二端口网络参数的测定(附数据作参考)
有源二端网络等效参数的测定

RL/Ω
0 ~ 1000Ω
U/V 0 1 2 3 4 5 6 7 8
I/mA
9 10
电工电子教学部
四、实验电路及内容
4.测定有源二端网络等效电阻(又称入端电阻) 的其他方法:
将被测有源二端网络内的所有独立源置零(将电流源IS断开;去掉电 压源,并在原接电压源的两点用一根短路导线相连),然后用伏安 法或者直接用万用电表的欧姆挡去测量负载RL开路后输出端两点间 的电阻,此即为被测网络的等效内阻RO,或称网络的入端电阻RI。
0~30V 0~500mA 0~300V 0~2000mA
数量
1 1 1 1 1 各1
7
戴维宁定理实验线
1
路板
备注
实验屏B区 实验屏B 区 实验屏D区 实验屏D区 自备 TKDG-05
TKDG-03
电工电子教学部
实验台的布局和使用
电源控制屏 测量仪表
其
他
实
验
模
块
可
任
意
组
电路实验模块
合
电工电子教学部
电工电子教学部二原理说明有源二端网络等效参数的测量方法1开路电压短路电流法2伏安法3半电压法4零示法电工电子教学部三实验仪器及材料序号名称型号与规格数量备注1可调直流稳压电源030v1实验屏b区2可调直流恒流源0500ma1实验屏b区3直流数字电压表0300v1实验屏d区4直流数字毫安表02000ma1实验屏d区5万用表1自备6元件箱电位器电阻箱各1tkdg057戴维宁定理实验线路板1tkdg03电工电子教学部实验台的布局和使用其他实验模块可任意组合电源控制屏测量仪表电路实验模块电工电子教学部1
二、原理说明
有源二端网络:任何一个线性有源二端网络,如果仅研究
二端口网络的网络参数-文档资料

阻抗参数[Z]
u1
U1 Z e1
, i1
I1
Z e1
u2
U2 Ze2
, i2
I2
Ze2
代入整理可得 [u] [z][i]
其中,
z
z11 / ze1
z12 / ze1ze2
z21 / ze1ze2 z22 / பைடு நூலகம்e2
1、2 导纳参数[Y]
在上述双端口网络中, 以U1、U2为自变量, I1、I2 为因变量, 则可得另一组方程:
U 2
I
2
其中,[A]称为转移矩阵,方阵中各参数的物理意义 如下:
A11
U1 U2
|I2 0
A12
U1 I2
|U2 0
表示T2开路时电压的转移参数 表示T2短路时转移阻抗
转移参数[A]
A21
I1 U2
|I2 0
表示T2
A22
I1 I2
|U2 0
表示T2短路时电流的转移参数
若将网络各端口电压、电流对自身特性阻抗归一
对于如下图所示的两个网络的级联:
U1
I1
A1
U2
I
2
U2
I
2
A2
U3
I3
转移参数[A]
+ I1
I2
I3 +
+
U1
[A1]
U2
[A2]
U3
-
-
-
双端口网络的级联
转移参数[A]
则有
U1
I1
A1
A2
U3
I3
令 A A1A2
则对于n个双端口网络级联 A A1A2 An
散射参数[S]
二端口网络参数的测定(附数据作参考)

二端口网络参数的测定一、实验目的1.加深理解双口网络的基本理论。
2.学习双口网络Y参数、Z参数的测试方法。
3.掌握Y参数、Z参数的π型、T型等效电路,以及T参数的转化二、原理说明1.如图1所示的无源线性双口网络,其两端口的电压、电流四个变量之间关系,可用多种形式的参数方程来描述。
图1()()()()1111122221122211121221211121222212I 0I0I 0I0I Y U Y U I Y U Y U Y U U Y U U Y U U Y U U =+=+========其中令,即输出端口短路时令,即输出端口短路时令,即输入端口短路时令,即输入端口短路时()()()(),即输入端口开路时令,即输入端口开路时令,即输出端口开路时令,即输出端口开路时令其中0UZ 0UZ 0U Z 0U 1222212112212212111122212122121111========+=+=I I I I I I I I Z I Z I Z U IZ I Z U ()()()(),即输出端口短路时令,即输出端口开路时令,即输出端口短路时令,即输出端口开路时令其中0ID 0IC 0U B 0U A 221s 22010221s 22010221221=-====-===-=-=U I I U U I I U DI CU I BI AU U ss(1)若用Y 参数方程来描述,则为由上可知,只要在双口网络的输入端口加上电压,令输出端口短路,根据上面的前两个公式即可求得输入端口处的输入导纳Y 11和输出端口与输入端口之间的转移导纳Y 21。
同理,只要在双口网络的输出端口加上电压,令输入端口短路,根据上面的后两个公式即可求得输出端口处的输入导纳Y 22和输入端口与输出端口之间的转移导纳Y 12。
(2)若用Z 参数方程来描述,则为 由上可知,只要在双口网络的输入端口加上电流源,令输出端口开路,根据上面的前两个公式即可求得输出端口开路时输入端口处的输入阻抗Z 11和输出端口与输入端口之间的开路转移阻抗Z 21。
实验三 有源二端网络等效参数的测定

实验三有源二端网络等效参数的测定一、实验目的1.学习有源二端网络的开路电压和入端电阻的测量方法。
2.分析负载获得最大功率的条件。
3.理解戴维南定理。
二、实验原理与方法1.戴维南定理戴维南定理指出,任何一个含源线性二端网络,对其外部而言,都可以用一个电压源与电阻相串联的组合来等效代替。
如图1所示,该电压源的电压等于二端网络的开路电压U,该电阻等于网络内部所有独立电压源短路、独立电流源开路(即成为线性无源二端网络,OC如图2所示)时的入端等效电阻R i。
图1 戴维南定理等效电路图2 含源线性二端网络的开路电压和无源线性二端网络的入端等效电阻2.开路电压UOC的测量方法(1)直接测量法当含源线性二端网络的入端等效电阻R i较小,与电压表的内阻相比较可以忽略不计时,可以用电压表直接测量该网络的开路电压UOC。
(2)补偿法当含源线性二端网络的入端电阻R i较大时,采取直接测量法的误差较大,若采用补偿法测量则较为准确。
测量方法如图3所示,图中虚线方框内为补偿电路,U为直流电源,滑线变阻器RP接为分压器,G为检流计。
将补偿电路的两端A′、B′与S被测电路的两端A、B相连接,调节分压器的输出电压,使检流计的指示为零,此时电压表所测得的电压值就是该网络的开路电压UOC。
由于此时被测网络相当于开路,不输出电流,网络内部无电压降,所以测得的开路电压较直接测量法准确。
图3 补偿法测量网络开路电压的电路3.入端等效电阻R i的测量方法(1)外加电源法将含源线性二端网络内部的电源去除,且电压源作短路、独立电流源作开路处理,•使其成为线性无源二端网络,然后在其A、B二端加上一合适的电压源US (图4)•,测量流入网络的电流I,则网络的入端等效电阻为R i=US/I。
如果无源二端网络仅由电阻元件组成,也可以直接用万用电表的电阻挡去测量R i。
因为在实际上网络内部的电源都有一定的内阻,当电源被去掉的同时,其内阻也被去掉了,这就影响了测量的准确性。
二端口网络参数的测定含数据处理

二端口网络参数的测定含数据处理1.测量传输参数:传输参数是描述输入信号与输出信号之间转移关系的参数,主要包括电压传输系数(Voltage Transfer Gain)和相移(Phase Shift)。
测量电压传输系数可以采用两种方法:开路法和短路法。
-开路法:将输入端口接入一个高阻抗电压表,测量输出电压和输入电压,传输系数为输出电压除以输入电压。
-短路法:将输入端口接入一个低阻抗电流表,测量输出电压和输入电压,传输系数为输出电压除以输入电压。
测量相移可以通过相位计或示波器测量输入和输出信号的相位差。
2.测量散射参数:散射参数是描述网络中反射和传输特性的参数。
主要有反射系数(Reflection Coefficient)和传输系数(Transmission Coefficient)。
测量散射参数需要使用网络分析仪(Network Analyzer)。
-反射系数:将网络中的一个端口短路,通过网络分析仪测量另一个端口的反射系数。
-传输系数:将网络中的一个端口短路,通过网络分析仪测量另一个端口的传输系数。
测量时需要注意选择合适的测试频率范围,以保证测量精度。
3.测量稳定参数:稳定参数主要用于分析网络的稳定性和输入输出匹配情况。
主要包括输入射频功率范围(Input RF Power Range)、输出射频功率范围(Output RF Power Range)和电源抑制(RF Power Suppression)等参数。
-输入射频功率范围:通过逐渐增大输入功率,观察网络的输出功率是否随之增加,当输出功率不再增加时,即达到输入射频功率的最大范围。
-输出射频功率范围:通过逐渐增大输出功率,观察输出功率是否随之增加,当输出功率不再增加时,即达到输出射频功率的最大范围。
-电源抑制:通过观察输入功率和输出功率之间的关系,确定电源抑制的程度。
测量时需要注意选择合适的功率测量装置和保护电路,以保证测量的准确性和安全性。
数据处理方法:在进行二端口网络参数测定后,需要对测得的数据进行处理和分析。
二端口网络测试实验报告

二端口网络测试实验报告二端口网络测试实验报告一、实验目的二端口网络测试是计算机网络领域中的一项重要实验,旨在通过建立两台计算机之间的网络连接,测试网络的性能和稳定性。
本实验报告将详细介绍实验所涉及的步骤、方法和结果,以及对实验结果的分析和讨论。
二、实验步骤1. 实验环境搭建为了进行二端口网络测试,我们需要准备两台计算机,并确保它们能够相互通信。
在实验开始之前,我们先检查网络连接是否正常,确保两台计算机能够互相ping通。
2. 测试网络带宽为了测试网络的带宽,我们使用了一款专业的网络测试工具。
首先,在发送端计算机上运行该工具,并设置好发送数据包的大小和发送速率。
然后,在接收端计算机上同样运行该工具,并指定接收数据包的端口。
通过在两台计算机之间传输大量数据包,我们可以测量网络的带宽。
3. 测试网络延迟除了测试带宽外,我们还需要测试网络的延迟。
延迟是指从发送端发送数据包到接收端接收到数据包之间的时间间隔。
为了测量延迟,我们使用了另一款专业的网络测试工具。
在发送端计算机上运行该工具,并设置好发送数据包的大小和发送速率。
在接收端计算机上同样运行该工具,并指定接收数据包的端口。
通过测量数据包往返所需的时间,我们可以得出网络的延迟。
4. 分析和记录实验结果在进行网络测试的过程中,我们需要记录各项指标的数值,并进行分析。
通过对实验结果的分析,我们可以评估网络的性能和稳定性,并找出可能存在的问题。
三、实验结果在进行二端口网络测试的过程中,我们得到了以下结果:1. 带宽测试结果通过测试工具测量,我们得出了网络的带宽为X Mbps。
这个数值代表了网络在传输数据时的最大速率。
通过与预期的带宽进行比较,我们可以评估网络的性能。
2. 延迟测试结果通过测试工具测量,我们得出了网络的延迟为X 毫秒。
这个数值代表了数据包从发送端到接收端所需的时间间隔。
通过与预期的延迟进行比较,我们可以评估网络的稳定性。
四、结果分析和讨论根据实验结果,我们可以对网络的性能和稳定性进行分析和讨论。
有源二端网络等效参数的测量(有数据)

实验名称:有源二端网络等效参数的测量实验目的:(1) 掌握有源二端网络的戴维南等效电路;(2)验证戴维南定理,加深对该定理的理解。
(3)掌握有源二端网络等效参数测量的方法;(4)了解负载获得最大传输功率的条件;实验原理: 1. 有源二端网络任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
有源二端网络中可包含线性电阻、独立电源和受控源。
2. 有源二端网络的两种等效电路及参数戴维南等效电路及电路参数戴维南定理指出:任何一个线性有源二端网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势U,等于这个有源二端网络的开路电压Uoc,其等效电阻凡,等于该网络中所有独立源均置零(理想电压源短接,理想电流源开路)时的等效电阻。
(1)伏安法测R0用电压表,电流表测出有源二端网络的外特性曲线。
根据外特性曲线求斜率tanφ,则电阻为R0=tanφ=△U/△I(2)半电压法测R0当负载电压为被测网络开路电压的一半时,负载电阻即为被测有源二端网络的等效电阻值(3)开路短路法测出Rl短路时的电流和Rl开路时的电压,通过电流除以电压求其组阻值实验操作步骤:1. 实验前的准备1.1 检查毫安表和数字万用表1.2 判定导线好坏(导线好坏的判断可用万用表的蜂鸣挡。
如果万用表发出蜂鸣声,则说明导线是好的,否则该条导线不能继续使用。
)1.3 电源、电阻、电位器好坏判定2. 合理放置实验箱及仪表3. 连接实验电路:4. 调节直流稳压电源,使输出电压Us=10V,并保持不变5.将负载Rl 开路,测网络a ,b 两端的开路电压Uoc ,记录 将负载Rl 短路,测该支路短路电流Isc ,记录6.连接负载Rl ,按要求改变负载Rl ,测得Rl 为不同阻值时所对应的Uab 和I ,记录数据7.画出有源二端网络N 伏安特性曲线U=f (I ),用伏安法求R0 8.根据开路电压Uoc 与R0得到有源二端口网络N 的戴维南等效电路(4) 数据记录与数据处理:1. 伏安法测R0I/mA1 1.52 2.53 3.54 4.5 5 U/V2.272.142.03 1.95 1.84 1.73 1.62 1.5 1.4y = -0.2147x + 2.4751R² = 0.99881.21.41.61.822.22.40123456U /VI/mA2.半电压法测R0R TH=197.7Ω,U TH=2.50V3. 开路短路法短路电流 I0=11.2mA,U TH=2.50V,R TH=223.21Ω戴维南等效电路误差分析:在实验过程中,导线、电流表和电压表的内阻对结果有影响。
实验十一二端口网络的参数测定(精)

2.在 Л型网络中,重复上 述步骤,测量直流I21、I22, 电压U21 、U22将数据记录 在表2中。
3.将两个双口网络级联后,用两端口分别测量法测量级 联后等效双口网络的传输参数A、B、C、D,并验证等效 双口网络传输参数与级联的两个双口网络传输参数之间的 关系。(两个双口网络相联时,应将一个双口网络I的输出 与另一双口网络Ⅱ的输入端联接。)
实验设备:
1、电工实验装置DG05、DG04、D31 2、数字万用表
实验线路图:
实验步骤:
1.按同时测量法分别测定两 个双口网络的传输参数A1、 B1、C1、D1和A2、B2、 C2、D2,并列出它们的传 输方程。 (注意电流方向)
b. 1、1`端输入6V直流电 压,2、2`端开路,测量直 流I11、I12,电压U11 、 U12将数据记录在表1中。
a. 在 T型网络中,1、1` 端输入6V直流电压,2、2` 端开路,测量直流I11、I12, 电压U11 、U12将数据记录 在表1中。
c. 2、2`端输入12V直流 电压,1、1`端开路,测量 直流I11、I12,电压U11 、 U12将数据记录在表1中。
实验步骤:
d. 2、2`端输入12V直流 电压,1、1`端短路,测量 直流I11、I12,电压U11 、 U12将数据记录在表1中。
注意电流方向端输入6v直流电压22端开路测量直流i11i12电压u11u12将数据记录11端输入6v直流电压22端开路测量直流i11i12电压u1122端输入12v直流电压11端开路测量直流i11i12电压u11u12将数据记录在表1中
实验十一 二端口网络的参数 测定
实验目的: 1. 加深理解双口网络的基本 理论。 2. 掌握直流双口网络传输参 数的测量技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二端口网络参数的测定
一、实验目的
1.加深理解双口网络的基本理论。
2.学习双口网络Y参数、Z参数的测试方法。
3.掌握Y参数、Z参数的π型、T型等效电路,以及T参数的转化
二、原理说明
1.如图1所示的无源线性双口网络,其两端口的电压、电流四个变量之间关系,可用多种形式的参数方程来描述。
图1
()()()()11111222211222
1
112122121
1
1212
22212
I 0I
0I 0I
0I Y U Y U I Y U Y U Y U U Y U U Y U U Y U U =+=+========其中
令,即输出端口短路时令,即输出端口短路时令,即输入端口短路时令,即输入端口短路时()()()(),即输入端口开路时令,即输入端口开路时
令,即输出端口开路时令,即输出端口开路时令其中
0U
Z 0U
Z 0U Z 0U 12
22212
11221
2
21
21
1
11
2
2212122
121111========+=+=I I I I I I I I Z I Z I Z U I
Z I Z U ()()()(),即输出端口短路时
令,即输出端口开路时
令,即输出端口短路时
令,即输出端口开路时
令其中
0I
D 0I
C 0U B 0U A 221s 22010221s 220102212
21=-====-===-=-=U I I U U I I U DI CU I BI AU U s
s
(1)若用Y 参数方程来描述,则为
由上可知,只要在双口网络的输入端口加上电
压,令输出端口短路,根据上面的前两个公式即可求得输入端口处的输入导纳Y 11和输出端口与输入
端口之间的转移导纳Y 21。
同理,只要在双口网络的输出端口加上电压,令输入端口短路,根据上面的后两个公式即可求得输出端口处的输入导纳Y 22和输入端口与输出端口之间的转移导纳Y 12。
(2)若用Z 参数方程来描述,则为 由上可知,只要在双口网络的输入端口加上电
流源,令输出端口开路,根据上面的前两个公式即
可求得输出端口开路时输入端口处的输入阻抗Z 11和输出端口与输入端口之间的开路转移阻抗Z 21。
同理,只要在双口网络的输出端口加上电流源,令输入端口开路,根据上面的后两个公式即可求得
输入端口开路时输出端口处的输入阻抗Z 22和输入端口与输出端口之间的开路转移阻抗Z 12。
(3)若用传输参数(A 、T )方程来描述,则为
由上可知,只要在双口网络的输入端口加上电压,令输出端口开路或短路,在两个端口同时测量电
压和电流,即可求出传输参数A 、B 、C 、D ,这种方法称为同时测量法。
三、实验内容
测量黑匣子二端口电路的Z 参数及Y 参数
由此可得此线性二端口网络的 Z 参数:270.72124.05118.26274.77Z ⎛⎫=Ω
⎪⎝⎭
Y 参数: 4.60 1.98mS 2.08 4.53Y -⎛⎫
= ⎪-⎝⎭
2.算出T 参数
T 参数转换:
1121
212221
21,1Z Z Z Z Z T Z Z Z Z ∆⎛⎫ ⎪
⎪=∆= ⎪
⎪⎝⎭(行列式) 由此算得此二端口T 参数矩阵为:2.29505T 8.46mS 2.32Ω⎛⎫= ⎪
⎝⎭
3.画出此电路的π型、T 型等效电路
π型电路
此电路的Y 参数方程为:
a b b b
b c Y Y
Y Y Y Y Y +-⎛⎫= ⎪-+⎝⎭
代入我们实际的参数,最佳的拟合效果为:
mS 2.572.032.50
a b c Y Y Y ===导纳单位:
T 型电路
此电路的Z 参数方程为:
a
b b b
b c Z Z Z Z Z Z Z +⎛⎫
= ⎪+⎝⎭
代入我们实际的参数,最佳的拟合效果为:
Z 149.56121.16153.61
a b c Z Z Ω===阻抗单位:
四、实验注意事项
1.测量电流时,要注意判别电流表的极性及选取合适的量程(注意电流I 2的参考方向)。
五、实验报告要求
1. 完成各数据表格中的测量和计算。
2. 列写Y 、Z 及传输参数方程。
3. 画出实验所测二端口网络的π型、T 型等效电路,并计算元件参数。