数学一考纲要求
高一年级数学上册(人教版)《教材全解全析》

第一章高一数学(上)第一章集合与简易逻辑 本章内容概述【考纲要求】(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相关关系;掌握充要条件的意义. (3)掌握二次不等式、简单的绝对值不等式的解法. 【考点剖析】“集合与简易逻辑”是高中数学的起始单元,也是整个中学数学的基础.它的基础性体现在两个方面:首先,集合的思想、集合的语言和集合的符号在高中数学的很多章节如函数、数列、轨迹、方程和不等式、立体几何、解析几何中都被广泛地使用;其次,数学离不开变换(等价的或不等价的)和推理,而变换与推理又离不开四种命题、充要条件、逻辑联结词等逻辑概念,因为它们是全面理解概念、正确推理运算、准确表述判断的重要工具.集合与逻辑不仅是中学数学的基础,也是支撑现代数学大厦的柱石之一.高等数学的许多分支如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑学等都建立在集合与逻辑的理论基础之上.本单元的知识点在集合与逻辑的理论中都是最基本的,但其中蕴含的数学思想都很丰富,如集合的思想、函数的思想、转化的思想、分类讨论的思想、数形结合的思想等.总之,集合与简易逻辑是高考中考查基础、考查能力与考查进一步学习的潜力的很好的命题材料. 【知识结构图】§1.1集合 预备知识 初中数学基础知识实数分类课本知识导学运用课本知识诠解 重要提示1.集合的相关概念某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.2.元素与集合的关系集合的元素常用小写的拉丁字母表示,而集合常用大写的拉丁字母表示.如果a 是集合A 的元素,就说a 属于集合A,记作a ∈A;如果a 不是集合A的元素,就说a 不属于集合A,记作aA(或aA).可见,集合中的元素与集合间是从属关系.给出一个集合A 和一个元素a ,a 要么是A的元素,要么不是A 的元素,二者必居其一.3.集合的分类按集合元素的个数,集合可分为有限集、无限集和空集.有理数 无理数分数 无理数含有有限个元素的集合叫有限集;含有无限个元素的集合叫无限集;不含任何元素的集合叫空集,空集用符号表示.4.集合的表示方法集合的表示方法,常用的有列举法和描述法.重要提示1.集合是现代数学中不加定义的基本概念,它的基本思想已渗透到现代数学的所有领域.集合中的元素可以是人、物、数点、式子、图形等.2.列举法的优点是可以明确集合中具体的元素及元素的个数.列举法常用来表示有限集或有特殊规律的无限集.其中表示有特殊规律的无限集时,必须把元素间的规律表示清楚后才能用删节号.3.{x∈A|P(x)}有时也可写成{x∈A:P(x)}或{x∈A;P(x)}.4.图示法的使用对象具(1)列举法:把集合中的元素一一列举出来,写在大括号内,这样的表示方法叫列举法.其特点是:①元素一般是有限个;②元素不重复,不遗漏,不计顺序地列举出来;③元素间用“,”隔开.(2)描述法:用确定的条件表示某些对象是否属于这个集合的方法.一般格式为{x∈A|P(x)},其中,x是集合的代表元素,A是x的取值范围,P(x)是确定x应满足的条件.{x∈A|P(x)}即表示使命题P(x)为真的A中诸元素之集.例如,{x∈R|x≤5},若从前后关系来看,集合A已很明确,则可使用{x|P(x)}来表示,例如{x|x≤5}.为了形象地表示集合,常常画一条封闭的曲线,用它的内部表示一个集合,这种方法叫图示法(也称韦恩图法).5.常用的数集及其记法全体非负整数的集合通常简称非负整数集(或自然数集),记作N,非负整数集内排除0的集,也称正整数集,表示成N*或N+.全体整数的集合通常简称整数集,记作Z;全体有理数的集合通常简称有理数集,记作Q;全体实数的集合通常简称实数集,记作R.基础例题点拨【例题1】下列各题中,分别指出了一个集合的所有元素,用适当的方法把这个集合表示出来,然后指出它是有限集还是无限集:(1)组成中国国旗图案的颜色;(2)世界上最高的山峰;(3)由1,2,3这三个数字抽出一部分或全部数字(没有重复)组成的一切自然数;(4)平面内到一个定点O的距离等于定长l(l>0)的所有的点P.【解析】(1){红,黄},有限集;(2){珠穆朗玛峰},有限集;有一定的局限性,但在处理有关抽象集合问题时,却有着独特作用.(1)自然数集与非负整数集是相同的,即自然数集包括数0;(2)Q、Z、R中排除0的集分别可表示为Q*、Z*、R*.随笔:一拖二拖1用适当方法表示下列集合,并指出它们是有限集还是无限集.(1)不超过10的非负偶数的集合.答案:{0,2,4,6,8,10},有限集;(2)大于10的所有自然数组成的集合.答案:{x∈N|x>10},无限集;(3)方程x2-4=0的解集.答案:{-2,2},有限集;(4)方程(x-1)2(x-2)=0的解集.答案:{1,2},有限集.(3){1,2,3,12,13,21,23,31,32,123,132,213,231,312,321},有限集;(4){p|PO=l}(O是定点,l是定长),无限集.(2){x∈N|x>10},无限集;(3){-2,2},有限集;(4){1,2},有限集.【思路点拨】对于有限集并且集合中的元素比较少时,一般采用列举法表示,并且不必考虑元素之间的顺序;对于有限集中元素比较多,以及无限集,通常采用描述法表示.【例题2】把下列集合用另一种方法表示出来: (1){1,5};(2){x|x 2+x-1=0};(3){2,4,6,8};(4){x ∈N|3<x <7}. 【解析】(1){x|(x-1)(x-5)=0};(2)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---251,251;(3){x|x 是大于1,且小于9的偶数}; (4){4,5,6}【思路点拨】描述法表示集合的格式是{x ∈A|P(x )}.因而(2)、(4)是描述法,(1)、(3)是列举法.列举法和描述法是表示集合的两种不同方式,它们可以互相“转化”.重难点突破重点·难点·易混点·易错点·方法技巧 重难点1.重点:集合的基本概念与表示方法,以及集合元素的三个性质的重要应用.正确表示集合是为了更好地学习后面的知识,解题过程中一定要注意满足集合的互异性.2.难点:运用集合的两种常用表示方法——列举法和描述法,正确表示一些简单的集合.集合的元素类型多是以数、点、图形或集合等形式出现.对于已知的集合,必须知道集合元素的形式.如集合{y|y=x2+1}表示函数的所有函数值即{y|y ≥1};集合{x|y=x2+1}表示函数 拖2把下列集合用另一种方法表示出来. (1){-1,0,1,2};答案:{x ∈Z|-2<x <3=;(2) {x ∈Z|16-x ∈N }; 答案: 由于16-x ∈N*,故x-1必为6的正约数,∴x-1=1或2或3或6,从而x=2或3或4或7,∴{2,3,4,7};(3){x|(x+1)x-32(x2-2)(x2+1)=0,x ∈Q }答案: {-1, 32}.拖3指出下列集合的异同点. A={x|y=x2-1} B={y|y=x2-1} C={(x,y)|y=x2-1}答案: A 与B 均表示数集,其中A=R,B={y|y ≥-1}即B 表示不小于-1的所有实数,而C 表示抛物线y=x 2-1上的点的集合.的所有自变量的取值即{x|x ∈R },它们都是数集;集合{(x ,y)|y=x 2+1}表示抛物线y=x 2+1上的所有点,是点集.易混易错点 1. 易混点(1)数集与点集的区别用描述法表示数的集合时,其一般格式为{x|P(x )},即竖线“|”的前面是一个字母;而用描述法表示点集的一般格式为{(x ,y)|P(x ,y)},即“竖线|”的前面是一对有序实数.(2)元素与集合的区别对于任一个字母a ,没有将其写在大括号内或写在封闭的曲线内,则a 表示元素,而{a }表示含有一个元素a 的集合.(3){a ,b }与{(a ,b)}的区别{a ,b }表示双元素集,即含有两个元素a 和b ,而{(a ,b )}表示单元素集,即点集. (4)0与{0}、0与、与{}的区别0表示一个元素0,{}表示含有一个元素0的单元素集,表示空集(不含任何元素的集合),{}表示含有一个元素的单元素集.2.易错点(1)忽视集合元素的确定性集合元素有三大特征:(1)确定性:对于一个给定的集合,元素或者属于这个集合,或者不属于这个集合,二者只能选其一.同时,一个给定的集合,它的元素所表示的意义是明确的,不能模棱两可.如“漂亮的花”就不能构成一个集合,因为“漂亮的花”没有明确的客观标准,也就难以判断某些对象是否属于这个范畴;(2)互异性:一个集合里的任何两个元素是不相同的,相同的元素在集合中只能算一个元素,如{x|x 2-2x+1=0}用列举法只能表示为{1},而不能写成{1,1};(3)无序性:用列举法表示集合时,其元素的排列是不讲次序的,如集合{1,2,3}与{2,1,3}及{3,1,2}均表示同一个集合.随笔: 拖4下列集合表示空集的有( )个 (1){y|y 2+1=0} (2){(x,y)|x 2+y 2=1} (3){x|ax 2+x+1=0} (4){x ∈Q|(x 2-3)(x4-16)=0} A.1B.2C.3D.4答案: A,只有(1)是空集.【例题3】下列所给对象不能构成集合的是( ) A .平面内的所有点B .平面直角坐标系中第二、四象限角平分线上的所有点C .平方小于1的实数D .高一年级个子高的同学【错解】本题容易错选A.因为不知道是指哪个平面.【易错分析】判断所给对象是否构成集合,其理论依据是集合元素所具有的三大特性:确定性、互异性、无序性.本题选项D.中的对象含糊不清,所谓“个子高”没有明确的客观标准. 【正解】根据集合元素的确定性知选D.(2)忽视集合元素的互异性【例题4】若-3∈{x-3,2x-1,x2-4},求实数x 的值.【错解】依题意有-3=x-3,-3=2x-1或-3=x 2-4,解得x=0,x=-1或x=±1,∴x 的取值为0,-1,1. 【易错分析】利用确定性解出所有的可能值,再要进行检验看是否满足互异性.【正解】依题意有-3=x-3或-3=2x-1或-3=x 2-4,解得x=0,-1,1,经检验当x=-1时,2x-1=-3=x 2-4,不符合集合元素的互异性,故舍去,∴x=0或1.(3)不能正确表示集合,两种表示方法混淆使用【例题5】可以表示方程组 的解集的是( )A.{x=1,y=2}B.{1,2}C.{(1,2)}D.{(x ,y)|x=1,y=2}E.{(x ,y)|x=1且y=2} 拖5给出下列5种说法: (1)著名科学家组成一个集合; (2)1,32, 46,|21 |,0.5这些数组成的集合有5个元素; 答案: 中集合只有3个元素,((3){0}是空集;答案: 是含有一个元素0的集合.(4)数轴上离原点很近的点可组成一个集合;(5)集合{x|x=2k-1,k ∈Z }与集合{y|y=2s+1,s ∈Z }表示的是同一集合,其中正确的说法的序号是. 拖6求实数集{1,a,a 2-a }中a 的数值.x+y=3x-y=-1答案: 依集合元素的互异性,有⎪⎩⎪⎨⎧≠≠≠a -a?a 1a -a?1a 解得⎪⎪⎩⎪⎪⎨⎧≠≠±≠≠20251a aa a a 且,故a 的数集是除0、1、2,251±外的一切实数.拖7如图1-1-1(1)和(2)分别给出了集合A 、B,试用除图示法以外的方法给出集合A 、B.答案:图1-1-1(1)给出的集合A 中的元素的共同属性是:它们都是质数,且在小于18的范围内,所以A={小于18的质数}.图1-1-1(2)给出的集合B 是一个无限集,它表示的是大于或等于-1,且小于或等于3的实数,∴B={x|-1≤x ≤3}. F.(x ,y)|⎭⎬⎫⎩⎨⎧==21y x G.{(x ,y)|(x-1)2+(y-2)2=0} 【错解】答案出现A 、B 或D. 【易错分析】方程组的解⎩⎨⎧==21y x 是一个点,因而解集是一个点集,应注意选项的等价性.【正解】应选C 、E 、F 、G.【思路点拨】C 表示的是列举法,F 表示的是描述法,而E 、G 与F 等价.对于D 中的元素有无数个点,表示常函数x=1及常函数y=2两条直线上的所有点.方法技巧1.正确选用集合的表示法集合有三种不同的表示方法,在使用中各有利弊.列举法使人对集合中的元素及其属性一目了然,但有时较繁,对无限集无法使用,有局限性;描述法虽然简捷明了应用范围广,但对其中元素属性的认识还得借助自己的理解,往往容易出错;图示法形象直观,也具有一定的局限性.【例题6】试用适当方法表示下列集合: (1)数轴上与原点的距离小于1的所有点;(2)平面直角坐标系中第二象限角平分线上的所有点; (3)所有非零偶数;(4)所有被3除余数是2的数.【解析】(1){x||x|<1=;(2){(x ,y)|y=-x ,x <0=; (3){x|x=2k ,k ∈Z ,k ≠0}或{x|2x∈Z ,且x ≠0}; (4){x|x=3k+2,k ∈Z }或{x|x=3k-1,k ∈Z }.【思路点拨】数轴上的点表示的也是数,因而是数集.描述法表示集合有三种语言形式:文字语言、符号语言和图形语言.因而(3)也可表示为{所有非零偶数},这是描述法的文字语言.当用符号不易表示集合元素的公共属性时,可用文字语言描述集合.图1-1-1随笔:拖8已知集合A={小于6的正整数},B={小于10的质数},C={24和36的正公约数},用列举法表示集合: (1)M={x|x ∈A 且x ∈C }答案: A={1,2,3,4,5},B={2,3,5,7},C={1,2,3,4,6,12}∵x ∈A 且x ∈C ∴x=1,2,3,4,即M={1,2,3,4} ∵x ∈B 且xC ∴x=5,7,即N={5,7}.(2)N={x|x ∈B 且x C }随笔:2.根据“元素在集合中”解题【例题7】已知集合A={-1,2,3,a 2+2a-3,|a+1|},其中a ∈R,(1)若5是A中的一个元素,求a 的值;(2)是否存在实数a ,使得A中的最大元素是12?若存在,求出对应的a 值;若不存在,试说明理由.【解析】(1)若a 2+2a-3=5,则a 2+2a-8=0,∴a=2或a=-4;但此时都有|a+1|=3,与集合中元素的互异性相矛盾,∴a ≠2且a ≠-4; 若|a+1|=5,则a=-6或a=4,此时a 2+2a-3=21,符合题意,故所求a 的值为-6或4.(2)若存在这样的实数a,则a 2+2a-3=12,且|a+1|<12或|a+1|=12,且a 2+2a-3<12,由于|a+1|=12时,a 2+2a-3=(a+1)2-4=140,∴后一种情况不存在,由第一种情况解得a=3或a=-5,即这样的a 值存在,且a=3或a=-5.【思路点拨】利用“元素在集合中”这一概念来确定某些待定系数时,一要进行相应的分类讨论,二要对所求结果进行必要的检验.这是由集合中元素的“三性”所决定的,若一旦忽视,将出现错误.名题活题创新探究 例题分析解答【例题8】已知集合A={x|ax 2+2x+1=0,x ∈R },其中a ∈R. (1)若1是A中的一个元素,用列举法表示A; (2)若A中有且仅有一个元素,求a 的值组成的集合B; (3)若A中至多有一个元素,试求a 的取值范围.【分析】集合A表示的是方程ax 2+2x+1=0在实数范围内的解集,问题由此转化为方程的有解,求解讨论问题. 拖9已知集合A={x|x2+px+q=x},集合B={x|(x -1)2+p (x-1)+q=x+3},当A={2}时,求集合B.答案: ∵A={x|x2+px+q=x }={2},∴方程x2+px+q=x 有两相等实根x=2,由根与系数的关系知-(p-1)=2+2q=2×2解得p=-3q=4.∴B={x|(x-1)2+p(x-1)+q=x+3}={x|x2-6x+5=0}={1,5}.随笔:拖10已知集合A={x|ax+b=1},B={x|ax-b >4},其中a ≠0,若A中的元素必为B中的元素,求实数b 的取值范围.答案: ∵A 中的元素是x=1-ab-1,依题意知ab -1∈B ,∴a ·ab -1-b >4,即1-2b >4,∴b <-23. 随笔:【解析】(1)∵1是A的元素,∴1是方程ax 2+2x+1=0的一个根,∴a ·12+2·1+1=0,即a=-3,故方程为-3x 2+2x+1=0,∴x 1=1,x 2=-31,此时集合A={-31,1}; (2)若a=0,方程化为2x+1=0,此时有且仅有一个根x=-21; 若a ≠0,则当且仅当方程的判别式Δ=4-4a=0,即a=1时,方程有两个相等的实根x 1=x 2=-1,此时集合A有且仅有一个元素,由可知B={0,1}.(3)集合A中至多有一个元素包括两种情况: A中有且只有一个元素,由(2)知a=0或a=1; A中一个元素也没有,即A=,此时a ≠0且Δ=4-4a <0,∴a >1,由此可知a 的取值范围是:{a|a ≥1或a=0}.知识链接集合论起源于康托尔,是从最简单的概念出发,利用纯粹的推理而建立起来的重要数学分支.具有某种属性的事物的全体称为“集合”,组成集合的每个事物称为该集合的元素,研究集合的运算及其性质的数学分支称为“集合论”.康托尔:(1845~1918)德国数学家,集合论创始人,函数三角级数表示惟一性的研究引发他对无穷点集的探索,于1872年提出以柯西序列定义无理数的实数理论,1874年提出集合概念,证明有理数集可列而实数集不可列;1878年建立势(基数)概念,提出连续统假设,指明无穷集自身与真子集间有一一对应.能力达标检测1.下列条件所指的对象能构成集合的是( )A.与2接近的数B.著名的足球运动员C.大于2而小于3的有理数D.旦夕祸福与不测风云答案: C 提示:“接近”、“著名”、“旦夕”、“不测”均是模糊概念.2.对于关系①32{x|x ≤17},②3∈Q,③0∈N,④0∈,⑤{π}与{3.1415926}表示同一集合,其中正确的个数是( )个.随笔: A.4B.3C.2D.1答案: C 提示:①中32=18>17,②中3是无理数,④中没有元素,0,⑤中π是无限不循环小数,故只有①与③正确.3.集合A={x ∈R|x 2+x+1=0},B={x ∈N|x(x 2+6x+10)=0},C={绝对值小于2的质数},D={(x,y)|y 2=-x 2,x ∈R,y ∈R }其中是空集的有( )个.A.1B.2C.3D.4答案: B 提示:A=,B={0},C=,D={(0,0)}.4.下列表示同一个集合的是( ).A.M={(1,2)},N={(2,1)}B.M={1,2},N={2,1}C.M={y|y=x-1,x ∈R },N={y|y=x-1,x ∈N }D.M=(x ,y)21--x y =1,N={(x ,y)|y-1=x-2} 答案: B 提示:A 中M 、N 都是点集,但是不同的点;C 中M=R,N={-1,0,1,2,…};D 中M={(x,y)|y-1=x-2且x ≠2}即(2,1)M,但(2,1)∈N.5.设三角形三边长分别为a ,b ,c ,若它们能构成集合A={a ,b ,c },则此三角形一定不是( ). A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案: D 提示:由集合元素的互异性知a 、b 、c 两两不等.6.由实数x ,-x ,|x|,2x ,33x -所组成的集合中,最多含有( )个元素.A.2B.3C.4D.5答案: A 提示:2x =|x|=()()00<-≥x x x x ,33x-=-x 当x=0时只有一个元素0,当x ≠0时,只有x 与-x ,故最多含2个元素.7.集合A={一条边为1,一个角为40°的等腰三角形}中的元素个数为( ). A.2B.3C.4D.无数个答案: C 提示:分四种情况:(1)底边为1,顶角为40°;(2)底边为1,底角为40°;(3)腰为1,顶角为40°;(4)腰为1,底角为40°,故选C.8.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么,集合{x|x ∈M 且x ∈N }为( ). A.x=3,y=-1B.(3,-1)C.{3,-1}D.{(3,-1)}答案: D 提示:方程组的解集是点集.9.设a,b,c 为非零实数,则A=||||||||abc abc c c b b a a +++的所有值组成的集合为( ). A.{4}B.{-4}C.{0}D.{0,-4,4}答案: D 提示:按a 、b 、c 的正负分类讨论.10.集合{3,49,37,25 ,…}可表示为( ). A.{x|x=nn 212+,n ∈N*}B.{x|x=n n 32+,n ∈N*}C.{x|x=n n 12-,n ∈N*}D.{x|x=nn 12+,n ∈N*}答案: D 提示:取n=1,2,3进行排除.11.集合A={(x,y)|y=-1+x-2x2,x ∈R,x ≠0},若点P 的坐标(x,y)∈A,则( ). A.P 在第一象限或第二象限B.P 在第三象限或第四象限 C.P 在第一象限或第四象限D.P 在第二象限或第三象限答案: B 提示:y=-1+x-2x 2=-2(x 2-x 21+161)-87=-2(x-41)2-87≤-87,其图像落在第三、四象限.12.集合A={x|x=2k,k ∈Z },B={x|x=2k+1,k ∈Z },C={x|x=4k+1,k ∈Z },又a ∈A,b ∈B,则有( ). A.a+b ∈AB.a+b ∈B C.a+b ∈CD.a+bA 、B 、C 中任何一个答案: B 提示:A 表示偶数集,B 表示奇数集,C 表示被4整除余数为1的集合,奇数与偶数之和必为奇数.13.集合{2x,-x+x 2}中x 的取值范围为.答案: x ≠0且x ≠3提示:由集合元素的互异性知2x ≠-x+x2.14.设M={x ∈Z|x-512∈N },用列举法表示集合M=. 答案: {-7,-1,1,2,3,4}提示:由x-512∈N 知5-x=1,2,3,4,6,12.15.定义A-B={x|x ∈A 且xB },若M={1,2,3,4,5},N={2,3,6},则N-M=.答案: {6}提示:在N 中排除又属于M 中的元素2、3,故只剩下6.16.n 是正整数,若不超过n 的正整数中质数的个数与合数的个数相等,这样的n 称为“怪异数”,则“怪异数”的集合是.答案: {1,9,11,13}提示:当n=1时,质数与合数的个数都为0;当n ≥3时,每增加一个质数至少增加一个合数;当n=9时,质数与合数的个数都为4;当n=11时,质数与合数的个数都为5;当n=13时,质数与合数的个数都为6;当n=17时,合数增加了14、15、16三个数,即合数有9个,而质数只增加1个;当n >17时,每增加1个质数必至少增加1个合数,所以质数与合数个数不会相等.故“怪异数”为1,9,11,13. 17.已知{x|x2+ax+b=0}={3},求a 2+b 2+ab 的值.答案: ∵{x|x 2+ax+b=0}={3},∴3是方程x 2+ax+b=0的相等实根,由根与系数的关系知-a=3+3,b=3×3,解得a=-6,b=9,∴a 2+b 2+ab=36+81-54=63.18.设A={(x,y)|21x y - =1},B={(x,y)|y=1-x 2},若集合C={(x,y)|(x,y)∈B 且(x,y )A },用列举法表示C.答案: 依题意知B 是抛物线y=-x 2+1上所有点的集合,而A 是抛物线y=-x 2+1上除去点(-1,0),(1,0)外的所有点的集合,故C={(-1,0),(1,0)}.19.已知集合A={x|mx 2-3x+2=0,m ∈R },(1)若A=,求m 的取值范围;(2)若A 中至多有一个元素,求m 的范围.答案: (1)若A=,即方程mx2-3x+2=0无解,∴Δ=9-8m <0,即m >89. (2)A 至多有一个元素,包括A 为空集和A 中只有一个元素两种情况,若A=,3x+2=0,即x=32,当m ≠0时,方程mx 2-3x+2=0有两相等实根,∴Δ=0m=89综合可知m ≥89或m =0. 20.已知A={a-3,2a-1,a 2+1},其中a ∈R,(1)若-3∈A,求实数a 的值;(2)当a 为何值时,集合A 的表示不正确?答案: (1)由-3∈A 知a-3=-3或2a-1=-3或a 2+1=-3∴a=0或a=-1,经检验可知a=0或a=-1均可.(2)要使A 的表示不正确,则a-3=2a-1或a-3=a 2+1或2a-1=a 2+1或2a-1=a 2+1=a-3,分别解得a=-2或a 2-a+4=0或a 2-2a+2=0,而a 2-a+4=0和a 2-2a+2=0均无解,故a=-2.21.设集合A={x|x=m 2+n 2,m,n ∈Z },若a,b ∈A,证明:①ab ∈A ②ba=p 2+q 2,其中b ≠0,p 、q ∈Q. 答案: ①∵a,b ∈A,∴可设a=m 21+n 21,b=m 22+n 22,其中m 1,m 2,n 1,n 2∈Z,∴ab=(m 21+n 21)(m 22+n 22)=(m 1m 2)2+(n 1n 2)2+(m 1n 2)2+(m 2n 1)2=(m 1m 2+n 1n 2)2+(m 1n 2-m 2n 1)2∵m 1,m 2,n 1,n 2∈Z,∴m 1m 2+n 1n 2,m 1n 2-m 2n 1∈Z,∴ab ∈A. ②由①知a,b ∈A,∴ab=m 2+n 2,m 、n ∈Z∴222222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+==b n b m b n m b ab b a ,∵b ∈A,∴b ∈Z,∴b n b m ⋅∈Q 令p=bm ,q=b n ,∴p,q ∈Q,∴ba=p 2+q 2,b ≠0,p,q ∈Q.22.集合A={x|x=3n+1,n ∈Z },B={x|x=3n+2,n ∈Z },C={x|x=6n+3,n ∈Z },(1)若c ∈C,求证:必有a ∈A,b ∈B 使c=a+b;(2)对任意的a ∈A,b ∈B,是否一定有a+b ∈C ?证明你的结论.答案: (1)设a=3m+1,b=3n+2,m,n ∈Z,则a+b=3(m+n)+3,显然当m+n=2k,k ∈Z 时,a+b=6k+3∈C,令a+b=c ∈C,则a=3m+1,b=3n+2时c ∈C. (2)由(1)可知,当m+n 为偶数时,a+b ∈C,当m+n 为奇数时,a+b=3(2k -1)+3=6k C,可见对任意的a ∈A,b ∈B,不一定有a+b ∈C.参考答案【一拖二】1.(1){0,2,4,6,8,10},有限集;(2){x ∈N|x >10},无限集;(3){-2,2},有限集;(4){1,2},有限集. 2.(1){x ∈Z|-2<x <3=;(2)由于16-x ∈N*,故x-1必为6的正约数,∴x-1=1或2或3或6,从而x=2或3或4或7,∴{2,3,4,7};(3){-1, 32}. 3.A 与B 均表示数集,其中A=R,B={y|y ≥-1}即B 表示不小于-1的所有实数,而C 表示抛物线y=x 2-1上的点的集合. 4.A,只有(1)是空集.5.(5).其中(1)中“著名”和(4)中“很近”均是模糊概念,没有明确标准,(2)中集合只有3个元素,(3)是含有一个元素0的集合.6.依集合元素的互异性,有⎪⎩⎪⎨⎧≠≠≠a -a a 1a -a 1a 2解得⎪⎪⎩⎪⎪⎨⎧≠≠±≠≠20251a aa a a 且,故a 的数集是除0、1、2,251±外的一切实数.7.图1-1-1(1)给出的集合A 中的元素的共同属性是:它们都是质数,且在小于18的范围内,所以A={小于18的质数}. 图1-1-1(2)给出的集合B 是一个无限集,它表示的是大于或等于-1,且小于或等于3的实数,∴B={x|-1≤x ≤3}. 8.A={1,2,3,4,5},B={2,3,5,7},C={1,2,3,4,6,12} ∵x ∈A 且x ∈C ∴x=1,2,3,4,即M={1,2,3,4} ∵x ∈B 且xC ∴x=5,7,即N={5,7}.9.∵A={x|x2+px+q=x }={2},∴方程x2+px+q=x 有两相等实根x=2,由根与系数的关系知-(p-1)=2+2q=2×2解得p=-3q=4. ∴B={x|(x-1)2+p(x-1)+q=x+3}={x|x2-6x+5=0}={1,5}. 10.∵A 中的元素是x=1-ab-1,依题意知ab -1∈B ,∴a ·ab -1-b >4,即1-2b >4,∴b <-23. 【能力达标检测】1.C 提示:“接近”、“著名”、“旦夕”、“不测”均是模糊概念.2.C 提示:①中32=18>17,②中3是无理数,④中没有元素,0,⑤中π是无限不循环小数,故只有①与③正确.3.B 提示:A=,B={0},C=,D={(0,0)}.4.B 提示:A 中M 、N 都是点集,但是不同的点;C 中M=R,N={-1,0,1,2,…};D 中M={(x,y)|y-1=x-2且x ≠2}即(2,1)M,但(2,1)∈N.5.D 提示:由集合元素的互异性知a 、b 、c 两两不等.6.A 提示:2x =|x|=()()00<-≥x x x x ,33x-=-x ,当x=0时只有一个元素0,当x ≠0时,只有x 与-x ,故最多含2个元素.7.C 提示:分四种情况:(1)底边为1,顶角为40°;(2)底边为1,底角为40°;(3)腰为1,顶角为40°;(4)腰为1,底角为40°,故选C. 8.D 提示:方程组的解集是点集. 9.D 提示:按a 、b 、c 的正负分类讨论. 10.D 提示:取n=1,2,3进行排除. 11.B 提示:y=-1+x-2x 2=-2(x 2-x 21+161)-87=-2(x-41)2-87≤-87,其图像落在第三、四象限.12.B 提示:A 表示偶数集,B 表示奇数集,C 表示被4整除余数为1的集合,奇数与偶数之和必为奇数. 13.x ≠0且x ≠3提示:由集合元素的互异性知2x ≠-x+x 2. 14.{-7,-1,1,2,3,4}提示:由x-512∈N 知5-x=1,2,3,4,6,12. 15.{6}提示:在N 中排除又属于M 中的元素2、3,故只剩下6.16.{1,9,11,13}提示:当n=1时,质数与合数的个数都为0;当n ≥3时,每增加一个质数至少增加一个合数;当n=9时,质数与合数的个数都为4;当n=11时,质数与合数的个数都为5;当n=13时,质数与合数的个数都为6;当n=17时,合数增加了14、15、16三个数,即合数有9个,而质数只增加1个;当n >17时,每增加1个质数必至少增加1个合数,所以质数与合数个数不会相等.故“怪异数”为1,9,11,13.17.∵{x|x 2+ax+b=0}={3},∴3是方程x 2+ax+b=0的相等实根,由根与系数的关系知-a=3+3,b=3×3,解得a=-6,b=9,∴a 2+b 2+ab=36+81-54=63. 18.依题意知B 是抛物线y=-x 2+1上所有点的集合,而A 是抛物线y=-x 2+1上除去点(-1,0),(1,0)外的所有点的集合,故C={(-1,0),(1,0)}. 19.(1)若A=,即方程mx2-3x+2=0无解,∴Δ=9-8m <0,即m >89. (2)A 至多有一个元素,包括A 为空集和A 中只有一个元素两种情况,若A=,3x+2=0,即x=32,当m ≠0时,方程mx 2-3x+2=0有两相等实根,∴Δ=0m=89综合可知m ≥89或m =0. 20.(1)由-3∈A 知a-3=-3或2a-1=-3或a 2+1=-3∴a=0或a=-1,经检验可知a=0或a=-1均可.(2)要使A 的表示不正确,则a-3=2a-1或a-3=a 2+1或2a-1=a 2+1或2a-1=a 2+1=a-3,分别解得a=-2或a 2-a+4=0或a 2-2a+2=0,而a 2-a+4=0和a 2-2a+2=0均无解,故a=-2.21.①∵a,b ∈A,∴可设a=m 21+n 21,b=m 22+n 22,其中m 1,m 2,n 1,n 2∈Z,∴ab=(m 21+n 21)(m 22+n 22)=(m 1m 2)2+(n 1n 2)2+(m 1n 2)2+(m 2n 1)2=(m 1m 2+n 1n 2)2+(m 1n 2-m 2n 1)2∵m 1,m 2,n 1,n 2∈Z,∴m 1m 2+n 1n 2,m 1n 2-m 2n 1∈Z,∴ab ∈A. ②由①知a,b ∈A,∴ab=m 2+n 2,m 、n ∈Z∴222222⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+==b n b m b n m b ab b a ,∵b ∈A,∴b ∈Z,∴b n b m ⋅∈Q 令p=bm ,q=bn,∴p,q ∈Q,∴a 〖〗b=p 2+q 2,b ≠0,p,q ∈Q. 22.(1)设a=3m+1,b=3n+2,m,n ∈Z,则a+b=3(m+n)+3,显然当m+n=2k,k ∈Z 时,a+b=6k+3∈C,令a+b=c ∈C,则a=3m+1,b=3n+2时c ∈C. (2)由(1)可知,当m+n 为偶数时,a+b ∈C,当m+n 为奇数时,a+b=3(2k -1)+3=6k C,可见对任意的a ∈A,b ∈B,不一定有a+b ∈C.【课本习题】 练习P5 (略)1∈N ,0∈N ,-3N ,0.5N ,2N ; 1∈Z ,0∈Z ;-3∈Z ;0.5Q ,2Z ; 1∈Q ,0∈Q ,-3∈Q ,0.5∈Q ,2Q ;1∈R ,0∈R ,-3∈R ;0.5∈R ,2∈R.练习P6页(1){x ∈N|x >10},无限集;(2){1,2,3,6},有限集; (3){-2,2},有限集;(4){2,3,5,7},有限集.(1){x|x 是4与6的公倍数},无限集;(2){x|x=2n ,n ∈N*},无限集; (3){x|x2-2=0},有限集;(4)x|x <11〖〗4,无限集. 习题1.1 1.(1);(2);(3)∈;(4).2.(1){红,黄},有限集;(2){珠穆朗玛峰},有限集;(3){1,2,3,12,13,21,23,31,32,123,132,213,231,312,321},有限集; (4){P|PO=l }(O 是定点,l 是定长),无限集. 3.(1){x|(x-1)(x-5)=0};(2)-1-5〖〗2,-1+5〖〗2; (3){x|x 是大于1且小于9的偶数};(4){4,5,6}.§1.2子集、全集、补集预备知识1.集合的概念:某些指定的对象集在一起组成一个集合.2.集合的表示法:列举法和描述法.课本知识导学运用 课本知识诠解 重要提示1.子集的概念一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,记作A B(或B A).当集合A不包含于集合B,或集合B不包含集合A时,记作A B(或B A).2.集合相等一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.3.真子集对于两个集合A与B,如果A B,并且A≠B,我们说集合A是集合B的真子集,记作A B(或B A).用图形语言可表示为:图1-2-11.子集的概念用数学符号表示为“AB若a∈A,则a∈B”.也可用,也可以用;也可用,也可用.2.用数学符号表示集合相等的概念为“A=B若a∈A,则a∈B;且若a∈B,则a∈A”A B且B A.A是B的真子集用符号语言表示为“ABk若a∈A,则a∈B,且至少存在一个元素b∈B,但b A”.4.当A=时,A的表示是错误的.5.A在S中的补集CSA可用图表示为:4.子集与真子集的相关结论(1)任何集合是它本身的子集.故有,A,A A成立;(2)空集是任何集合的子集,空集是任何非空集合的真子集.(3)集合与集合间的包含关系与相等关系满足传递性,即:若A B,B C,则A C;若A B,B C,则A C;若A=B,B=C,则A=C.5.全集与补集的概念(1)全集:如果一个集合中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.全集通常用U来表示.(2)补集:一般地,设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作CSA,即CSA={x|x∈S,且x A}.(3)补集的特殊性质:CSS=,CS=S,CS(CSA)=A.基础例题点拨【例题1】写出集合{a,b}的所有子集,并指出其中哪些是它的真子集.【解析】集合{a,b}的所有子集是,{a},{b},{a,b},其中,{a},{b}是{a,b}的真子集.【思路点拨】若集合A有n个元素,则它的子集有2n个,真子集个数有2n-1个(即去掉与集合A本身相等的那一个).写出子集时,可通过含有0个元素(即空集),1个元素,2个元素,…n个元素的子集依次写出.【例题2】填空:(1)如果全集U=Z,那么N的补集C U N=;图1-2-2随笔:随笔:拖1写出符合条件{1}A{1,2,3,4}的所有集合A。
2020考研数一考纲(可编辑修改word版)

2020 年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150 分,考试时间为180 分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8 小题,每小题4 分,共32 分填空题 6 小题,每小题4 分,共24 分解答题(包括证明题)9 小题,共94 分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:1x→∞lim x→0sin x= 1xlim⎛1+⎝1 ⎫x⎪=e⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径x2考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a, b) 内,设函数f (x) 具有二阶导数.当f'(x)>0时,f(x)的图形是凹的;当f'(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.32.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握4换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.59.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算6两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[ l, l] 上的傅里叶级数函数在[0, l] 上的正弦级数和余弦级数考试要求71.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sin x ,cos x ,ln(1+x) 及(1+x )的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-l, l] 上的函数展开为傅里叶级数,会将定义在[0, l] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求81.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:y(n) = f (x), y '= f (x, y') 和y '= f ( y, y') .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数9一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空10间及其相关概念n 维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.114.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.12概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数F (x) =P{X ≤x}(-∞<x <+∞) 的概念及性质,13141 2 1 2 会计算与随机变量相联系的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布 B (n , p ) 、几何分布、超几何分布、泊松(Poisson )分布 P () 及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布U (a , b ) 、正态分布 N (, 2 ) 、指数分布及其应用,其中参数为(> 0) 的指数分布 E () 的概率密度为⎧⎪e -x , f (x ) = ⎨若x > 0, ⎩⎪ 0, 若x ≤ 0.5. 会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布 N (,; 2 ,2; ) 的概率密度,理解其中参数的概率意义.4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容2分布t 分总体个体简单随机样本统计量样本均值样本方差和样本矩布 F 分布分位数正态总体的常用抽样分布考试要求1516 ∑ 1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为S 2 = 1 n n -1 i =1 ( X i - X )22. 了解2 分布、t 分布和 F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1. 理解参数的点估计、估计量与估计值的概念.2. 掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.17。
[实用参考]2018年考研数学一考试大纲及其解读
![[实用参考]2018年考研数学一考试大纲及其解读](https://img.taocdn.com/s3/m/1ed2fee084254b35effd3408.png)
2017-09-18考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分1高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.函数——对任意自变量,只有唯一因变量与之对应(知道就行)2.了解函数的有界性、单调性、周期性和奇偶性.一般性了解(知道就行),有界性(连续函数必有界),单调性、周期性、奇偶性后面几章会用到3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.会求分段函数的复合函数,知道反函数的基本性质(与原函数对应关系相反),隐函数了解概念即可(非显函数)4.掌握基本初等函数的性质及其图形,了解初等函数的概念.要求同考纲,初等函数在定义域内均连续5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.了解(知道)极限定义,相关证明没有要求,左右极限需要掌握6.掌握极限的性质及四则运算法则.唯一性和保号性(重要),熟练掌握四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.掌握用夹逼定理(适用于函数和数列)和单调有界定理(适用于数列)求极限8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.知道什么是无穷小量(趋于0)、无穷大量(趋于正负无穷),掌握无穷小量的比较方法(作比,理解低阶、同阶、等价和高阶无穷小),熟练掌握用等价无穷小求极限(只适用于因式)9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.掌握连续判断、间断点类型及其判断10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.熟练掌握并会使用有界性(闭区间连续函数必有界)、最值定理、零点定理和介值定理解题2二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.导数定义式必须熟练掌握并会使用,其他要求同上(会计算)2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.尽可能掌握一阶微分形式不变性并会用其解题,其他要求同上3.了解高阶导数的概念,会求简单函数的高阶导数.知道什么是高阶导数,会用莱布尼茨公式求高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.要求同上,特别注意分段点的导数(用定义式)5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(TaPlor)定理,了解并会用柯西(CauchP)中值定理.熟练掌握并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、柯西中值定理和泰勒(TaPlor)定理,前三个定理证明也需要掌握6.掌握用洛必达法则求未定式极限的方法.要求同上,牢记洛必达法则使用的三个条件7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.以上内容需全部掌握,还需要分清极值与最值,极值与导数为零的点的关系8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.函数形态、拐点、渐近线重点掌握9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.会计算曲率和曲率半径(两个公式),曲率圆一般性了解3三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.非常清晰的理解原函数和可积的关系,弄清不定积分(函数)和定积分(常数)的本质2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.不定积分和定积分计算是重点内容,近年不定积分解答题出题频率变小,定积分出解答题频率变大,两块都不能掉以轻心3.会求有理函数、三角函数有理式和简单无理函数的积分.必须掌握,可能以填空题形式出现4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.重要考点,常与极限洛必达法则联用,必须掌握5.了解反常积分的概念,会计算反常积分.掌握反常积分和其计算(重点是计算)6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.积分的实际应用必须掌握,大概率解答题内容4四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.1~9加粗部分为本章必须掌握的重点,其余内容一般性了解5五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.知道是什么东西就行2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.2.3会求二重极限和判断连续、可微、可偏导等、理解偏导数和全微分及其表达形式,会用全微分形式不变性求偏导4.理解方向导数与梯度的概念,并掌握其计算方法.掌握方向导数与梯度意义和公式并计算5.掌握多元复合函数一阶、二阶偏导数的求法.多元函数微分学重点——会求偏导数6.了解隐函数存在定理,会求多元隐函数的偏导数.会用多种方法求隐函数的偏导数(树形图、全微分等)7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.掌握空间曲线的切线和法平面及曲面的切平面和法线的求法以及应用8.了解二元函数的二阶泰勒公式.知道就行9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.掌握二元函数极值存在条件并会用公式判断,会用拉格朗日乘数法求条件极值并解决简单的应用题6六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).1~8条加粗的部分是本章必须掌握的重点内容7七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握...及麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.1~11加粗部分为本章必须掌握的重点部分,其余部分一般性了解,计算是重点8八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.非常清楚解、通解、初始条件和特解概念2.掌握变量可分离的微分方程及一阶线性微分方程的解法.重点掌握内容3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.2.3.4要求同上5.理解线性微分方程解的性质及解的结构.掌握齐次方程与非齐次方程通解的性质和结构6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.7掌握常见二阶常系数齐次线性微分方程解的形式,并会分析解的结构,组合自由项即将微分方程拆为若干项再按一般方法分别求解(重要)8.会解欧拉方程.要求同上9.会用微分方程解决一些简单的应用问题.能解决微分方程相关的实际应用题(重点是把实际问题转换为数学问题)9线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.知道什么是行列式,熟练掌握行列式的性质(计算)2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.掌握求行列式方法(重要)二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.知道什么是单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,并掌握它们的性质用于解题2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.有关矩阵的运算性质及方阵与行列式之间的关系必须熟练掌握并会解题3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.逆矩阵和伴随矩阵是线代中两个非常重要的概念,相关性质以及应用需要熟练掌握4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.掌握常见分块矩阵的运算三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.1.2.3.4需要全部熟练掌握5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.5.6.7.8施密特正交化和正交矩阵概念、性质是掌握重点,其他了解即可四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.克拉默法则必会2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.2.3.4.5关于齐次和非齐次线性方程组的求解必须熟练掌握,这是线代大题必考的步骤(结合五六章)五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.1.2.3所列内容均需全部掌握,有关特征值、特征向量必考大题六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.二次型概念及其矩阵、合同矩阵、标准型、规范性及惯性定理需要掌握(等价、合同、相似要清晰分辨)2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.配方法了解即可,出题概率非常小,正交变换法化二次型为标准型是重点3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考点之一,可能以选择题或填空题方式考察概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.有关随机事件关系及运算需要掌握,相关题目会做2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(BaPes)公式.这五大公式特别重要,后续章节涉及相关计算性的问题有可能会用到。
考研数一考纲

考研数一考纲考研数学一科目的考纲主要包括以下几个方面的内容:一、数列和极限1. 数列的概念与性质2. 数列极限的定义与性质3. 无穷大与无穷小的概念与性质4. 数列极限的运算法则5. 收敛数列与敛散性判断6. 极限存在准则与夹逼定理二、函数与极限1. 函数的概念与性质2. 函数的极限与连续性3. 函数的一致连续性与连续函数定义4. 零点定理与介值定理5. 导数的概念与性质6. 函数的导数与微分7. L'Hôpital法则与Taylor公式三、一元函数微分学1. 函数的可导性与导数计算法则2. 高阶导数与Leibniz法则3. 函数的微分与泰勒展开4. 函数的凸凹性与拐点判定5. 函数的最值与最优化问题6. 参数方程的导数运算与极值四、一元函数积分学1. 不定积分与定积分的概念2. 基本积分表与换元积分法3. 定积分的性质与计算法则4. 牛顿-莱布尼茨公式与反常积分5. 定积分的应用,如曲线长度、曲面面积、体积等五、多元函数微分学1. 多元函数的极限与连续性2. 多元函数的偏导数与全导数3. 多元函数的微分4. 多元函数的隐函数与逆函数5. 多元函数的方向导数与梯度6. 多元函数的最值与最优化六、多元函数积分学1. 二重积分与三重积分的概念与性质2. 极坐标、柱坐标和球坐标的积分计算3. 二重积分的应用,如质心、面积、物理问题等4. 三重积分的应用,如质量、体积、物理问题等总结起来,考研数一考纲主要涵盖数列和极限、函数与极限、一元函数微分学、一元函数积分学、多元函数微分学和多元函数积分学等内容。
考生需要掌握相关的概念、性质、计算法则以及应用等知识点。
高考数学全国卷(一)考纲分析

• 我想它应缺少“决策的能力”,思维引领方法,方法制定策略,学生作为 “决策者”,如何统筹,才能最优化解题,可能正是所缺少的东西。 • 以后是圆锥曲线与导数的一些专题复习资料,不足之处请多指正;
LOREM IPSUM DOLOR
• Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
1
2 3 4 5
选修2-1:常用逻辑用语;圆锥曲线与方程;空间向量与立体几何.
选修2-2:导数及其应用;推理与证明 ;数系的扩充与复数的引入.
选修2-3:计数原理;统计与概率 选修4-1:几何证明选讲 ; 选修4-4:坐标系与参数方程;
6
选修4-5:不等式选讲。
二.知识要求的三个层面:
1 2
3
了解,理解,掌握.它是由高到低的三个层次, 知道(了解,模仿)
理解(独立操作)
掌握(运用,迁移)
三.能力要求方面:
5种能力,2种意识,这与2015年安徽考纲的要求是一样 的。 “抽象概括能力”、“推理论证能力”、“运算求解能 力”、“数据处理能力”、“应用意识”、“创新意识”
四.个性品质方面:
• 体现学生个性品质,对考生的数学素养的提高,体会数学的美的 意义,以及考生的遇到问题,克服心态,利用自己的意志,去解 决问题,都有着重要的意义。
一年级数学考纲

一年级数学考纲
模块 标题 具体内容
计算 ★巧算加减法 通过凑整和“抱”符号搬家进行加减法巧算 ★图文算式 通过代换求出未知图形所代表的数 时间问题 解决几时几分及简单的统筹安排时间的问题
应用题 ★移多补少 通过画图,解决把多的部分平分移到少的部分达到平衡或相等的问题
★排队问题 根据基数和序数的区别,解决相应的计算队列总人数或部分人数的应用题 倒推问题 通过推理及逆向思维解决涉及数字、图形、简单推理方面的趣题
计数 ★平面图形的计数 根据所学巧算的方法来进行图形的计数
立体图形的计数 运用巧妙的方法来数各类立体图形 ★枚举搭配 有序枚举思想、分类枚举思想、排列组合思想等方法解决计数问题
图形
展开图 立体图形的展开图对应问题
★分割、对称 通过图形的对称性和剪、拼及剪拼综合的常用方法解决问题 数论 单数与双数 通过单双数的性质解决实际问题
组合
★火柴棒 解决数字类火柴棒问题
★巧填算符 利用倒推、分组等方法填出运算符号 ★数字谜 简单的横式、竖式数字谜
★数学游戏 通过推理试填完成数字方块等谜题类游戏 找规律 找到图形和数列相结合的规律
逻辑推理 通过对比、排序等方法解决逻辑问题。
高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析

.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1
2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1
5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9
新教材人教A版高一数学必修一知识点与题型方法总结 第四章指数函数与对数函数

新教材人教A版高一数学必修一知识点与题型方法总结第四章指数函数与对数函数【考纲要求】序号考点课标要求1指数函数①通过对有理数指数幂且为整数,且,实数指数幂含义的认识,了解指数幂的拓展过程,掌握指数幂的运算性质。
了解②通过具体实例,了解指数函数的实际意义,理解指数函数的概念了解③能用描点法或借助计算工具画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
掌握2对数函数①理解对数的概念,及运算性质,知道用换底公式能将一般对数转化成自然对数和常用对数理解②通过具体实例,了解对数函数的概念,能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点掌握③知道对数函数与指数函数互为反函数.了解3二分法与求方程近似解①结合学过的函数图象,了解函数零点与方程解的关系了解②结合具体连续函数及其图象的特点,了解函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性。
掌握4函数与数学模型①理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具。
在实际情境中,会选择合适的函数类型刻画现实问题的变化规律。
理解②结合现实情境中的具体问题,利用计算公具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”、“直线上升”、“指数爆炸”等术语的现实含义。
理解③收集、阅读一些现实生活、生产实际或者经济领域中的数学模型,体会人们是如何借助函数刻画实际问题的,感悟数学模型中参数的现实意义。
了解4.1 指数知识点总结4.1.1 次方根与分数指数幂一、次方根的概念与性质1.次方根(1)定义:一般地,如果,那么叫做的次方根,其中,且。
(2)次方根的性质①当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。
这时,的次方根用符号表示。
例如:,,。
②当是偶数时,正数的次方根有两个,这两个数互为相反数。
这时,正数的正的次方根用符号表示,负的次方根用符号表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学一考纲要求
高等数学
一、函数、极限、连续
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数.会求隐函数和由参数方程确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数的极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数. 当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
三、一元函数积分学
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法.
3.会求有理函数,三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解广义积分的概念,会计算广义积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积已知的立体的体积、功、引力、压力、质心、形心等)
及函数的平均值.
四、向量代数和空间解析几何
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
五、多元函数微分学
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5..掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
六、多元函数积分学
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).
七、无穷级数
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与p级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.
5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.
6.了解函数项级数的收敛域及和函数的概念.
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
9.了解函数展开为泰勒级数的充分必要条件.
10.掌握e x 、sin x 、cos x 、ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式.
八、常微分方程
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
4.会用降阶法解下列微分方程:()()n y f x =,(,)y f x y '''=和(,)y f y y '''=.
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8. 会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.
线性代数
一、行列式
1.了解行列式的定义,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.
三、向量。