第三章 静定结构的内力计算

合集下载

结构力学静定结构内力计算(2)

结构力学静定结构内力计算(2)

0 A
0 MK MK Hy
K

C b1
QK Q cos H sin
0 K
a1 VA0 a2 a3
b2
b3
VB0
NK Q sin H cos
0 K
二、三铰拱的合理拱轴线
使拱在给定荷载下只 0 M M H y 0 产生轴力的拱轴线,被 称为与该荷载对应的合 0 M 理拱轴 y
a1 b1
H VA
VA0 Mc0
VB=VB0
VA0
a2
a3
b2
b3
VB 0
VA=VA0 H= MC0 / f
HA=HB =H
(二)内力的计算公式
y
P
1
P K 2
A
x
y f
l/2 l x l/2 P2
C
P3
B
P1
QK M K NK
HB
HA VA
P1
0 QK
HA VA
A P1
0 MK
VB
P3 B
V
第三章 静定结构的内力计算
§3-3 三铰拱
一、概述 拱:在竖向荷载作用下产生水平推力得曲杆结构。
曲梁

三铰拱: 静定拱式结构。
拱顶
顶铰 矢高
拱脚
拱跨
拱脚
矢跨比:f / l
拱的受力特点: 由于推力的存在,使拱的弯矩比同跨同荷载的 简支梁弯矩要小得很多,或者几乎没有。使拱 成为一个受压为主或单纯受压的结构。
H
在竖向荷载作用下,三 铰拱的合理拱轴线的纵 坐标与相应简支梁弯矩 图的竖标成正比。
试求图示对称三铰拱在均布荷载作用下 的合理拱轴线 MC0=ql2/8 H=ql2/8f

建筑力学第三章静定结构内力计算

建筑力学第三章静定结构内力计算

01
02
03
04
排架是由两个单层刚架组成的 结构,其内力可以通过整体法
和分离法进行计算。
整体法是将两个单层刚架作为 一个整体进行分析,从而求得
整个排架的内力。
分离法是将排架拆分成两个单 层刚架进行分析,然后分别求
得每个单层刚架的内力。
在计算过程中,需要考虑到排 架的自重、外力以及支座反力
的影响。
组合结构的内力计算实例
03 静定结构的内力计算方法
截面法
总结词
通过在指定截面上截取隔离体,然后对隔离体进行受力分析,计算出内力的方法。
详细描述
截面法是静定结构内力计算的基本方法之一。在截面法中,我们首先在结构中选择一个或多个截面, 然后将这些截面处的杆件暂时断开,并分析这些杆件的内力。通过这种方法,我们可以确定每个杆件 的内力大小和方向。
组合结构是由两种或多种结构组成的 结构,其内力可以通过叠加法进行计 算。
在计算过程中,需要考虑到组合结构 是将每种结构的内力分别计算 出来,然后根据结构的特点进行叠加, 从而求得整个组合结构的内力。
05 静定结构内力计算的注意 事项
材料强度的考虑
材料强度
在计算静定结构内力时,必须考虑材 料的强度。不同的材料有不同的抗拉 、抗压、抗剪强度,应确保结构中的 应力不超过材料的容许应力。
节点法
总结词
通过分析节点处的平衡状态,计算出节点所受内力的方法。
详细描述
节点法是一种基于力的平衡原理的计算方法。在节点法中,我们首先确定节点 的位置和数量,然后分析每个节点处的平衡状态。通过这种方法,我们可以计 算出每个节点所受的内力大小和方向。
弯矩图法
总结词
通过绘制弯矩图,直观地表示出结构的弯矩 分布情况,进而计算出结构的内力。

03结构力学 第三章 静定结构的内力计算3.3 静定刚架的内力计算(邓军)

03结构力学 第三章 静定结构的内力计算3.3 静定刚架的内力计算(邓军)
剪力图: 剪力符号规定与直梁中的规定相同;剪力图可画在杆件的任一 侧,但剪力图上要标明正负号。 轴力图:
轴力仍以受拉为正,受压为负;轴力图可画在杆件的任一侧或 与纵坐标对称地画在杆件的两边,但需在轴力图上标明正负号。
§3.3 静定刚架的计算
例1 绘制如图所示门式刚架在半跨均布荷载作用下的内力图。
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
静定刚架的组成及类型
平面刚架是由直杆(梁和柱)组成的平面结构。
刚架中的结点部分或全部是刚节点。
在刚节点处,各杆件连成一个整体,杆件之间不能发生相对 移动和相对转动,刚架变形时各杆之间的夹角保持不变,因 此刚节点能够承受弯矩、剪力和轴力。
解:
1)求支座反力 由整体平衡方程可得
M A 0, 6 3 12FyB 0 M B 0, 6 9 12FyA 0
X 0, FxA FxB 0
取铰C右边部分为隔离体
MC 0, 6.5FxB 6FyB 0
求得
FyB =1.5kN() FyA=4.5kN() FxA =1.384 kN()
§3.3 静定刚架的计算
2)作弯矩图
求出杆端弯矩(设弯矩方正向为使刚架内侧受拉)后,画于受 拉一侧并连以直线,再叠加简支梁的弯矩图。
以DC杆为例
M DC 1.384 4.5 6.23kN m, MCD 0
CD中点弯矩为 1.3845.5 133 1 1 4.5 6 1.388kN m 22
(2)为计算静定刚架位移和分析超静定刚架打下基础。
2)刚架各杆内力的求法
从力学观点看,刚架是梁的组合结构,因此刚架的内力求法 原则上与梁的内力计算相同。 通常是利用刚架的整体或个体的平衡条件求出各支座反力和 铰接点处的约束反力,然后用截面法逐个计算杆件内力。

第03章: 结构力学 静定结构内力分析

第03章: 结构力学   静定结构内力分析
A
2
2qa 2
2qa2
4qa
2
2
4qa2
14qa2
2qa2 q
14qa
弯矩图
10
也可直接从悬臂端开始计算杆件 8 2qa2
8qa 2
B
10qa 2
6qa 2q
2
2qa 2
4qa2
14qa
2
M图
(4)绘制结构Q图和N图 2qa2 2qa2 C 6qa q E

D
2q A 2a 2a 4a B
3a
6qa
FN2=0
FN=0
FN=0
FN1=0
判断结构中的零杆
FP FP FP/2
FP/ 2
FP



截取桁架的某一局部作为隔离体, 由平面任意力系的平衡方程即可求得未知 的轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
5、三铰拱的合理轴线 拱的合理轴线:在固定荷载作用下使拱处于无弯距状态 的轴线。 求解公式:在竖向荷载作用下,三铰拱的合理轴线使拱 的各截面处于无弯距状态,即
M M FH y 0
0
M y FH
0
结论: (1)三铰拱在沿水平线均匀分布的竖向荷载作用下,合理轴 线为一抛物线。
y
M AD
1 qL x2 8
M BD
q(l x) 1 x qx 2 2 2
Mx1max
1 qL x2 8
由以上三处的弯矩得到:
q(L x) 1 2 1 2 x qx qL x 2 2 8
整理得:
x 0.172L

第三章 静定结构的内力计算

第三章 静定结构的内力计算

FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC

结构力学二3-静定结构的内力计算

结构力学二3-静定结构的内力计算

以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线

⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线


利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓

结构力学静定结构的内力计算图文


dM
q(x)
(1)微分关系 dx FQ
dx
dFQ q dx
q
FQ
M+d M
M d x FQ+d FQ
MA FQA
d 2M
q
Fy
dx2
FQ
m0 M
dx
M+ M
(2)增量关系
FQ+F Q
FQ Fy M m0
(3)积分关系 由dFQ = – q·d x
qy
FQB FQA
xB xA
q
y
dx
ቤተ መጻሕፍቲ ባይዱMB
静定结构内力计算过程中需注意的几点问题: (1)弯矩图习惯画在杆件受拉边、不用标注正负号,轴力图和剪力图可画 在杆件任一边,需要标注正负号。 (2)内力图要写清名称、单位、控制截面处纵坐标的大小,各纵坐标的长 度应成比例。 (3)截面法求内力所列平衡方程正负与内力正负是完全不同的两套符号系 统,不可混淆。
四、 分段叠加法作弯矩图
MA
q
MB
P
M
MA
M
MA
M
+
M
M M M
A
MA
MB
FNA
FyA MA
MB
Fy0A
MA
q q q
M M
B MB
FNB FyB
MB
Fy0B
MB
例:4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
§3-2 静定梁
❖ 静定梁分为静定单跨梁和静定多跨梁。单跨梁的结构形式有水平梁、斜

3静定结构的内力计算

工程中的单跨静定梁,按其支座情况可分为三种: (1)简支梁:该梁的一端为固定铰支座,另一端为可动铰支座。 (2)外伸梁:一端或两端向外伸出的简支梁称为外伸梁。 (3)悬臂梁:该梁的一端为固定端支座,另一端为自由端。
①简支梁
②外伸梁
③悬臂梁
3
二、梁的内力
1、内力计算法——截面法
P1
A
m
FAx
K
n
P2 B
8
斜梁介绍
工程中,斜梁和斜杆是常遇到的,如楼梯梁、刚架中的斜杆等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重),用 q’ 表示。
q 与 q’间的转换关系:
qdx = qds q = q
cos
dM dx
= FQ
无荷载区段 平行轴线
FQ图
M图
斜直线
均布荷载区段 集中力作用处 集中力偶作用处
↓↓↓↓↓↓
+ -
二次抛物线
凸向即q指向
发生突变
+P -
出现尖点
尖点指向即P的指向
无变化
发生突变
m
两直线平行
注备
FS=0区段M图 FS=0处,M 平行于轴线 达到极值
12
三、叠加法作弯矩图
1. 叠加原理: 几个载荷共同作用的效果,等于各个载荷单独
吊杆
带拉杆的三铰拱
拉杆折线形
拉杆
花篮螺丝
带吊杆的三铰拱
3、三铰拱的内力计算
1)、拱的内力计算原理仍然是截面法。 2)、拱通常以受压为主,因此规定轴力以受压为正。 3)、计算时常将拱与相应简支梁对比,通过对比完成计算。
45

第三章 静定结构的内力计算(组合结构)


A A A A 0 0 0 0
0 0 0 0
8 8 8 8
HC
3、求梁式杆内力 处理结点A处力
结构力学
第3章静定结构的内力计算
静定结构特性
结构力学
第3章静定结构的内力计算
静定结构特性 静定结构特性 一、结构基本部分和附属部分受力影响
A
F1
B
C
F2
D
E
F3
F
如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; Ⅰ Ⅱ Ⅲ 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 特性一、静定结构基本部分承受荷载作用,只在基本部分上产 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 生反力和内力;附属部分上承受荷载作用,在附属部分和基本 部分上均产生反力和内力。
第3章静定结构的内力计算
q = 1 kN/m A FR Ax FR Ay FNDA F C FNFD VC
8 8 8 8
M M图 图 ( m M图 (kN· kN· m) ) M 图 (kN· m) (kN· m) F 图 FQ 图 Q ( ) FkN 图 ( kN Q ) FkN 图 ( Q ) (kN) F 图 FN N图 ( ) FkN ( kN ) N图 FkN N图 ( ) (kN)
结构力学
第3章静定结构的内力计算
二、平衡荷载的影响
F C B D
A B q C

建筑力学与结构第三章


V=12KN/m 2 2 3m
1.5m
B RA =15KN RB =29KN RB
P=8KN
V1 M1
根据1-1截面左侧的外力计算V1 、 M1
V1=+RA-P =15-8 =+7KN
根据1-1截面右侧的外力计算V1 、 M1
RA
M1 =+RA· (2-1.5) =15· 0.5 =+26 KN· 2-P· 2-8· m
求图示简支梁1-1、2-2截面的剪力和弯矩. P=8KN V=12KN/m
2 1
A
2m 1.5m
1
2 3m
B
1.5m
RA
1.5m
解:由 M B 0得 由 M A 0得
RB
RA =15KN RB =29KN
请思考: RB还可如何简便算出?
P=8KN
A RA
2m 1.5m
1 1 1.5m
M
各种形式荷载作用下的剪力、弯矩图
载荷情况
无载荷(q=0)
剪力图
V﹥0 V﹤0
弯矩图
V﹥0 V﹤0 尖角 突变m V﹤0 V﹥ 0
均布载荷(q=c)
V﹤0 V﹥0
P m
C
突变P C 无变化
C
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控 制截面。如 集中力和 集中力偶作用点两侧的截面、 均布荷载起迄点等。用截面法求出这些截面的内力 值,按比例绘出相应的内力竖标,便定出了内力图 的各控制点。 (4)联线:据各梁段的内力图形状,分别用 直线和曲线将各控制点依次相联,即得内力图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ql2 / 2
FQ=0的截面为抛 物线的顶点.
ql / 2
ql
2
M图
FQ图
例: 作内力图
ql2 / 2
M图 FQ图
1.无荷载分布段(q=0),FQ图为水平线,M图为斜直线. 2.均布荷载段(q=常数),FQ图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 3.集中力作用处,FQ图有突变,且突变量等于力值; M 图有尖点,且指向与荷载相同.
FN2=0
FN=0
FN=0
FN1=0
判断结构中的零杆
FP FP FP/2
FP/ 2
FP
特殊结点:
(1)L形结点:在不共线的两杆结点 上,若无外荷载作用,则两杆内力 均 为零。内力为零的杆称为零杆。 (2)T形结点:三杆结点无外荷载作用时, 如其中两杆在一条直线上,则共线的两杆内 力性质相同,而第三杆内力为零。 (3)X形结点:四杆结点无外荷载作用时, 如其中两杆在一条直线上,另外两杆在另一 条直线上,则同一直线上的两杆内力性质相 同。 (4)K形结点:四杆结点无外荷载作用时, 如其中两杆在一条直线上,另外两杆在此直 线同侧且交角相等,则非共线两杆内力大小 相等而符号相反。
-8 kN
YDE CD 0.75 X DE CE 0.5
0
-33 -8
-33
-33 -8
-33
34.8 19
-5.4 -5.4 37.5
34.8 19
小结:
• 以结点作为平衡对象,结点承受汇交力 系作用。 • 按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数。 • 由结点平衡方程可求得桁架各杆内力。
在剪力突变 的截面
在紧靠C的某 一侧截面
简易法
总口诀 一分二定三连线;
注意正负和突变;
弯矩斜率是剪力;
形状大小多检验。
剪力图 无荷区间水平线; 均布荷载斜率现; 力偶似乎不管用; 集中力处有突变。 弯矩图 无荷区间直线行; 均布荷载抛物形; 力偶作用要突变; 集中力处是尖角。
简易法绘制内力图的一般步骤
FP FP FP FP
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
q
1 2 ql 16 1 2 ql 16
l
q
ql 2
ql 2
l
6.分段叠加法作弯矩图
q
A
1 2 ql 16
B
1 ql 8

q
l/2
q
l/2
1 2 ql 16
1 2 ql 16
l/2
q
q
1 2 ql 16
1 2 ql 16
m l
m l
例: 作内力图 铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 FQ图 无剪力杆的 弯矩为常数. M图 自由端有外 力偶,弯矩等于外 力偶
FQ图
练习: 利用上述关系作弯矩图,剪力图
FP FP FP FP
FP FP
FP FP FP FP
FP
FP
FP
练习: 利用上述关系作弯矩图,剪力图
FN1
FN2
FN1=FN2=0
FN1 FN3
FN2
FN1=FN2
FN3=0
FN4 FN1 FN2
FN1=FN2
FN3
FN1
FN3=FN4
3)、注意点:
(1)一般结点上的未知力不能多余两个; (2)可利用比例关系求解各轴力的铅直、水平分量。
B l A FN
FN FN ly A
B

lx

Fx
Fy
FN Fx Fy l lx ly
结点法
以只有一个结点的隔离体为研究对象, 用汇交力系的平衡方程求解各杆内力的方法 例1. 求以下桁架各杆的内力
M图
FP/2 FPl/4
FQ图
FP/2
ql2 / 2
M图
A支座的反力 大小为多少, 方向怎样?
FQ图
FPl/2 FP
M图
FP FP/2
FQ图
1.无荷载分布段(q=0),FQ图为水平线,M图为斜直线. 2.均布荷载段(q=常数),FQ图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 3.集中力作用处,FQ图有突变,且突变量等于力值; M 图有尖点,且指向与荷载相同. 4.集中力偶作用处, M图有突变,且突变量等于力偶 值; FQ图无变化.
例: 作内力图
ql
q
ql
l ql
l
2l
4l
2l
l
l ql
q
1 ql 2
ql ql
1 ql 2
2ql2
q
ql 2
A B FQ AB FQ BA M A 0 FQ BA 11ql / 4
F
Y
0 FQ AB 5ql / 4
例: 作内力图
ql
q
ql
l ql
l
2l
4l
2l
l
l ql
切忌:浅尝辄止
主要内容
静定结构内力计算的基本方

静定结构内力计算举例
静定结构特性
几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力
静定结构分类
1、静定梁; 2、静定刚架; 3、三铰拱;
4、静定桁架; 5、静定组合结构;
单跨静定梁受力分析
单跨梁受力分析方法
1.单跨梁支反力 2.截面法求指定截面内力 3.作内力图的基本方法 4.弯矩、剪力、荷载集度之间的微分关系 5.叠加法作弯矩图 6.分段叠加法作弯矩图
q
1 ql 2
内力计算的关键在于 : 1 ql ql 2 正确区分基本部分和附 ql ql 属部分. 熟练掌握单跨梁的计算 . ql ql / 2
ql
2 2
ql
5ql / 4
11ql / 4
ql / 2
3.多跨静定梁的受力特点
为何采用多跨静定梁这种结构型式?
简支梁(两个并列)
多跨静定梁 连续梁
例.对图示静定梁,欲使AB跨的最大正弯矩与支座B截
q
A
x
B
M ( x) qdx
FN ( x)
M dM
FN dFN
l
微分关系: dFQ ( x ) / dx q ( x )
FQ ( x)
FQ dFQ
dx
dM ( x ) / dx FQ ( x ) d 2 M ( x ) / dx2 q ( x ) FPl 1.无荷载分布段(q=0),FQ图 为水平线,M图为斜直线. M图
弦杆 下弦杆
上弦杆
斜杆
竖杆
腹杆 桁高
d 节间 跨度
• 经抽象简化后,杆轴交于一点,且“只 受结点荷载作用的直杆、铰结体系”的 工程结构. • 特性:只有轴力,而没有弯矩和剪力。 轴力又称为主内力。
• 实际结构中由于结点并非是理想铰,同时还将 产生弯矩、剪力,但这两种内力相对于轴力的 影响是很小的,故称为次内力。 次内力的影响举例
杆号 起点号 终点号 1 2 4 2 4 6 3 6 8 4 8 10 5 1 3 6 3 5 7 5 7 8 7 9
桁架轴力 -35.000 -60.000 -75.000 -80.000 0.000 35.000 60.000 75.000
刚架轴力 -34.966 -59.973 -74.977 -79.977 0.032 35.005 59.997 74.991
在用结点法进行计算时,注意以下三点, 可使计算过程得到简化。
1. 对称性的利用 如果结构的杆件轴线对某轴(空间桁架为 某面)对称,结构的支座也对同一条轴对 称的静定结构,则该结构称为对称结构。 对称结构在对称或反对称的荷载作用下, 结构的内力和变形(也称为反应)必然对 称或反对称,这称为对称性。
对称结构受对称荷载作用, 内力和反 力均为对称:
1.单跨梁支座反 力
例.求图示梁支反力
A FX FP
解:
M
L/2
L/2
FY
F 0 F 0 M 0
X Y A
FX 0 FY FP () M FP L / 2( )
2.截面法求指定截面内力
K
内力符号规定: 弯矩 以使下侧受拉为正 剪力 绕作用截面顺时针转为正 轴力 拉力为正
自由端无外力偶 则无弯矩. FQ图
截面弯矩等于该截面一 侧的所有外力对该截面 的力矩之和
FP
例: 作内力图
FP
FP
M图
FP FP
FQ图
铰支端无外力偶 则该截面无弯矩.
1.无荷载分布段(q=0),FQ图为水平线,M图为斜直线. 2.均布荷载段(q=常数),FQ图为斜直线,M图为抛物线, 且凸向与荷载指向相同.
面的负弯矩的绝对值相等,确定铰D的位置.
q
A
D
l
B
C
l
x
q(l x) / 8
2
RD
RD
B
q
解: RD q(l x) / 2()
M B qx2 / 2 q(l x) x / 2
x 0.172 l
M B 0.086ql2
q(l x)2 / 8 qx2 / 2 q(l x) x / 2
例:求跨中截面内力
q
A
解: FAx 0, FAy ql / 2(),
B
FBy ql / 2()
FAx
FAy
C
l
FBy
F 0, F F 0, F M 0, M
x y c
NC
0 0
相关文档
最新文档