控制系统的校正与设计
控制系统校正方案

控制系统校正方案一、引言在现代工业生产中,控制系统的准确性和稳定性对于提高生产效率和质量具有至关重要的作用。
为了确保控制系统能够正常运行并达到预期的性能指标,进行校正是必不可少的步骤。
本文将介绍一个控制系统校正的方案,以确保系统的精度和稳定性。
二、校正目标和方法1. 校正目标控制系统的校正目标包括但不限于以下几点:- 确保系统输出与预期值的一致性;- 提高响应速度和稳定性;- 降低系统误差;- 优化系统的控制参数。
2. 校正方法为了达到以上校正目标,可以采用以下几种校正方法:- PID控制器校正:通过调节比例、积分和微分参数,优化系统的响应速度和稳定性。
- 系统参数标定:通过系统辨识和参数优化,准确计算系统的传递函数,从而实现准确的校正。
- 信号处理和滤波:对采集到的信号进行滤波处理,去除噪声和干扰,提高测量的准确性。
三、校正步骤1. 系统准备在进行校正之前,首先需要进行系统准备工作,包括:- 检查设备的状态和连接;- 清理传感器和执行器,确保其正常运作;- 确定校正所需的参考信号和标准值。
2. 传感器校正对于涉及传感器的控制系统,传感器的准确性对于系统的稳定性和精度至关重要。
传感器校正的步骤包括:- 确定传感器的输出量程和灵敏度;- 对传感器进行零点和量程校准;- 验证传感器输出与标准值的一致性。
3. 控制器校正控制器是控制系统中的核心部件,其参数的准确性和合理性对系统的性能起着决定性的影响。
控制器校正的步骤包括:- 选择适当的校正方法,如基于频率响应的校正方法或基于试验的校正方法;- 根据校正方法的要求,进行相应的实验和数据采集;- 通过数据分析和参数优化,获得合适的控制器参数。
4. 系统整体校正在完成传感器和控制器的校正后,需要进行系统整体校正,以验证系统的性能和稳定性。
系统整体校正的步骤包括:- 提供合适的输入信号,验证系统输出与预期值的一致性;- 分析系统的响应速度、稳定性和误差;- 对系统进行参数调整和优化,以实现满足要求的控制效果。
《自动控制原理》第6章_自动控制系统的校正

改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012
自动控制6第六章控制系统的综合与校正

复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标
自动控制原理_吴怀宇_第六章控制系统的校正与设计

扰动补偿 输入补偿
自动控制原理
按扰动补偿的复合控制系统如图6-3所示。
N(s)
+
Gn (s)
R(s) + E(s)
+
G1 (s)
G2 (s)
C(s)
-
图6-3 按扰动补偿的复合控制系统
自动控制原理
按给定补偿的复合控制系统如图6-4所示。
Gr ( s)
R( s) E( s)
+
G( s )
+
C( s)
自动控制原理
6.4.1 超前校正
基本原理:利用超前校正网络的相角超前特性去增大系 统的相角裕度,以改善系统的暂态响应。 用频率特性法设计串联超前校正装置的步骤:
(1)根据给定的系统稳态性能指标,确定系统的开环增益 ;
K)绘制在确定的 值下系统的伯德图,并计算其相角裕 (2 度 ; K 0
(3)根据给定的相角裕度 ,计算所需要的相角超前量 0
m
60º
40º
20º
1
0 4 8 12 14 20
图6-16 最大超前相角 m 与 的关系
自动控制原理
6.3.2 滞后校正装置 相位滞后校正装置可用图6-17所示的RC无源网络实现, 假设输入信号源的内阻为零,输出负载阻抗为无穷大,可 求得其传递函数为:
G c ( s) s zc s 1 1 s 1 ( ) s pc s 1 ( ) s 1
自动控制原理
与相位超前网络类似,相位滞后网络的最大滞后角位于
1 与 1 的几何中心处。
图6-21还表明相位滞后校正网络实际是一低通滤波器, 值 它对低频信号基本没有衰减作用,但能削弱高频噪声, 10 较为适宜。 愈大,抑制噪声的能力愈强。通常选择 一般可取
实验4 控制系统的校正

实验4 控制系统的校正1、主要内容 控制系统的校正及设计上机实验2、目的与要求熟悉应用 MATLAB 软件设计系统的基本方法熟悉应用 SISO Design Tool 进行系统设计的基本方法通过学习自行设计完成一个二阶系统串联校正设计任务3、重点与难点:自行设计完成一个二阶系统串联校正设计任务自行设计完成一个二阶系统并联校正设计任务一、实验目的1、掌握串联校正环节对系统稳定性的影响;2、了解使用 SISO 系统设计工具(SISO Design Tool )进行系统设计。
二、设计任务串联校正是指校正元件与系统的原来部分串联,如图 1 所示。
图 中 ,()c G s 表 示 校 正 部 分 的 传 递 函 数 , 0()G s 表 示 系 统 原 来 前 向 通 道 的 传 递 函 数 。
当 1()(1)1c aTs G s a Ts+=>+时,为串联超前校正;当1()(1)1c aTs G s a Ts+=<+时,为串联迟后校正。
我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。
通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。
(1)打开 SISO 系统设计工具在 MA TLAB 命令窗口中输入 sisotool 命令,可以打开一个空的 SISO Design Tool ,也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。
注意先在 MATLAB 的当前工作空间中定义好该模型。
如图 2 为一个 DC 电机的设计环境。
(2)将模型载入 SISO 设计工具通过 file/import 命令,可以将所要研究的模型载入 SISO 设计工具中。
控制系统的校正

控制系统的校正(一)一、校正方式1、串联校正;2、反馈校正;3、对输入的前置校正;4、对干扰的前置校正。
二、校正设计的方法3.等效结构与等效传递函数方法主要是应用开环Bode 图。
基本做法是利用校正装置的Bode ,配合开环增益的调整,修改原系统的Bode 图,使得校正后的Bode 图符合性能指标的要求。
1.频率法2.根轨迹法利用校正装置的零、极点,使校正后的系统,根据闭环主导极点估算的时域性能指标满足要求。
将给定的结构(或传递函数)等效为已知的典型结构或典型的一、二阶系统,并进行对比分析,得出校正网络的参数。
三、串联校正1.超前校正(相位超前校正)2.滞后校正(相位滞后校正()111)(>++=a Ts aTss G c 超前校正装置的传递函数为L (ω)aT m 1=ω20lg G c (jωm )=10lg a 其中:11=tg ()()aT tg T ()−−−ϕωωω11sin 1m a a −−=+ϕ四、超前校正频率法超前校正频率法设计思路:利用超前校正装置提供的正相移,增大校正后系统的相稳定裕度。
因此,通常将校正后系统的截止频率取为:c m=ωω此时,超前装置提供的相移量为:11()sin 1m a a −−=+ϕω新的截止频率位于校正装置两个转折频率的几何中心,即:20lg ()10lg 0m G j a +=a T m 1=ω例1:单位负反馈系统的开环传递函数为)2()(+=s s Ks G 设计校正装置,使得系统的速度误差系数等于20,相稳定裕度。
45≥γ202)()(lim 0==⋅=→K s H s G s K s v 解K=40)15.0(20)(+=ωωωj j j G (1) 确定K 值调整增益后的开环频率特性为srad c /2.61=ω01004518)2.65.0(90180<=⨯−−=−tg γ11sin 1+−=−a a m ϕ(2) 计算原系统相稳定裕度14)(40211=+c c ωω截止频率满足1c ω计算相稳定裕度γ(3) 计算参数{ }a ()111)(>++=a Ts aTss G ca=3.26db 1.526.3lg 10=2020log() 5.12mm ωω=−⨯s rad m /5.8=ω5.81==a T m ω(4) 确定频率mω(5) 计算参数T 00015184511sin +−=+−−a a T =0.065011109.13421.0065.05.090)(−=+−−−=−−−c c c c tg tg tg ωωωωϕ加入校正装置后系统的开环传递函数为)1065.0)(15.0()121.0(20)()(+++=s s s s s G s G c (6) 验证001.45)(180=+=c ωϕγ满足性能指标要求。
自动控制原理第六章控制系统的校正

自动控制原理第六章控制系统的校正控制系统的校正是为了保证系统的输出能够准确地跟随参考信号变化而进行的。
它是控制系统运行稳定、可靠的基础,也是实现系统优化性能的重要步骤。
本章主要讨论控制系统的校正方法和常见的校正技术。
一、校正方法1.引导校正:引导校正是通过给系统输入一系列特定的信号,观察系统的输出响应,从而确定系统的参数。
最常用的引导校正方法是阶跃响应法和频率扫描法。
阶跃响应法:即给系统输入一个阶跃信号,观察系统输出的响应曲线。
通过观察输出曲线的形状和响应时间,可以确定系统的参数,如增益、时间常数等。
频率扫描法:即给系统输入一个频率不断变化的信号,观察系统的频率响应曲线。
通过观察响应曲线的峰值、带宽等参数,可以确定系统的参数,如增益、阻尼比等。
2.通用校正:通用校正是利用已知的校准装置,通过对系统进行全面的测试和调整,使系统能够输出符合要求的信号。
通用校正的步骤通常包括系统的全面测试、参数的调整和校准装置的校准。
二、校正技术1.PID控制器的校正PID控制器是最常用的控制器之一,它由比例、积分和微分三个部分组成。
PID控制器的校正主要包括参数的选择和调整。
参数选择:比例参数决定控制系统的响应速度和稳定性,积分参数决定系统对稳态误差的响应能力,微分参数决定系统对突变干扰的响应能力。
选择合适的参数可以使系统具有较好的稳定性和性能。
参数调整:通过参数调整,可以进一步改善系统的性能。
常见的参数调整方法有经验法、试错法和优化算法等。
2.校正装置的使用校正装置是进行控制系统校正的重要工具,常见的校正装置有标准电压源、标准电阻箱、标准电流源等。
标准电压源:用于产生已知精度的参考电压,可以用来校正控制系统的电压测量装置。
标准电阻箱:用于产生已知精度的电阻,可以用来校正控制系统的电流测量装置。
标准电流源:用于产生已知精度的电流,可以用来校正控制系统的电流测量装置。
校正装置的使用可以提高系统的测量精度和控制精度,保证系统的稳定性和可靠性。
控制系统校正的设计原理

控制系统校正的设计原理控制系统校正的设计原理是通过对控制系统进行检测和调整,使其达到预期的性能和稳定性。
校正设计的目标是最大限度地减小系统的误差,并使系统能够在不同的工况下保持稳定和可靠的运行。
以下是控制系统校正设计的一些基本原理。
1. 误差检测与分析:首先需要对控制系统的误差进行检测和分析。
误差可以分为静态误差和动态误差。
静态误差是指系统在稳态下的偏差,动态误差则是指系统在过渡过程中的偏差。
通过对误差的检测和分析,可以确定所需的校正策略和方法。
2. 校正模型建立:校正设计的第一步是建立系统的数学模型。
根据实际情况,可以利用传递函数、状态空间模型或其他数学方法来描述系统的动态特性。
校正模型的建立是校正设计的基础,它可以帮助我们理解系统的行为和性能,并作为校正过程中的参考。
3. 校正方法选择:根据校正设计的目标和要求,选择合适的校正方法。
常见的校正方法包括增益校正、相位校正、时间延迟校正等。
不同的校正方法适用于不同的系统和校正需求,选择恰当的校正方法可以提高系统的性能和稳定性。
4. 校正过程设计:校正过程设计是校正设计中的关键步骤。
根据校正方法的选择,设计出合理的校正过程。
校正过程一般包括系统的输入输出信号获取、信号处理和计算、校正参数的确定等步骤。
设计良好的校正过程可以提高校正的效率和准确性。
5. 校正效果评估:在完成校正过程后,需要对校正效果进行评估。
校正效果评估可以通过比较校正前后的系统性能指标、误差大小等来进行。
如果校正的效果达到了预期的要求,即达到了设计指标,那么校正过程可以结束。
如果校正效果不理想,可以重新调整校正参数,或者尝试其他的校正方法。
6. 长期稳定性考虑:除了短期的校正设计,还需要考虑系统的长期稳定性。
随着时间的推移,系统的参数和性能可能会发生变化,因此需要定期进行校正和调整,以确保系统始终能够保持良好的性能和稳定性。
以上是控制系统校正设计的一些基本原理。
校正设计是控制系统工程中重要的环节,能够帮助提高系统的控制性能和稳定性。