材料力学-第四章 扭转_2

合集下载

材料力学 第四章 扭转

材料力学 第四章  扭转
W = Me 2 n
60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m

P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:

Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103

第四章 扭转(张新占主编 材料力学)

第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到

切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用

材料力学4.

材料力学4.
1. 剪应力互等定理 由 MZ 0
'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G

E
21


低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max

M nmax Wn


Wn

D3
16

M nmax

解得: D 66mm
(三)由刚度条件设计 D 。
max

M nmax GI p
180



D4
32

Ip

M nmax
G
180

解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max

Mn
hb2


4

9
单位长度的扭转角为:


Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图

第四章北航 材料力学 全部课件 习题答案

第四章北航 材料力学 全部课件 习题答案

(
d 1/ m (3m 1)T ) d dx 2πCm( ) ( 3m 1) / m 2
(e)
将式(e)代入式(b),并注意到 T=M ,最后得扭转切应力公式为
M 1/ m 2πm d (3 m 1)/m ( ) 3m 1 2 横截面上的切应力的径向分布图示如图 4-8。

R0
此管不是薄壁圆管。
D 80 6 mm 37mm, δ 6mm R0 10 2 2

80- 6 2 68 0.85 80 80
max2
由此得 M 的许用值为
M2 16M 2 [ 2 ] Wp2 πD 3 (1 4 )
[M 2 ]
第四章 扭 转
4-5
一受扭薄壁圆管,外径 D = 42mm,内径 d = 40mm,扭力偶矩 M = 500N•m,切
变模量 G=75GPa。试计算圆管横截面与纵截面上的扭转切应力,并计算管表面纵线的倾斜角。 解:该薄壁圆管的平均半径和壁厚依次为
1 D d D d R0 ( ) 20.5mm, 1mm 2 2 2 2 2 于是,该圆管横截面上的扭转切应力为 T 500N 1.894108 Pa 189.4MPa 2 2 2 2πR0 2π 0.0205 0.001m
式中的 C 与 m 为由试验测定的已知常数。试建立扭转切应力公式,并画横截面上的切应力分
题 4-8 图 解:所研究的轴是圆截面轴,平面假设仍然成立。据此,从几何方面可以得到
d dx 根据题设,轴横截面上距圆心为 ρ 处的切应力为

(a)
τ ρ C(
由静力学可知,
d 1/ m ) dx
2

材料力学第四章 扭转

材料力学第四章 扭转
则上式改写为
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m

材料力学第04章 杆件变形分析

材料力学第04章 杆件变形分析
桁架的变形通常用节点的位移(displacement)表示,现以 下图所示桁架为例,说明桁架节点位移的分析方法。
例4-2 桁架是由1、2杆组成,
通过铰链连接,在节点A承受 铅垂载荷F=40kN作用。已知
杆1为钢杆,横截面面积
A1=960mm2,弹性模量 E1=200GPa,杆2为木杆,横 截面面积A2=2.5×104mm2, 弹性模量E2=10GPa,杆2的杆 长为1m。求节点A的位移。
M (x) EI 24
d2w/dx2与弯矩的关系如图所示,坐标轴w以向上为正。由
该图可以看出,当梁段承受正弯矩时,挠曲线为凹曲线,如
图(a)所示,d2w/dx2为正。反之,当梁段承受负弯矩时, 挠曲线为凸曲线,如图(b)所示,d2w/dx2为负。可见, d2w/dx2与弯矩M的符号一致。因此上式的右端应取正号,即
于梁的高度,剪力对梁的变形影响可以忽略不计,上式仍可
用来计算横力弯曲梁弯曲后的曲率,但由于弯矩不再是常量,
上式变为
1 M (x)
(x) EI
即挠曲线上任一点处的曲率与该点处横截面上的弯矩成正比,
而与该截面的抗弯刚度(flexural rigidity)EI成反比。
23
由高等数学可知,平面曲线w=w(x)上任一点的曲率为
15
对于扭矩、横截面或剪切弹性模量沿杆轴逐段变化的圆 截面轴,其扭转变形为
n
Tili
i1 Gi I Pi
式中,Ti、li、Gi与IPi分别为轴段i的扭矩、长度、剪切弹 性模量与极惯性矩,n为杆件的总段数。
16
2.圆轴扭转的刚度条件
在圆轴设计中,除考虑其强度问题外,在许多情况下对刚 度的要求更为严格,常常对其变形有一定限制,即应该满足 相应的刚度条件。

材料力学 第4章_扭转

材料力学     第4章_扭转
z


d x d z d y d y d z d x 0

返回
4. 切应力互等定理

切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。


纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T

dA
横截面上分布内力系对 圆心的矩等于扭矩T。

T d A A d d 2 G d A G d A A dx dx A

材料力学第4章扭转变形

材料力学第4章扭转变形

1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T
T 6b 3T TS 2 2 2 2 4G 4G ( 2b ) 8Gb 3
1 2b 2
1 4b 2 2 2 3
结论 若将开口件加工为闭口件,将极大地提高构件的扭转
强度和刚度。
本 章 作 业
4-5,4-10, 4-13,4-29 4-16, 4-17 , 4-19 4-21(c),4-23 4-32,4-34
max
T h b2 T [ ] 2 0.246 2b b
取 b = 45 mm。
6 T 3 10 b 3 3 44.3 0.492[ ] 0.492 70
由 h / b = 2 查表得 = 0.229
T 3 10 6 2 1 2 10 m G 2b b 3 80 103 0.229 2 454
闭口薄壁杆件切应力分析
F
dx dx
x
0
1 1dx 2 2 dx 0
1
1
2
x
2
1 1 2 2
dFS ds
Const
dT ds
T ds ds 2
S S


闭口薄壁杆件切应力

ds dFS
例 正方形截面轴两端承受转矩而产生自由扭转。在强度相同
长度相等的条件下计算圆轴与正方形截面轴的重量比。
转矩 T 在矩形边中点引起最大切应力。 max 由正方形 h / b = 1
T h b2
3
查表得 = 0.208
圆轴
max
T [ ] 3 0.208b
16T d π[ ]

2.约束扭转
扭转时,由于杆的端部支座的约束,使杆件截 面翘曲受到一定限制,而引起任意两相邻横 截面的翘曲程度不同,将在横截面上产生附 加的正应力。
分析与讨论
横截面上角点处扭转切应力的情况是怎样的? 如果角点处存在着切应力,将 会导致什么情况产生? 由此可得到什么结论?
三角形截面轴的情况又怎样?
§5-6 非圆截面杆扭转的概念

圆截面杆扭转时的应力和变形公式,均
建立在平面假设 的基础上。

对于非圆截面杆,受扭时横截面不再保
持为平面,杆的横截面已由原来的平面变
成了曲面。这一现象称为截面翘曲。

因此,圆轴扭转时的应力、变形公式对
非圆截面杆均不适用。

非圆截面杆在扭转时有两种情形:
1.自由扭转或纯扭转 在扭转过程中,杆的各横截面的翘曲不受任何约束,任意两相邻横 截面的翘曲程度完全相同。此时横截面只有剪应力,而没有正应 力。
本 章 内 容 小 结
线弹性圆轴扭转切应力
Tr IP
切应力在横截面上的分布规律 最大切应力
max
T [ ] WP
WP
1 πd 3 16
实心
WP
1 π D 3 1 4 16
空心
当圆轴各段的轴径和扭矩互不相同时,应综合考虑以 确定最大切应力所在的截面。
线弹性圆轴扭转的相对转角
狭长矩形截面 两个端面的相对转角
max

3T 2 ht 3TL G ht3
等厚度开口薄壁杆件可展平为狭长矩形计算。 不同厚度开口薄壁杆件可视为若干个狭长矩形的组合。
闭口薄壁杆件
在闭口薄壁杆件中,沿厚度方向上的扭转切应力均匀 分布,并形成切应力流 。 切应力流特点 闭口薄壁杆件切应力 两个端面的相对转角
相同,左为开口,右为闭口,比较两者 在相同扭矩 T 作用下的最大切应力和单
位长度转角。
开口件 1max
3T 3T T 2 2 ht 6b 2b 2
2
3T 3T T 1 3 3 Ght G 6b 2Gb 3
闭口件 2b
T T 2 2 2 2 2 2b 4b

T 2
max
T 2 min
两个端面的相对转角
L
两个端面的相对转角 S

TL ds 4G 2 S

等厚度截面两个端面的相对转角
TSL 4G 2 TS 4G 2
等厚度截面单位长度上的相对转角

2b δ b δ b 2b
如图的两薄壁杆件尺寸、材料完全
i 3T ti

k 1
n
hk t k3
max 3T t max

k 1
n
hk t k3
n
i 3T L G hk t k3
k 1
4. 闭口薄壁杆件
在闭口薄壁杆件中,沿厚度方向上的扭转切应力均
匀分布,并形成切应力流 (shearing stress flow )。
max
3T 2 ht
t h
3TL G ht3 3T G ht3
例 立柱横截面是长为 2b 、宽为 b 的矩形。两
2b
端转矩为 3 kN m,许用切应力为 70 MPa ,试 确定尺寸 b 。若材料 G = 80 GPa ,根据所选定
b
的尺寸确定单位长度的相对转角。
转矩在长边中点引起最大切应力。 max 由 h / b = 2 查表得 = 0.246
Const
max
T 2 min
TL ds 4G 2 S

屈服扭矩和极限扭矩
横截面上切应力分布的概貌
本章内容结束
3
T b 0.208[ ]
max
16T [ ] 3 πd
两者重量比即横截面积之比:
π 3 16T 0.208[ ] G1 π d 2 0.82 4 π[ ] T G2 4b
2
2
3. 开口薄壁杆件
h
h
等厚度开口薄壁杆件可展平为狭长矩形计算。 不同厚度开口薄壁杆件可视为若干个狭长矩形的组合。 第 i 个狭长矩形长边各点处 最大切应力发生在壁厚 最大的狭长矩形长边上 相对转角
2. 矩形截面轴
角点上切应力必为零。
b
最大切应力出现在长边中点
max
h
T h b2
与 h / b 有关,见有关数表
轴两端面相对扭角

TL G h b 3
与 h / b 有关,见有关数表

狭长矩形截面
max
T h b2
1 3
最大切应力 两个端面的 相对转角 单位长度上 的相对转角
T dx 适用于变截面或有分布力偶矩作用的情况。 GI P 0

L

TL GI P
适用于等截面且无分布力偶矩作用的情况。
分段等截面圆轴应分段求出相对转角再求和。 单位长度上的相对转角

d T dx GI P
扭转超静定问题
平衡方程 物理方程 协调方程
矩形截面轴的扭转切应力
T 最大切应力(长边中点) max h b2 TL 轴两端面相对扭角 G h b 3
相关文档
最新文档