头横截面积,采用现代化的轨道、电气和通信系统。
高速铁路的建设与发展对于交通运输效率的提高,人员流动的便利以及经济发展的推动具有重要的意义。
高速铁路的建设主要包括线路规划、设计、建筑施工和设备安装等多个阶段。
线路规划是整个建设工程的基础,需要考虑到地理条件、铁路客流需求、风景线等因素。
设计阶段需要充分考虑列车的时速、车辆运行平稳性、客流量等因素,以保证高速铁路的安全性和舒适性。
建筑施工阶段包括隧道、桥梁、车站等各个基础设施的建造,需要保证施工质量和工期。
设备安装阶段包括信号设备、电气设备和通信系统等的安装和调试。
高速铁路的发展对于交通运输和经济发展具有巨大的影响。
首先,高速铁路可以大大提高交通运输效率。
由于高速铁路的时速较快,可以有效缩短城市之间的距离,提高人们的出行效率。
其次,高速铁路的建设和运营会带动相关产业的发展。
例如,高速铁路运营需要大量的工程建设和设备制造,这将促进建筑、机械制造、材料等相关产业的发展。
再次,高速铁路的建设对于区域的经济发展具有辐射和带动作用。
高速铁路的开通可以促进城市之间的交流和贸易,提高地区产业的合作和发展。
重载铁路是指载重能力较大,承载重量超过普通铁路的铁路。
重载铁路的建设主要是为了满足煤炭、矿石、原材料等大宗货物的运输需求。
重载铁路通常采用宽轨距和强化的轨道结构,以适应货物的大量运输。
重载铁路的建设与高速铁路类似,包括线路规划、设计、建筑施工和设备安装等阶段。
然而,重载铁路需要更加强化的铁路结构,以承载更大的载重能力。
高速列车制动系统PPT课件

按制动力的操纵控制方式 ➢ 空气制动 ➢ 电空制动 ➢ 电磁制动
阿尔斯通动车组制动系统概况
高速列车制动系统的特点
安全性高 控制准确 可靠性高 舒适度高 维修方便 系统轻量化
制动系统的组成与功能
电制动 空气制动 防滑系统 控制系统
电制动系统
电阻制动 再生制动
微机控制的防滑器
结构
➢ 速度传感器 ➢ 滑行检测器 ➢ 防滑电磁阀
作用原理
➢ 减速度检测 ➢ 速度差检测
防滑电磁阀结构
制动控制
制动系统总体构成 制动系统的操纵方式 制动系统的工作原理
系统总体构成
制动控制器 制动电子控制装置 列车线
操纵方式
ATC操纵 操作手柄操纵 紧急制动的操纵
工作原理
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
常用制动的控制
紧急制动的控制
备用制动的控制
救援制动的控制
制动系统的检修
检修周期
以走行公里为主,时间为辅;周期分5个等级
➢ 一级:日常级,每日运行结束后的例行检查; ➢ 二级:基本级,周期6万公里的基本性检修; ➢ 三级:一级大型维修,周期120万公里; ➢ 四级:二级大型维修,周期240万公里; ➢ 五级:三级大型维修,周期480万公里;
高速列车制动系统
主要内容
高速列车制动系统的特点 高速列车制动系统的组成 高速列车制动新技术的开发与研究
一些基本概念
制动的种类 制动方式的分类
制动的种类
常用制动 紧急制动 非常制动* 辅助制动
列车牵引与制动自学指导书

《列车牵引与制动》自学指导书注:本课程使用《列车牵引计算》和《列车制动》两本教材,为区别起见,《列车制动》教材的页码引用皆用斜体字表示。
一、课程简介:本课程是内燃机车专业(专科)的专业课,主要介绍列车在外力作用下沿轨道运行的有关问题,以及列车制动装置的结构与工作原理。
通过本课程的学习,使学生能够分析列车运行过程中的各种现象和原理,并能够解决铁路运营和设计上的一些主要技术问题和技术经济问题,如:机车牵引重量、列车运行时分等。
同时使学生了解各种类型的列车制动装置的结构及工作原理,掌握列车制动计算的基本方法,了解现代列车制动技术的发展方向。
并具备查阅技术资料,解决有关技术问题的能力。
绪论主要内容:简要介绍了“牵引计算”这门学科的内容,以及《列车牵引计算规程》的意义和发展。
并明确指出与列车运行直接相关的三个力为:机车牵引力、列车运行阻力和列车制动力;随后的内容都是围绕着这三个力展开的。
学习要求:了解“牵引计算”的主要内容,《列车牵引计算规程》的意义;明确与列车运行直接相关的三个力,掌握其定义以及它们在不同工况下的组合。
第一章机车牵引力主要内容:本章首先分析了机车牵引力产生的过程,给出了轮周牵引力的定义及其在理论上的计算方法。
然后,考虑到列车运行时机车动轮和钢轨的实际接触状况,提出了“粘着”的概念,并给出了粘着牵引力的定义及其计算公式(p5公式1-2)。
接着对影响粘着系数的因素进行了分析,同时给出了粘降的概念。
在内燃机车牵引特性和计算标准一节中,首先给出了牵引特性的概念,然后介绍了我国铁路目前广泛使用的几种主型内燃机车的牵引特性。
最后,提出列车牵引计算中常用的五种计算标准:计算速度和计算牵引力(取持续速度和持续牵引力)、计算起动牵引力、不同速度下的牵引力取值、牵引力因功率降低的修正系数和多机牵引及补机推送的牵引力修正系数。
学习要求:明确机车牵引力产生的条件;掌握轮周牵引力、粘着牵引力、粘降、机车牵引特性、计算速度、持续速度的基本概念;熟悉DF4(货)型、DF11型和BJ型等主型内燃机车的牵引特性曲线,并能对其做简要的解释;了解牵引力计算的五个计算标准;学会查取内燃机车牵引计算主要数据表来解决相关技术问题。
重载高速列车制动(七章)

4、电动车组因动力分散而具有多节动车,可以充分 发挥再生制动效果
5、运行速度较高,粘着系数小,制动系统必须满 足粘着条件 6、进行防滑控制,充分利用粘着
三、制动功能(总体要求)
1、安全性要求 制动能力 干线 《技规》: 制动距离
列车在任何条件下,必须满足紧急制动距离的要求, 以120km/h速度运行的列车紧急制动距离不大于 800m 160km/h速度——紧急制动距离不大于1400m
(1) 按速度控制制动力的大小以充分利用粘着
α (km/h/s) 0.08 0.06 2.0 μ 0.04 1.0 0.02 0 100 200 300 V(km/h) 0系列
2.6
2. 4
13.6 v B5
2.0
1.5
(2)
0.15
采用高性能的防滑装臵
粘着系数
0.10
0.05 0 50 100 150 200 250 300 350 V(km/h)
n—列车编组辆数; t—一辆车的充气时间。
1)列车制动时的纵向冲击力或总压缩力R都与制动 波速和制动缸充气时间成反比。 2)与编组辆数n的平方及一辆车的长度l成正比。 3)与制动(K· k)成正比。 4)列车在拉伸状态下制动,比压缩状态下大得多。
除了纵向冲击外,重载列车由于编组辆数特别多,副 风缸也特别多,列车管也特别长,列车管总容积很大,从而 带来下来问题: (1) 初充风时间特别长; (2) 列车管减压和增压速度都很低; (3) 列车管的减压和增压速度沿管长方向的“衰减”都较严 重。 所以,重载列车制动装臵必须具备以下特点:
ECP使用现状
与既有制动机重叠 有 单纯ECP 美国Webtec公司 南非、加拿大QCM、美国CSX等 美国纽约空气制动机公司
超高速列车的牵引和制动控制技术

超高速列车的牵引和制动控制技术随着科技的快速发展,超高速列车(High-speed Train)已经成为了现代交通运输领域的重要组成部分。
超高速列车的速度远远高于常规列车,因此对列车的牵引和制动系统要求也更加严格,需要采用先进的电力系统和控制技术来确保列车的安全、稳定和高效。
本文将重点介绍超高速列车的牵引和制动控制技术,以及相关的技术特点和优势。
一、超高速列车的电力系统超高速列车采用的是电力传动系统,它的主要组成部分包括:牵引变流器(Traction Converter)、牵引电机(Traction Motor)、逆变器(Inverter)和供电系统(Power Supply System)等。
牵引变流器是超高速列车牵引系统的核心部件,它用来将电力系统中提供的高压直流电转换成三相交流电,为牵引电机提供动力。
牵引电机是超高速列车的动力源,它能将电能转换成机械能,提供强大的牵引力,让列车以高速行驶。
逆变器则是用于将电力系统中的交流电转换成直流电,为列车的辅助设备和控制系统提供稳定可靠的电源。
供电系统则将供电电网中的电能通过高压变电站送达铁路线路上,为列车提供可靠、稳定的电力能源。
超高速列车采用电力传动系统具有许多显著的优势,首先它能够提供更强大的动力和更快的加速度,同时还能降低能源的消耗和减少对环境的影响。
另外,电力传动系统具有更高的运行效率和更低的维护成本,使列车的安全性和运行经济性得到了大幅度的提高。
二、超高速列车牵引控制技术牵引控制技术是超高速列车牵引系统的重要组成部分,在列车的高速、平稳和安全行驶过程中发挥着关键作用。
牵引控制技术主要包括:力矩控制、电压控制、转速控制和轴承控制等。
力矩控制技术是牵引控制技术的核心,它能够根据列车的运行状态和牵引需求,对牵引电机输出的力矩进行精确控制和调节。
通过采用高精度的传感器和控制器,能够实现对牵引电机的精确控制,提高牵引电机的输出效率和运行稳定性。
电压控制技术是牵引控制技术的另一个重要组成部分,它能够根据电力传动系统中的电压变化,对牵引电机的输出电压进行精确控制和调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速和重载列车制动
主要内容: 高速列车制动的特点; 重载列车制动要解决的问题; 电空制动的原理; 防滑器的工作原理;
第一节
高速列车制动
一、高速列车的特点: 运行速度超过200km/h,制动功率与速 度的3次方成正比; 编组辆数不会太多;
注:国际上高速铁路的定义:既有线改
列车管减压和增压速度都很低; 列车管的减压和增压速度沿管长方向的衰 减都比较严重。
四、重载列车制动装置应具有的特点:
要有很高的制动波速和较高的缓解波速;
现代制动机的紧急制动波速已达285m/s, 提高空间有限。 制动缸采用变速充气方法 ,达到减轻制动冲 击、又不延长制动距离的目的; 采用摩擦系数较大的闸瓦,可改用较小的制动 缸和副风缸,使重载列车的初充风时间不致太 长;
作用方式: 制动缸2的活塞杆推出时,使装在两个闸片 托5上的闸片4同时夹紧制动盘1两侧的摩 擦面。 合成闸片: 由合成摩擦材料和带有燕尾的钢背热压而 成。 散热槽的作用: 增加摩擦面的贴合性、便于排除磨屑和 散热。
二、制动盘的结构型式: 按摩擦面的配置,制动盘可分为单摩擦面和 双摩擦面两类; 按盘安装的位置可分为轴盘式和轮盘式: 轴盘式制动盘装在轴上: 采用锻钢盘毂作为车轴与铸铁盘之间的 过渡零件,在铸铁盘的螺栓连接处要加 装弹性套。 轮盘式制动盘装在轮上: 在车底空间紧张的动车上采用,而且大 多是单摩擦面的。
采用性能良好的空重车自动调整装置,保证空
车不滑行,重车具有足够的制动力;
列车管内壁和各个连接管器要具有较小的气体
流动阻抗;
要用密封式制动缸且有良好的压力保持性能; 牵引组合列车的处于列车中部的机车应当装有
中继制动装置或同步制动装置;
五、我国货车制动机的演变过程: K G K 103 120
二、重载列车的纵向冲动
适应3~4kt货列的制动装置
不安全因素
6kt重载
制动波速降低; 缓解波速急剧降低; 冲动急剧增加;
产生原因: 空气波有一个传播的过程,会造成沿列车长 度的制动或缓解作用的不同时性: 制动机的不同时性; 制动缸压力上升或下降的速率; 制动缸压力变化的一致性(同时性); 全车制动缸压力都达到指定值以后,单位制 动力沿列车长度的不均匀分布; 各车辆之间的非刚性连接 ;
四、F-8加电控: 结构:
原有的F-8型空气制动机; 电空阀箱: 电磁阀共有三个:常用制动电磁阀、缓
解电磁阀、紧急(制动)电磁阀; 放大阀和限压阀; 采用五线制:实际上只用制动、缓解、 紧急和零线四线,保证与104加电控混 编,制动保压线仍应保持贯通;
管路连接方案
作用原理:
F-8加电控示意图
防止车轮滑行 ,但不能改善粘着。
基本原理: 通过检测车轮角减速度等判据,对车轮的 运动状态做出判断,如果车轮即将滑行, 则在车轮由滚动转入滑行的过渡阶段排制 动缸内的压力空气来减小制动力,使轮轨 之间恢复粘着状态。防滑器只能有效地利 用轮轨间的粘着力而不能增大粘着力。
二、高速列车制动的特点: 多种制动方式协调配合,普遍装有防滑 器; 列车制动操纵控制普遍采用了电控、直 通或微机控制电气指令式等更为灵敏而 迅速的系统。 粘着系数随速度的提高而下降,高速列 车对制动力的需求非常大,轮轨间的制 动力与粘着力的矛盾比较突出。
三、高速列车采用的制动方式: 制动方式的分类:
目前,在列车编组100辆、轴重21t、牵引 重量8400t的条件下,空气制动系统尚能够满 足运用需要。随着列车编组与牵引重量的增
加,纯粹的空气制动系统很难承受。
第三节
准高速列车电空制动机
一、电空制动机: 定义:
电空制动机是电控空气制动机的简称。它
是在空气制动机的基础上加装电磁阀等电 器部件而形成的。
在制动机的发展中起到承上启下的作用。
二、准高速客运制动系统方案:
在电操纵为主的同时要保持原空气制动机的全
部作用 。
DK-1型电空制动机或JZ-7型空气制动机加装
电控,应能同时适用于操纵F-8加电控和104加 电控。 采用得电作用式,具有阶段缓解和自动补风性
能。
列车管只有一根且满足制动机性能要求。
一个研究列车纵向冲击力的公式:
前苏联教授卡洛瓦茨基(定性分析 )
R k z l n / z
2
闸瓦压力上升获下降速率
制动波速
三、重载列车制动要解决的问题: 列车的纵向冲击; 重载编组辆数多,副风缸多、列车管总 容积很大,从而还带来其他问题:
初充风时间特别长; 在同样的机车制动阀排风和充风速度下,
制动电磁阀得电,列车管压力空气经过
制动电磁阀的阀口和缩孔堵排出大气, 使全列车各个车辆和机车同步发生制动 作用; 缓解: 缓解电磁阀得电,缓解风缸的定压空气 可经过缓解电磁阀的阀口充入列车管, 产生局部增压作用,使全列车各个车辆 和机车同步发生缓解作用;
保压:
保压电磁阀得电,104阀容积室排气口的
外接管不能通过此电磁阀口和缩孔堵排风, 从而实现电空制动的缓解保压作用;
104型制动机是间接作用的二压力制动机
为了使之具有阶段缓解性能,特设缓解风缸。
第四节 盘形制动装置
一、盘形制动装置构造作用示例: 悬挂方式:
制动缸固定式: 制动缸浮动式 杠杆支点拉板8 与杠杆6、7 组 成一把夹钳,以 三点悬挂在转向 架构架上。
特点: 原动力仍然是压力空气与大气压强的压差;
保留了原自动空气制动机的减压制动、增
压缓解以及列车分离时能够自动制动的一 切特性; 制动作用的操纵控制用电,用电信号代替 气压信号传递制动指令,弥补空气制动作 用同时性差的缺点。 在制动机的电控部分因故失灵时,可临时 转变为空气压强控制的空气制动机。
制动阶段的划分及性质: 基本概念: 缓冲器弹簧被压缩到静平衡位置时的压 缩量称为静压缩量,列车纵向力称为最 大静压缩力; 由静平衡位置到动平衡位置所增加的压 缩量称为动压缩量,所增加的列车纵向 力称为最大动压缩力;
阶段的划分及性质:
第一制动阶段:第一辆车制动缸压强开
始上升起,到最后一辆车制动缸压强开 始上升止; 第二制动阶段:第一阶段末到第一辆车 制动缸压强升到最大值止; 第三制动阶段:第二阶段末到最后一辆 车制动缸压强升到最大值止; 第四制动阶段:由第三阶段末到列车停 住;
控制线路采用五线制,并具有故障显示功能。 电操纵电源电压为直流110V,蓄电池供电时不低下
77V。
采用统一的闸瓦、闸片和闸片托组成 。 防滑器采用轴控(制)式,输入电源为交流220 v。
三、JZ-7加电控:
特点:
以电控为主、气控为辅的机车电空制 动机。 组成: 原有的JZ—7型空气制动机; 空电转换阀 空气的压差 电信号 操纵电磁阀 继电器控制箱、电磁阀、压力开关; 导线:制动导线、缓解导线、保压导线、 紧急导线和零线。
作用原理: 自动制动阀手柄置于运转位: 均衡风缸充气,空电转换阀膜板的均衡 风缸侧充气,推动膜板,使缓解继电器 得电,电流经缓解导线使车辆缓解电磁 阀得电,从而使车辆制动机缓解; 列车管充气增压到与均衡风缸平衡时, 保压导线得电,保压电磁阀得电,车辆 制动机实现缓解保压;
列车管压强达到或接近定压,压力开关
三、盘形加踏面的混合制动装置: 踏面制动单元: 盘形制动单元:
四、应用实例
第五节 防 滑 器
一、滑行: 定义:
在车轮滚动过程中轮轨之间纵向发生相对
滑动(严重的而不是轻微的相对滑动)。
分类: 牵引状态下发生:轮周牵引力超过了粘着 限制,叫“空转”或“打飞轮”; 制动状态下发生:制动力超过了粘着限制, 叫“滑行”或“抱死轮”;
常用制动:
列车管压力空气经机车排气; 经每个车辆的常用电磁阀排入大气; 缓解: 工作风缸压力空气经缩孔堵和缓解电磁
阀流向列车管。 紧急制动: 紧急电磁阀励磁,副风缸压力空气经过 较大的通路截面进入制动缸。
改进: 为了减轻与104加电控混编时的纵向冲动,
F-8加电控把紧急制动时的制动缸升压时间 放长了一些;
受粘着限制的摩擦制动: 闸瓦制动、盘形制动。
受粘着限制的动力制动:
电阻制动、再生制动、旋转涡流制动。 不受粘着限制的非粘制动: 磁轨制动、线性涡流制动。
高速列车多种制动方式的配合: 动车一般是在前两类(粘着制动)中各取1~ 2 种配合使用; 例:法国的TGV-A采用“闸瓦制动十电阻 制动”。 拖车无法采用动力制动,一般是在第一类和 第三类中各取一种配合使用; 例:法国的TGV—N采用“盘形制动十磁 轨制动” 每种列车几乎都有三种制动方式,基本是 受 粘着限制的摩擦制动为基础,动车加动力制 动,拖车加非粘制动。
复合制动
磁轨制动结构原理
高速列车采用的制动方式:
制动机比较:
四、发展趋势: 闸瓦制动已经逐渐被盘形制动所代替, 或者退居次要地位。 在动力制动中,电阻制动逐渐被再生制 动所代替。 在非粘制动中,摩擦式和涡流式基本上 平分秋色、不相上下。
五、高速列车的制动距离 多种制动方式协调配合和装设防滑器, 只能缩短有效制动距离; 采用电控、直通或微机控制电气指令式 的控制手段,可以缩短空走距离; 制动距离随列车速度的提高而适当延长 是不可避免的,也是必需的。否则,制 动时列车减速度就会太大,使旅客难以 承受。
自阀手柄置于紧急制动位: 制动电磁阀得电; 进入撒砂管的总风也进入紧急压力开关,
使紧急继电器得电,经紧急导线传到车辆
紧急电磁阀,从而得到紧急制动作用。 自阀手柄置于过充位: 均衡风缸只能达到定压,列车管压力可比 定压高40kPa左右; 在电路上安装了过充压力开关,过充时可 切断制动继电器通向制动导线的电流;
的作用可使保压电磁阀失电。自阀手柄 在运转位时所有电磁阀都不带电。 自阀手柄移到常用制动区: 均衡风缸减压,空电转换阀的膜板均衡 风缸侧也减压,使制动继电器得电,通 过制动导线使车辆的制动电磁阀得电, 使全部车辆发生制动作用; 当列车管压强减到与均衡风缸平衡时, 使保压继电器、保压导线和保压电磁阀 得电,实现制动保压作用。