《计算方法》第四章 插值方法共90页文档

合集下载

计算方法第四章 插值法

计算方法第四章  插值法
《 计 算 方 法 》
4
3
xi 4 yi 2
9 16 3 4
2
0
4
7
9
16
第4章 插值法
应用背景
造函数表:三角函数、对数 预测:鸡蛋价格、城市用水量
《 计 算 方 法 》
数控加工:造船、飞机机翼骨架、服装 样片、模具加工、刀具 计算机辅助设计:潜水艇、汽车造型
服装样片
第4章 插值法
实际问题中,f (x)多样,复杂,通常只能观测到一些离散 数据;或者f (x)过于复杂而难以运算。这时我们要用近似函数 φ(x)来逼近f (x)。
《 计 算 方 法 》
φ (x)= y0
第4章 插值法
§2 线性插值与二次插值
2.1 线性插值
线性插值是代数多项式插值的最简单的形式。假设
《 计 算 方 法 》
给定了函数f (x)在两个互异点x0,x1的值,即
x x0值)
y y0 x0
y1
x1
x
第4章 插值法
现要用一线性函数
满足插值条件:
y( xi ) = yi , i = 0,1, 2
22
第4章 插值法 例:已知函数 y=f (x)的观测数据为
x
《 计 算 方 法 》
1 0
2 -5
3 -6
4 3
y
试求拉格朗日插值多项式。
第4章 插值法
《 计 算 方 法 》
( x 2)( x 3)( x 4) 解 :p3 ( x ) = 0 (1 2)(1 3)(1 4) ( x 1)( x 3)( x 4) ( 5) (2 1)(2 3)(2 4) ( x 1)( x 2)( x 4) ( 6) (3 1)(3 2)(3 4) ( x 1)( x 2)( x 3) 3 (4 1)(4 2)(4 3) = x3 4 x2 3

第4章插值法

第4章插值法
n
( x xi ) i 0 ( x j xi )
i j
j 0,1,2 ,, n
n+1次多项式
令 n1 ( x) ( x x0 )( x x1 )( x xn )
则 n1 ( x j ) ( x j x0 )( x j x1 )( x j x j 1 )( x j x j 1 )( x j xn )
x0
x1
x2
x
x3
x4
Lagrange插值多项式
假定已知区间 xk , xk 1 端点处的函数值yk f ( xk ), yk 1 f ( xk 1 )
为了求得便于使用的简单的插值多项式P(x), 我们先讨论n=1的情形
要求线性插值多项式L1(x), ( xk 1 ) yk 1
L1(x)的几何意义就是通过这两点的直线;
yk 1 yk L1 ( x) yk ( x xk )(点斜式) xk 1 xk xk 1 x x xk L1 ( x) yk yk 1 (两点式) xk 1 xk xk 1 xk
xk 1 x x xk L1 ( x) yk yk 1 (两点式) xk 1 xk xk 1 xk
在例1中,如果只给出两个节点169和225,也可以作插值 多项式,即1次Lagrange插值多项式,有两个插值基函数, 这种插值方法称为Lagrange线性插值,也可以在n+1个 节点中取相邻的两个节点作线性插值
例2. 用Lagrange 线性插值多项式求例1中的f (175).
解: 由于插值点x 175在x1 169与x2 225之间
解: 设x0 144, x1 169, x2 225 y0 12, y1 13, y2 15

数值计算方法第四章插值1

数值计算方法第四章插值1

代数插值
代数插值
当f(x)是次数不超过n的多项式时,给定n+1个节点,其n次插值多项式就是f(x)本身.
代数插值几何意义
拉格朗日插值 逐次线性插值 牛顿插值 等距节点插值 反插值 埃尔米特插值 分段插值法 三次样条插值
拉格朗日插值 线性插值
格朗日插值 抛物线插值
基函数之和为1.
拉格朗日插值 n次插值
当插值点x∈(a,b)时称为内插,否则称为外插。
内插的精度高于外插的精度。
拉格朗日插值余项
余项 设函数f(x)在包含节点x0 , x1 ,…, xn的区间[a,b]上有n+1阶导数,则
拉格朗日插值
活动14
写出3次拉格朗日插值多项式及余项
拉格朗日插值
拉格朗日插值
作业5
已知函数表
应用拉格朗日插值公式计算f(1.300)的近似值.
数值计算方法
苏 强
江苏师范大学连云港校区
数学与信息工程学院 E-mail: 412707233@
数值计算方法 第四章 插值与曲线拟合
没有明显的解析表达式
使用不便的解析表达式
简单函数代替
插值问题
插值问题
代数插值 插值函数
被插值函数 插值节点
插值区间
三角多项式插值 有理函数插值
代数插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
拉格朗日插值 n次插值
称为关于节点
的n次插值基函数.
拉格朗日插值n次插值
基函数的个数等于节点数.
n+1个节点的基函数是n次代数多项式 基函数和每一个节点都有关。节点确定,基函数就唯一的确定。 基函数和被插值函数无关

第4章插值法第2讲

第4章插值法第2讲

米插值基函数。
计算方法
第四章 函 数 插 值
下面利用拉格朗日插值基函数li(x)(i=0,1,…,n)来构
造ai(x)和βi(x)。
因关于节点x0,x1,…,xn的拉格朗日基函数li(x)满足:
(j≠i, j=0, 1, …,n) 且l2i(x)是2n次多项式,由条件(4.25)式,可设ai(x)为
计算方法
第四章 函 数 插 值
定理4.4 满足插值条件(4.24)式的埃尔米插值多项式是
唯一的。 证明 设H2n+1(x)和 H 2n1 x 都是满足条件(4.24)式的埃 尔米插值多项式,令
x H2n1 x H2n1 x
则每个节点xi(i=0,1,…,n)均为φ(x)的二重根,即φ(x)有 2n+2个根,但φ(x)是个不高于2n+1次的多项式,所以φ(x)≡0,
米(Hermit)插值,它是代数插值问题的推广。
.5.1 一般情形的埃尔米插值问题
已知函数y=f(x)在区间[a, b]上n+1个互异节点x0,
x1,…,xn处的函数值为yi=f(xi)(i=0, 1, 2, …,n),导数值为 f′(xi)(注意:函数值个数与导数值个数相同),现要求做一个 次数不超过2n+1次的多项式H2n+1(x),使其满足下述2n+2个 插值条件:
2 2
2
2
计算方法 例1.
第四章 函 数 插 值
已知f ( x)在节点1, 2处的函数值为 f (1) 2 , f ( 2 ) 3 f ( x)在节点1, 2处的导数值为 f (1) 0 , f ( 2 ) 1
求f ( x)的两点三次插值多项式 , 及f ( x)在x 1.5,1.7处的函数值 .

计算方法第四章插值方法演示

计算方法第四章插值方法演示
目前二十四页\总数八十九页\编于九点
➢ Lagrange插值法的插值余项
设节点 ax0x1 xnb,且 f 满足条件 f Cn[a,b],
f (n1)在[a , b]内存在 , 截断误差(或插值余项):
f(n 1)( ) R n(x)f(x)L n(x)(n1 )! n 1(x)
,
(a,b)
l2 ( x)
(x (x2
x 0 )( x x1 ) x 0 )( x 2 x1 )
抛物线基函数
于是
L 2(x)
(x (x0
x1)(x x1)(x0
xx 2) 2)y0
(x (x1
x0)(x x0)(x1
xx22 ))y1
(x (x2
x0)(x x0)(x2
xx 1) 1)y2
2
li(x)yi
目前九页\总数八十九页\编于九点
插值的几何意义
从几何上看,插值就是求一条曲线 y P(x) 使其通过给定的 n 个 1点 (,x i , y i ) (i0,1, ,n) 并且与已知曲线 y 有f (一x)定的近似度。
x
y = f (x) •
y = p(x)
(xi, yi)
曲线 P ( x)
§4.0 引言
➢ 许多数据都是用表格法给出的(如观测和实验而得到的函数数据 表格),可是,从一个只提供离散的函数值去进行理论分析和 进行设计,是极不方便的, 甚至是不可能的。因此需要设法去 寻找与已知函数值相符,并且形式简单的插值函数(或近似函 数)。
➢ 另外一种情况是,函数表达式完全给定,但其形式不适宜计算机 使用,因为计算机只能执行算术和逻辑操作,因此涉及连续变 量问题的计算都需要经过离散化以后才能进行。如数值积分 方法、数值微分方法、差分方程以及有限元法等,都必须直

第四章插值法

第四章插值法
=f (x) 在给定互异的自变量值x0, x1, x2上对 应的函数值为y0, y1, y2,二次插值就是构造一个二次 多项式
P2 ( x) a0 a1 x a2 x 2
使之满足
P2 ( xi ) yi , i 0, 1, 2
计算机科学与工程系 19


lk ( x ) ( x x0 )( x x1 ) ( x xk 1 )( x xk 1 ) ( x xn ) ( x x j )
j 0 j k n
计算机科学与工程系 27
4.2.3 拉格朗日插值多项式

由lk (xk) = 1,得:
1 ( xk x0 )( xk x1 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )
计算机科学与工程系 25
10
11
4.2.3 拉格朗日插值多项式

插值公式

设连续函数y = f(x)在[a, b]上给定n + 1个不同结 点: x0, x1, …, xn 分别取函数值 y0, y1, …, yn 其中 yi = f (xi) i = 0, 1, 2,…, n 构造一个次数不超过n的插值多项式
因此
( x x0 )( x x2 ) ( x x1 )( x x2 ) P2 ( x ) y0 y1 ( x0 x1 )( x0 x2 ) ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) y2 ( x2 x0 )( x2 x1 )

因此有
lk ( x ) ( x x0 )( x x1 ) ( x xk 1 )( x xk 1 ) ( x xn ) ( xk x0 )( xk x1 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )

【推荐】数值计算方法:第4章-多项式插值方法.ppt

【推荐】数值计算方法:第4章-多项式插值方法.ppt

两点
多项式插值就是直线
, 经过这两点的
称给定
为线性插值多项式。称
为关于点
的线性插值基函数,其在节点处满足:
6
4.2.1 线性插值与二次插值 假定插值节点为 , , ,要求二次插值多项式
几何上
是通过三点
可以用基函数的方法求的表源自式,是二次函数,的抛物线.
7
4.2.2 拉格朗日插值多项式
求n+1个次数 满足
且次数不超过n 的多项式,其所给出形式的系数为

为牛顿(Newton)均差插值多项式.
系数 就是均差表4-1中主对角线上的各阶均差, 它比拉格朗日插值计算量省,且便于程序设计.
25
4.3.2 Newton均差插值多项式 (*)为插值余项,由插值多项式惟一性知,它与
拉格朗日插值多项式的余项应该是等价的. 事实上,利用均差与导数关系式就可以证明这一点. 但(3.7)更有一般性,它在 是由离散点(给3.出7)的
式求 x 的近似值。
解 (1) 选取节点x=2,3,4
xf 一 二 三
kk
(x k)
阶 均
阶 均
阶 均
31
32
4.4 分段低次插值
4.4.1 Runge现象 在次数 增加时逼近 的精度是否也增加?
问题:根据区间 上给出的节点做出的插值多项式
事实上,对于有些函数,插值多项式次数很高时会在某些区 间内产生较大的误差。例如著名的Runge现象。
分段插值的基本思想是将插值区间划分为若干个小区 间, 然后在每个小区间上做满足一定条件的低阶插值.
35
4.4.2 分段低次插值
例如分段线性插值。 所谓分段线性插值就是通过插值点用折线段连接起来

计算方法插值法

计算方法插值法
1)
Rn ( x ) K ( x) ( x - xi )
i 0
n
考察 j ( t ) Rn ( t ) - K ( x ) ( t - x i )
i0
n
j(t)有 n+2 个不同的根 x0 …
f (n ( x ) - L(nn

1)
xn x, j ( n1) ( x ) 0, x (a, b)
x - x0 y x1 - x 0 1
l ( x) y
i 0 i
1
i
l0(x)
l1(x)
n1
希望找到li(x),i = 0, …, n 使得 li(xj)=ij ;然后令
Pn ( x )
l (x) y
i0 i
n
i
,则显然有Pn(xi) = yi 。
每个 li 有 n 个根 x0 … xi-1, xi+1 … xn li ( x) Ci ( x - x j )
插值法 比较古老, 常用的方法。 当未知函数 y = f(x) 非常复杂时,在一系列节 点 x0 … xn 处测得函数值: y0 = f(x0) … yn = f(xn) 由此构造一个简单易算的近似函数 P(x) f(x), 满足条件P(xi) = f(xi) (i = 0, … n),称P(x) 为f(x) 的插值函数。 最常用的插值函数是多项式
项式是唯一存在的。 证明:
i 0, ... , n 的 n 阶插值多
若除了Ln(x) 外还有另一 n 阶多项式 Pn(x) 满足 Pn(xi) = yi 。 考察 Qn ( x) Pn ( x) - Ln ( x) , 则 Qn 的阶数 n 而 Qn 有 n + 1 个不同的根 x0 … xn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档