烟台市中考数学分类汇编专题02 数与式(2)

合集下载

中考数学专题复习资料数与式

中考数学专题复习资料数与式

第一轮中考复习——数及式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。

数轴上所有的点及全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且及原点的距离相等。

4.倒数:1除以一个数的商,叫做这个数的倒数。

一般地,实数a 的倒数为a1。

0没有倒数。

两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。

5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。

a =,绝对值的几何意义:数轴上表示一个数到原点的距离。

6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。

(1)正数大于零,零大于负数。

(2)两正数相比较绝对值大的数大,绝对值小的数小。

(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。

7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。

单独的一个数或字母也是代数式。

8.整式:单项式及多项式统称为整式。

单项式:只含有数及字母乘积形式的代数式叫做单项式。

一个数或一个字母也是单项式。

单项式中数字因数叫做这个单项式的系数。

一个单项式中所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的代数和多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

专题02 数与式和方程的压轴真题训练(解析版)-2023年中考数学解答题压轴真题汇编

专题02  数与式和方程的压轴真题训练(解析版)-2023年中考数学解答题压轴真题汇编

挑战2023年中考数学选择、填空压轴真题汇编专题02数与式和方程的压轴真题训练一.整式的加减(共2小题)1.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y ﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n =x﹣y﹣z﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.2.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】D【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.二.多项式乘多项式(共1小题)3.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣4【答案】B【解答】解:方法1、∵m2+n2=2+mn,∴(2m﹣3n)2+(m+2n)(m﹣2n)=4m2+9n2﹣12mn+m2﹣4n2=5m2+5n2﹣12mn=5(mn+2)﹣12mn=10﹣7mn,∵m2+n2=2+mn,∴(m+n)2=2+3mn≥0(当m+n=0时,取等号),∴mn≥﹣,∴(m﹣n)2=2﹣mn≥0(当m﹣n=0时,取等号),∴mn≤2,∴﹣≤mn≤2,∴﹣14≤﹣7mn≤,∴﹣4≤10﹣7mn≤,即(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为,故选:B.方法2、设m+n=k,则m2+2mn+n2=k2,∴mn+2+2mn=k2,∴mn=k2﹣,∴原式=10﹣7mn=﹣k2+≤,故选:B.三.零指数幂(共1小题)4.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.0【答案】C【解答】解:原式=lg5(lg5+lg2)+lg2=lg5×lg(5×2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.故选:C.四.有理数的乘方(共1小题)5.(2022•长沙)当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).【答案】DDDD【解答】解:(1)∵2200就是200个2相乘,∴YYDS(永远的神)的说法正确;∵2200就是200个2相乘,2002是2个200相乘,∴2200不等于2002,∴DDDD(懂的都懂)说法不正确;∵21=2,22=4,23=8,24=16,25=32,…,∴2n的尾数2,4,8,6循环,∵200÷4=50,∴2200的个位数字是6,∴JXND(觉醒年代)说法正确;∵210=1024,103=1000,∴2200=(210)20=(1024)20,1060=(103)20=100020,∵1024>1000,∴2200>1060,∴QGYW(强国有我)说法正确;故答案为:DDDD.五.二元一次方程组的应用(共1小题)6.(2022•武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【解答】解:∵每一横行、每一竖列以及两条对角线上的3个数之和相等,∴最左下角的数为:6+20﹣22=4,∴最中间的数为:x+6﹣4=x+2,或x+6+20﹣22﹣y=x﹣y+4,最右下角的数为:6+20﹣(x+2)=24﹣x,或x+6﹣y=x﹣y+6,∴,解得:,∴x+y=12,故选:D.六.高次方程(共1小题)7.(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.【答案】4:3【解答】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y 元,由题意得:20%•2y•x+30%•a•3x+20%•y•2x=25%(2xy+3ax+2xy),15a=20y,∴=,则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.七.分式方程的解(共2小题)8.(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.20【答案】A【解答】解:解分式方程得:x=a﹣2,∵x>0且x≠3,∴a﹣2>0且a﹣2≠3,∴a>2且a≠5,解不等式组得:,∵不等式组的解集为y≥5,∴<5,∴a<7,∴2<a<7且a≠5,∴所有满足条件的整数a的值之和为3+4+6=13,故选:A.9.(2022•德阳)如果关于x的方程=1的解是正数,那么m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m<﹣D.m<﹣1且m≠﹣2【答案】D【解答】解:两边同时乘(x﹣1)得,2x+m=x﹣1,解得:x=﹣1﹣m,又∵方程的解是正数,且x≠1,∴,即,解得:,∴m的取值范围为:m<﹣1且m≠﹣2.故答案为:D.10.(2021•达州)若分式方程﹣4=的解为整数,则整数a=.【答案】±1【解答】解:方程两边同时乘以(x+1)(x﹣1)得(2x﹣a)(x+1)﹣4(x+1)(x﹣1)=(x﹣1)(﹣2x+a),整理得﹣2ax=﹣4,整理得ax=2,∵x,a为整数,∴a=±1或a=±2,∵x=±1为增根,∴a≠±2,∴a=±1.故答案为:±1.11.(2020•大庆)已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.【答案】3【解答】解:∵x2﹣2x﹣a=0,∴Δ=4+4a,∴①当a>﹣1时,Δ>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④当a>3时,由(3)可知,两个实根一个大于3,另一个小于3,故④正确,故答案为3.12.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x ﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.【答案】x=2或x=﹣1+或x=﹣1﹣【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.。

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。

2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。

★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

数轴 1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。

山东省烟台市2020年中考数学试卷(II)卷(精编)

山东省烟台市2020年中考数学试卷(II)卷(精编)

山东省烟台市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·渠县模拟) 如果a与3互为相反数,则是()A . 3B . ﹣3C .D . ﹣2. (2分)(2019·宁波模拟) 原子的一般直径是0.00000001cm,这个数据可以用科学记数法表示为()A . 1×10﹣8B . 1﹣8C . 1×108D . 183. (2分)下列计算:①an•an=2an;②a6+a6=a12;③(ab)3=ab3;④a8÷a2=a4;⑤(a﹣b)(﹣a﹣b)=﹣a2+b2;⑥(x﹣3y)2=x2﹣3xy+9y2 ,其中正确的个数为()A . 3B . 2C . 1D . 04. (2分)(2020·兰州模拟) 甲、乙两人分别从距目的地6千米和10千米的两地同时出发,乙的速度是甲的1.2倍,结果甲比乙早到20分钟.设甲的速度为x千米/时.根据题意,列方程正确的是()A .B .C .D .5. (2分)(2019·营口模拟) 如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A . 主视图改变,俯视图改变B . 主视图不变,俯视图改变C . 主视图不变,俯视图不变D . 主视图改变,俯视图不变6. (2分)(2020·松滋模拟) 如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A . 108°B . 118°C . 144°D . 120°7. (2分)若一个多边形的内角和900°,则这个多边形的边数为()A . 5B . 7C . 9D . 128. (2分) (2020八下·临朐期末) 如图,将绕点O逆时针方向旋转45度后得到,若,则的度数是()A .B .C .D .9. (2分) (2017九上·黄冈期中) 已知:如图,直线与轴、轴分别交于,两点,两动点,分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为()A . 、B . 、C . 、D . 、10. (2分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A . b=2a+kB . a=b+kC . a>b>0D . a>k>011. (2分) (2019八下·北京期末) 一次函数的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限12. (2分)(2020·广州) 如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为()A .B .C .D .二、填空题 (共5题;共5分)13. (1分) (2018八上·南召期末) 如图,正方形的顶点,分别在轴,轴上,是菱形的对角线,若,,则点E的坐标是________.14. (1分)(2020·广西模拟) 如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°.若上面圆锥的侧面积为1,则下面圆锥的侧面积为________.15. (1分)(2020·海淀模拟) 点是函数与的图象在第一象限内的交点,,则的值为________.16. (1分) (2018九上·杭州月考) 已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:①;② ;③ ,是关于的一元二次方程的两个实数根;④ .其中正确结论是________(填写序号)17. (1分)(2017·莱芜) 如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=________.三、解答题 (共7题;共81分)18. (5分)(2018·肇庆模拟) 先化简,后求值:,其中。

精品解析:2023年山东省烟台市中考数学真题(解析版)

精品解析:2023年山东省烟台市中考数学真题(解析版)

2023年烟台市初中学业水平考试数学试题一、选择题1.23-的倒数是()A.23 B.23- C.32 D.32-【答案】D【解析】【分析】根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵23132⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,∴23-的倒数是32-,故选:D .【点睛】本题考查倒数的定义,掌握互为倒数的两个数积为1,是解题的关键.2.是同类二次根式的是()A.B.C.D.【答案】C【解析】【分析】根据同类二次根式的定义,逐个进行判断即可.【详解】解:A2=不是同类二次根式,不符合题意;B不是同类二次根式,不符合题意;C=是同类二次根式,符合题意;D=不是同类二次根式,不符合题意;故选:C .【点睛】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列四种图案中,是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据中心对称图形的定义,逐个进行判断即可,中心对称图形:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:根据题意可得:是中心对称图形的只有B ,故选:B .【点睛】本题主要考查了中心对称图形的定义,解题的关键是中心对称图形:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.4.下列计算正确的是()A.2242a a a += B.()32626a a = C.235a a a ⋅= D.824a a a ÷=【答案】C【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A .2222a a a +=,故该选项不正确,不符合题意;B .()32628a a =,故该选项不正确,不符合题意;C .235a a a ⋅=,故该选项正确,符合题意;D .826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.5.不等式组321,23m m -≥⎧⎨->⎩的解集在同一条数轴上表示正确的是()A. B.C. D.【答案】A【解析】【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【详解】解:32123m m -≥⎧⎨->⎩①②解不等式①得:m 1≥解不等式②得:1m <-将不等式的解集表示在数轴上,如图所示,故选:A .【点睛】本题主要考查数轴上表示不等式的解集,熟练掌握数轴上表示不等式组的解集的方法是解题的关键.6.如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为()A.B.C.D.【答案】A【解析】【分析】根据俯视图的定义,即可进行解答.【详解】解:根据题意可得:从该几何体正上方看,棱AE 的投影为点E ,棱AB 的投影为线段BE ,棱AD 的投影为线段ED ,棱AC 的投影为正方形BCDE的对角线,∴该几何体的俯视图为:,故选:A【点睛】本题主要考查了俯视图,解题的关键是熟练掌握俯视图的定义:从物体正上方看到的图形是俯视图.7.长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是()A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差【答案】D【解析】【分析】根据平均数,中位数,极差,方差的定义分别求解即可.【详解】甲班视力值分别为:4.7,5.0,4.7,4.8,4.7,4.7,4.6,4.4;从小到大排列为:4.4,4.6,4.7,4.7,4.7,4.7,4.8,5.0;中位数为4.7 4.7=4.72+,平均数为()14.4 4.6 4.7 4.7 4.7 4.7 4.85.0=4.78+++++++;极差为5.0 4.40.6-=方差为()()()()222221=0.30.10.10.3=0.0258S ⎡⎤+++⎣⎦甲;乙班视力值分别为:4.8,4.7,4.7,5.0,4.6,4.5,4.9,4.4;从小到大排列为:4.4,4.5,4.6,4.7,4.7,4.8,4.9,5.0,中位数为4.7 4.7=4.72+平均数为()14.4 4.5 4.6 4.7 4.7 4.8 4.9 5.0=4.78+++++++;极差为5.0 4.40.6-=方差为()()()()()()22222221=0.30.20.10.10.20.3=0.0358S ⎡⎤+++++⎣⎦甲;甲、乙班视力值的平均数、中位数、极差都相等,甲班视力值的方差小于乙班视力值的方差,故D 选项正确故选:D .【点睛】本题考查了折线统计图,求平均数,中位数,极差,方差,熟练掌握平均数,中位数,极差,方差的定义是解题的关键.8.如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为()A.12P P < B.12P P = C.12P P > D.无法判断【答案】B【解析】【分析】根据题意可得阴影部分面积等于正方形面积的一半,进而即可求解.【详解】解:如图所示,连接AE BD ,交于O ,由题意得,A B C D ,,,分别是正方形四条边的中点,∴点O 为正方形的中心,∴AOBF AODC S S =四边形四边形,根据题意,可得扇形OAB 的面积等于扇形CAD 的面积,∴AOBF OAB AODC AOC S S S S -=-四边形扇形四边形扇形,∴阴影部分面积等于空白部分面积,即阴影部分面积等于正方形面积的一半∴12P P =,故选:B .【点睛】本题考查了正方形的性质,扇形面积,几何概率,得出阴影部分面积等于正方形面积的一半是解题的关键.9.如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫-⎪⎝⎭,与x 轴的一个交点位于0合和1之间,则以下结论:①0abc >;②20b c +>;③若图象经过点()()123,,3,y y -,则12y y >;④若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据图象,分别得出a 、b 、c 的符号,即可判断①;根据对称轴得出a b =,再根据图象得出当1x =时,0y a b c =++<,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程230ax bx c ++-=移项可得23ax bx c ++=,根据该方程无实数根,得出抛物线2y ax bx c =++与直线3y =没有交点,即可判断④.【详解】解:①∵该抛物线开口向下,∴a<0,∵该抛物线的对称轴在y 轴左侧,∴0b <,∵该抛物线于y 轴交于正半轴,∴0c >,∴0abc >,故①正确,符合题意;②∵1,2A m ⎛⎫- ⎪⎝⎭,∴该抛物线的对称轴为直线122b x a =-=-,则a b =,当1x =时,y a b c =++,把a b =得:当1x =时,2y b c =+,由图可知:当1x =时,0y <,∴20b c +<,故②不正确,不符合题意;③∵该抛物线的对称轴为直线12x =-,∴()13,y -到对称轴的距离为()15322---=,()23,y 到对称轴的距离为17322⎛⎫--= ⎪⎝⎭,∵该抛物线开口向下,∴在抛物线上的点离对称轴越远,函数值越小,∵5722<,∴12y y >,故③正确,符合题意;④将方程230ax bx c ++-=移项可得23ax bx c ++=,∵230ax bx c ++-=无实数根,∴抛物线2y ax bx c =++与直线3y =没有交点,∵1,2A m ⎛⎫- ⎪⎝⎭,∴3m <.故④正确综上:正确的有:①③④,共三个.故选:C .【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握根据二次函数图象判断各系数的方法,熟练掌握二次函数的图象和性质.10.如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()A.()31.34B.()31,34-C.()32,35D.()32,0【答案】A【解析】【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L ,∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,,故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.二、填空题11.“北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________.【答案】113.610⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3600亿360000000000=,用科学记数法表示为113.610⨯.故答案为:113.610⨯.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.12.一杆古秤在称物时的状态如图所示,已知1102∠=︒,则2∠的度数为_____.【答案】78︒##78度【解析】【分析】根据两直线平行,内错角相等,即可求解.【详解】解:如图所示,依题意,AB DC ∥,∴2BCD ∠=∠,∵1180BCD ∠+∠=︒,1102∠=︒,∴180178BCD ∠=︒-∠=︒∴278∠=︒.故答案为:78︒.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.13.如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.【答案】52.5︒【解析】【分析】方法一∶如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒-︒=︒,然后再根据等腰三角形的性质求得65OAB ∠=︒、25OAD ∠=︒,最后根据角的和差即可解答.方法二∶连接,OB OD ,由题意可得:105BAD ∠=︒,然后根据圆周角定理即可求解.【详解】方法一∶解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒-︒=︒,15525130AOD ∠=︒-︒=︒,∴()118077.52OAB AOB ∠=︒-∠=︒,()1180252OAD AOB ∠=︒-∠=︒,∴52.5OAB A BAD O D ∠∠-∠==︒.故答案为52.5︒.方法二∶解∶连接,OB OD ,由题意可得:15550105BAD ∠=︒-︒=︒,根据圆周角定理,知1110552.522BAD BOD ∠=∠=⨯︒=︒.故答案为52.5︒.【点睛】本题主要考查了角的度量、圆周角定理等知识点,掌握圆周角的度数等于它所对弧上的圆心角度数的一半是解答本题的关键.14.如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8;③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是___________.【答案】①③【解析】【分析】根据计算器按键,写出式子,进行计算即可.【详解】解:①按键的结果为3644=;故①正确,符合题意;②按键的结果为()3424+-=-;故②不正确,不符合题意;③按键的结果为()sin 4515sin 300.5︒-︒=︒=;故③正确,符合题意;④按键的结果为2132102⎛⎫-⨯= ⎪⎝⎭;故④不正确,不符合题意;综上:正确的有①③.故答案为:①③.【点睛】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义.15.如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)k y k x x=>>的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.【答案】24【解析】【分析】设,k C a a ⎛⎫ ⎪⎝⎭,则,k OB a AC a ==,则122k AC BC a ==,根据三角形的面积公式得出162ACD S AC OB =⋅= ,列出方程求解即可.【详解】解:设,k C a a ⎛⎫ ⎪⎝⎭,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴,k OB a AC a==,则点D 到BC 的距离为a ,∵CB 为A 的直径,∴122k AC BC a ==,∴16224ACD k k S a a =⋅⋅== ,解得:24k =,故答案为:24.【点睛】本题主要考查了切线的性质,反比例函数的图象和性质,解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线,以及反比例函数图象上点的坐标特征.16.如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.【答案】【解析】【分析】过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC ==在Rt ABQ 中,8,4AB BQ ==∴AQ ===∵1122ABC S AB CG AQ BC =⨯=⨯ ,∴782BC AQ CG AB ⨯⨯===,.【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.三、解答题17.先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数.【答案】33a a -+;12-【解析】【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a 的值,再代入数据计算即可.【详解】解:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭()()()23225222a a a a a a -+-⎡⎤=÷+⎢⎥---⎣⎦()2234522a a a a--+=÷--()()()232233a a a a a --=⋅-+-33a a -=+,解不等式112a -≤得:3a ≤,∵a 为正整数,∴1a =,2,3,∵要使分式有意义20a -≠,∴2a ≠,∵当3a =时,552320223a a ++=++=--,∴3a ≠,∴把1a =代入得:原式131132-==-+.【点睛】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.18.“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A ,B ,C ,D ,E 五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该市有1000名中学生参加本次活动,则选择A 大学的大约有_________人;(3)甲、乙两位同学计划从A ,B ,C 三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.【答案】(1)见解析(2)14.4︒;200.(3)13【解析】【分析】(1)根据C 的人数除以占比得到总人数,进而求得B 的人数,补全统计图即可求解;(2)根据D 的占比乘以360︒得到圆心角的度数,根据1000乘以选择A 的人数的占比即可求解;(3)根据列表法求概率即可求解.【小问1详解】解:总人数为1428%50÷=(人)∴选择B 大学的人数为5010142816----=,补全统计图如图所示,【小问2详解】在扇形统计图中,D 所在的扇形的圆心角的度数为236014.450︒⨯=︒,选择A 大学的大约有101000=20050⨯(人)故答案为:14.4︒;200.【小问3详解】列表如下,甲乙A B C A AA AB AC B BA BB BCC CA CBCC 共有9种等可能结果,其中有3种符合题意,∴甲、乙两人恰好选取同一所大学的概率为13.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,列表法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30︒的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD 长16米,在地面点A 处测得风力发电机塔杆顶端P 点的仰角为45︒,利用无人机在点A 的正上方53米的点B 处测得P 点的俯角为18︒,求该风力发电机塔杆PD 的高度.(参考数据:sin180.309≈︒,cos180.951≈︒,tan180.325≈︒)【答案】该风力发电机塔杆PD 的高度为32米【解析】【分析】过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,先根据含30︒角直角三角形的性质得出8DE =,设PD x =米,则()8PE PD DE x =+=+米,进而得出()8AE x =+米,证明四边形FAEP 为矩形,则()8PF AE x ==+米,()8AF PE x ==+米,根据线段之间的和差关系得出()45BF AB AF s x =-=-米,最后根据tan18BF PF=︒,列出方程求解即可.【详解】解:过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,根据题意可得:AB 、PD 垂直于水平面,30DCE ∠=︒,45PAC ∠=︒,18GBP ∠=︒,∴PE AE ⊥,∵16CD =米,∴1116822DE CD ==⨯=(米),设PD x =米,则()8PE PD DE x =+=+米,∵45PAC ∠=︒,PEAE ⊥,∴()8tan 45PE AE x ==+︒米,∵AB AE ⊥,PE AE ⊥,PF AB ⊥,∴四边形FAEP 为矩形,∴()8PF AE x ==+米,()8AF PE x ==+米,∵53AB =米,∴()()53845BF AB AF x x =-=-+=-米,∵18GBP ∠=︒,∴18BPF ∠=︒,∴tan18BF PF =︒,即450.3258x x-≈+,解得:32x ≈,答:该风力发电机塔杆PD 的高度为32米.【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.20.【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD 进行如下操作:①分别以点,B C 为圆心,以大于12BC 的长度为半径作弧,两弧相交于点E ,F ,作直线EF 交BC 于点O ,连接AO ;②将ABO 沿AO 翻折,点B 的对应点落在点P 处,作射线AP 交CD 于点Q .【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长.【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 的长;方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.经过推理、计算可求出线段CQ 的长.请你任选其中一种方案求线段CQ 的长.【答案】线段CQ 的长为2512.【解析】【分析】方案一:连接OQ ,由翻折的不变性,知3AP AB ==, 2.5OP OB ==,证明()HL QPO QCO ≌△△,推出PQ CQ =,设PQ CQ x ==,在Rt ADQ △中,利用勾股定理列式计算求解即可;方案二:将ABO 绕点O 旋转180︒至RCO △处,证明OAQ R ∠=∠,推出QA QR =,设CQ x =,同方案一即可求解.【详解】解:方案一:连接OQ ,如图2.∵四边形ABCD 是矩形,∴3AB CD ==,5AD BC ==,由作图知1 2.52BO OC BC ===,由翻折的不变性,知3AP AB ==, 2.5OP OB ==,90APO B ∠=∠=︒,∴ 2.5OP OC ==,90QPO C ∠=∠=︒,又OQ OQ =,∴()HL QPO QCO ≌△△,∴PQ CQ =,设PQ CQ x ==,则3AQ x =+,3DQ x =-,在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +-=+,解得2512x =,∴线段CQ 的长为2512;方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.∵四边形ABCD 是矩形,∴3AB CD ==,5AD BC ==,由作图知1 2.52BO OC BC ===,由旋转的不变性,知3CR AB ==,BAO R ∠=∠,90B OCR ∠=∠=︒,则9090180OCR OCD ∠+∠=︒+︒=︒,∴D C R 、、共线,由翻折的不变性,知BAO OAQ ∠=∠,∴OAQ R ∠=∠,∴QA QR =,设CQ x =,则3QA QR x ==+,3DQ x =-,在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +-=+,解得2512x =,∴线段CQ 的长为2512.【点睛】本题考查了作线段的垂直平分线,翻折的性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会利用参数构建方程解决问题.21.中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?【答案】(1)《周髀算经》单价为40元,则《孙子算经》单价是30元;(2)当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【解析】【分析】(1)设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元,根据“用600元购买《孙子算经》比购买《周髀算经》多买5本”列分式方程,解之即可求解;(2)根据购买的《周髀算经》数量不少于《孙子算经》数量的一半列出不等式求出m 的取值范围,根据m 的取值范围结合函数解析式解答即可.【小问1详解】解:设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元,依题意得,600600534x x =+,解得40x =,经检验,40x =是原方程的解,且符合题意,340304⨯=,答:《周髀算经》单价为40元,则《孙子算经》单价是30元;【小问2详解】解:设购买的《周髀算经》数量m 本,则购买的《孙子算经》数量为()80m -本,依题意得,()1802m m ≥-,解得2263m ≥,设购买《周髀算经》和《孙子算经》的总费用为y (元),依题意得,()400.8300.88081920y m m m =⨯+⨯-=+,∵80k =>,∴y 随m 的增大而增大,∴当27m =时,有最小值,此时82719202316y =⨯+=(元),802753-=(本)答:当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【点睛】本题主要考查分式方程的实际应用,一次函数的实际应用以及一元一次不等式的实际应用,根据题意表示出y 与x 之间的函数关系式以及列出不等式是解题的关键.22.如图,在菱形ABCD 中,对角线,AC BD 相交于点,E O 经过,A D 两点,交对角线AC 于点F ,连接OF 交AD 于点G ,且AG GD =.(1)求证:AB 是O 的切线;(2)已知O 的半径与菱形的边长之比为5:8,求tan ADB ∠的值.【答案】(1)见解析(2)tan 2ADB ∠=.【解析】【分析】(1)利用垂径定理得OF AD ⊥,利用菱形的性质得GAF BAF ∠=∠,利用半径相等得OAF OFA ∠=∠,即可证明90OAF BAF ∠+∠=︒,据此即可证明结论成立;(2)设4AG GD a ==,由题意得:5:4OA AG =,求得5OA a =,由勾股定理得到3OG a =,求得2FG a =,利用菱形的性质求得ADB AFG ∠=∠,据此求解即可.【小问1详解】证明:连接OA ,∵AG GD =,由垂径定理知OF AD ⊥,∴90OGA FGA ∠=∠=︒,∵四边形ABCD 是菱形,∴GAF BAF ∠=∠,∴90GAF AFG BAF AFG ∠+∠=︒=∠+∠,∵OA OF =,∴OAF OFA ∠=∠,∴90OAF BAF OAB ∠+∠=∠=︒,又∵OA 为O 的半径,∴AB 是O 的切线;【小问2详解】解:∵四边形ABCD 是菱形,AG GD =,∴设4AG GD a ==,∵O 的半径与菱形的边长之比为5:8,∴在Rt OAG △中,:5:4OA AG =,∴5OA a =,3OG a ==,∴2FG OF OG a =-=,∵四边形ABCD 是菱形,∴BD AC ⊥,即90DEA FGA ∠=︒=∠,∴ADB AFG ∠=∠,∴4tan tan 22AG a ADB AFG FG a∠=∠===.【点睛】本题考查了菱形的性质,垂径定理,切线的判定,求角的正切值,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.23.如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.【答案】(1)见解析(2)2BE =+.【解析】【分析】(1)证明CD BE ∥,推出DCE BEF ∠=∠,利用SAS 证明DCE FEB ≌△△即可证明结论成立;(2)取CF 的中点H ,连接GH ,证明GH 是FCD 的中位线,设BE a =,则122FH a =-,证明FGH FBE ∽△△,得到GH FH BE EF=,即2440a a --=,解方程即可求解.【小问1详解】证明:∵等腰ACD 和等腰BCE ,∴AD CD =,EC EB =,A DCA ∠=∠,∵A CBE ∠=∠,∴DCA CBE ∠=∠,∴CD BE ∥,∴DCE BEF ∠=∠,∵EF AD =,∴EF CD =,在DCE △和FEB 中,CD EF DCE FEB EC EB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS DCE FEB ≌△△,∴DE BF =;【小问2详解】解:取CF 的中点H ,连接GH,∵点G 是DE 的中点,∴GH 是FCD 的中位线,∴11122GH CD AD ===,GH CD ∥,设BE a =,则111222CH EH CE BE a ====,∵2EF AD ==,∴122FH a =-,∵CD BE ∥,∴GH BE ∥,∴FGH FBE ∽△△,∴GH FH BE EF =,即12122a a -=,整理得2440a a --=,解得2a =+(负值已舍),经检验2a =+是所列方程的解,且符合题意,∴2BE =+【点睛】本题考查了相似三角形的判定和性质,解一元二次方程,三角形中位线定理,全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24.如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =-交于点D ,与x 轴交于点E.(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为B 上一个动点,请求出12+PC PA 的最小值.【答案】(1)直线AD 的解析式为1y x =-;抛物线解析式为265y x x =-+(2)存在,点M 的坐标为()4,3-或()0,5或()5,0(3【解析】【分析】(1)根据对称轴3x =,4AB =,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当90DAM ∠=︒时,求出直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;②当90ADM ∠=︒时,求出直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;(3)在AB 上取点F ,使1BF =,连接CF ,证得BF PB PB AB =,又PBF ABP ∠=∠,得到PBF ABP ∽,推出12PF PA =,进而得到当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长,利用勾股定理求出CF 即可.【小问1详解】解:∵抛物线的对称轴3x =,4AB =,∴()()1,0,5,0A B ,将()1,0A 代入直线1y kx =-,得10k -=,解得1k =,∴直线AD 的解析式为1y x =-;将()()1,0,5,0A B 代入25y ax bx =++,得5025550a b a b ++=⎧⎨++=⎩,解得16a b =⎧⎨=-⎩,∴抛物线的解析式为265y x x =-+;【小问2详解】存在点M ,∵直线AD 的解析式为1y x =-,抛物线对称轴3x =与x 轴交于点E .∴当3x =时,12y x =-=,∴()3,2D ,①当90DAM ∠=︒时,设直线AM 的解析式为y x c =-+,将点A 坐标代入,得10c -+=,解得1c =,∴直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,得10x y =⎧⎨=⎩或43x y =⎧⎨=-⎩,∴点M 的坐标为()4,3-;②当90ADM ∠=︒时,设直线DM 的解析式为y x d =-+,将()3,2D 代入,得32d -+=,解得5d =,∴直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,解得05x y =⎧⎨=⎩或50x y =⎧⎨=⎩,∴点M 的坐标为()0,5或()5,0综上,点M 的坐标为()4,3-或()0,5或()5,0;【小问3详解】如图,在AB 上取点F ,使1BF =,连接CF ,∵2PB =,∴12BF PB =,∵2142PB AB ==,、∴BF PB PB AB=,又∵PBF ABP ∠=∠,∴PBF ABP ∽,∴12PF BF PA PB ==,即12PF PA =,∴12PC PA PC PF CF +=+≥,∴当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长,∵5,1514OC OF OB ==-=-=,∴CF ===∴12+PC PA .【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.。

2024年全国中考数学试题分类汇编——数与式之计算题(文字版,含答案)

2024年全国中考数学试题分类汇编——数与式之计算题(文字版,含答案)
3.
4.
5.【答案】 ,
6.【答案】-1
7.【答案】从第②步开始出现错误,正确过程如下:
解: ①
10.【详解】解:

当 时,原式 .
11.解:

12.解:

13.
14.

15. 16.
17. 18.
19.
20.
第三组数与式计算题 专题分类汇编
1.(内蒙古赤峰市卷)计算: ;
2.(内蒙古赤峰市卷)已知 ,求代数式 的值.
3.(吉林省长春市卷)先化简,再求值: ,其中 .
4.(吉林省卷)先化简,再求值: ,其中 .
5.(江苏省常州市卷)先化简,再求值: ,其中 .
6.(江苏省连云港市卷)17.计算 .
7.(江苏省连云港市卷)19.下面是某同学计算 解题过程:
解: ①


上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.
解: …①
…②
…③
…④
…⑤
当 时,原式 .
(1)小乐同学的解答过程中,第______步开始出现了错误;
(2)请帮助小乐同学写出正确的解答过程.
17.(黑龙江省齐齐哈尔市卷)计算:
18.(黑龙江省齐齐哈尔市卷)分解因式:
19.(湖北省卷)计算:
20.(湖南省长沙市卷)计算: .
第一组 中考 数与式计算题 试题汇编答案
【一】
1.【详解】解:原式

∵ ,
∴ ,
∴原式 .
2.【详解】解:原式 .
3.
6.解:原式=|﹣2|﹣3+1
=2﹣3+1
=2+1﹣3
6.(四川省广安市卷)计算: .

(2021-2023年)三年中考数学试题分类汇总:数与式+.docx1

中考数学真题——中考数学试题分类汇总数与式一.选择题(共9小题)1.计算:3﹣5=( )A .2B .﹣2C .8D .﹣8 2.计算:6xy 2⋅(−12x 3y 3)=( )A .3x 4y 5B .﹣3x 4y 5C .3x 3y 6D .﹣3x 3y 63.2022年6月5日上午10时44分07秒,熊熊的火焰托举着近500000千克的火箭和飞船冲上云霄,这是我国长征2F 运载火箭将“神舟十四号”载人飞船送入太空的壮观情景.其中,数据500000用科学记数法可以表示为( )A .0.5×106B .50×104C .5×104D .5×1054.﹣21的绝对值为( )A .21B .﹣21C .121D .−1215.计算:2x •(﹣3x 2y 3)=( )A .6x 3y 3B .﹣6x 2y 3C .﹣6x 3y 3D .18x 3y 36.﹣37的相反数是( )A .﹣37B .37C .−137D .1377.计算:(﹣4a 3b )2=( )A .8a 5b 3B .16a 6b 2C .﹣8a 6b 2D .16a 5b 2 8.计算:(a 3b )﹣2=( )A .1a 6b 2B .a 6b 2C .1a 5b 2D .﹣2a 3b 9.计算:−12a 2b •(ab )﹣1=( )A .12aB .12a 3b 2C .−12aD .−12a 3b 2 二.填空题(共5小题)10.如图,在数轴上,点A 表示√3,点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是 .11.计算:3−√25= .12.分解因式:a 3﹣4a 2+4a = .13.实数a ,b 在数轴上对应点的位置如图所示,则a ﹣b .(填“>”“=”或“<”)14.分解因式x 3+6x 2+9x = .三.解答题(共6小题)15.计算:√5×(−√10)−(17)−1+|−23|.16.化简:(3a a 2−1−1a−1)÷2a−1a+1.17.计算:5×(﹣3)+|−√6|﹣(17)0.18.计算:5×(﹣2)+√2×√8−(13)﹣1.19.化简:(a+1a−1+1)÷2a a 2−1.20.计算:|√7−3|﹣2√3×√21.。

中考数学母题探秘——数与式(2)

中考数学母题探秘——数与式(2)二、代数式的基本内容:1、分类: 整式 单项式,如-3、a 、3xy4有理式 多项式,如2xy -3y 4代数式 分式 ,如 x+1x 、32x -y等无理式 ,如 x -1 (x ≥1) 、1x等2、重要概念:单项式、多项式、整式、分式、有理式、无理式、二次根式、最简二次根式、同类二次根式。

相关重要知识提示:(1)单独的一个数或一个字母也是代数式,如5,m ,1π等;(2)含有加减运算的几个单项式的和是多项式,如2a+b 、x 2- y 2等,而2a+3a 、12a+b 等都不是多项式;(3)分母中含有字母的有理式是分式,如 1x 、12a+b 、a2a等; (4)根号内含有字母的代数式叫无理式,如x 、b 2、54a等; (5)无理式是根式,但根式不一定是无理式,如2、4 等是实数,是根式,但不是无理式;(6)几个二次根式化成最简后,被开方数完全相同的二次根式叫做同类二次根式;(7)代数式要和实数的知识联系起来学习。

3、典型例题: 例1:(1)如图,化简:a -|a+b|-c 2+|b -c| = .(2)函数y = x 2+23-x的自变量x 的取值范围是 .(3)分式x (x+1)(x+1)(x+2)有意义,则必须( )(A ) x ≠-2(B)x ≠-1或x ≠-2(C ) x=0 (D) x ≠-1且x ≠-2 例题特点即解题策略:(1)借助数轴来化简绝对值和二次根式,其关键仍是判断绝对值内的数或式子的正负, 如|a+b|的化简,当a+b ≥0时,|a+b| = a+b (原封不动出来);当a+b<0时,|a+b| = -(a+b )(加上括号,带上负号)【答案:原b c 0 a式=a+(a+b)+c-(b-c)=2a+2c】(2)、(3)题都是考察自变量的取值范围,解题时应注意以下三点:①偶次方根的被开方数大于等于零;②分母不为零;③零指数或负指数的底数不为零。

中考数学母题探秘(一)------数与式(2)

中考数学母题探秘(一)------数与式(2)二、代数式的基本内容:1、分类: 整式 单项式,如-3、a 、3xy4有理式 多项式,如2xy -3y 4 代数式 分式 ,如 x+1x 、32x -y 等无理式 ,如x -1 (x ≥1) 、1x等 2、重要概念:单项式、多项式、整式、分式、有理式、无理式、二次根式、最简二次根式、同类二次根式。

相关重要知识提示:(1)单独的一个数或一个字母也是代数式,如5,m ,1π等;(2)含有加减运算的几个单项式的和是多项式,如2a+b 、 x 2- y 2等,而2a+3a 、12a+b 等都不是多项式;(3)分母中含有字母的有理式是分式,如 1x 、12a +b 、a 2a等;(4)根号内含有字母的代数式叫无理式,如x 、b 2、54a等;(5)无理式是根式,但根式不一定是无理式,如2、 4 等是实数,是根式,但不是无理式;(6)几个二次根式化成最简后,被开方数完全相同的二次根式叫做同类二次根式;(7)代数式要和实数的知识联系起来学习。

3、典型例题: 例1:(1)如图,化简:a -(2)函数y = x 2 +23-x 的自变量x 的取值范围是 .(3)分式x (x+1)(x+1)(x+2) 有意义,则必须( )(A ) x ≠-2 (B)x ≠-1或x ≠-2 (C ) x=0 (D) x ≠-1且x ≠-2例题特点即解题策略:(1)借助数轴来化简绝对值和二次根式,其关键仍是判断绝对值内的数或式子的正负, 如|a+b|的化简, 当a+b ≥0时,|a+b| = a+b (原封不动出来);当a+b <0时,|a+b| = -(a+b )(加上括号,带上负号)【答案:原式=a+(a+b)+c-(b-c)=2a+2c 】 (2)、(3)题都是考察自变量的取值范围,解题时应注意以下三点: ① 偶次方根的被开方数大于等于零;②分母不为零;③零指数或负指数的底数不为零。

2021年中考复习数学专题训练:《数与式》选择题专项培优(二)附答案

中考数学专题训练:《数与式》选择题专项培优(二)1.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+4,0,+5,﹣3,+2,则这5天他共背诵汉语成语( ) A .38个B .36个C .34个D .30个2.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n 表示第n 秒时机器人在数轴上的位置所对应的数. 给出下列结论:(1)x 3=3;(2)x 5=1;(3)x 108<x 104;(4)x 2007<x 2008; 其中,正确结论的序号是( ) A .(1)、(3) B .(2)、(3)C .(1)、(2)、(3)D .(1)、(2)、(4)3.﹣2020的绝对值是( ) A .﹣2020 B .2020 C .﹣D .4.已知a =(﹣)67,b =(﹣)68,c =(﹣)69,判断a 、b 、c 三数的大小关系为下列何者?( ) A .a >b >c B .b >a >c C .b >c >a D .c >b >a5.计算+++++……+的值为( )A .B .C .D .6.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A ﹣C 表示观测点A 相对观测点C 的高度)根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )米.A ﹣C C ﹣D E ﹣D F ﹣E G ﹣FB ﹣G90米 80米﹣60米50米﹣70米40米A.210 B.130 C.390 D.﹣2107.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元8.如图,一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成()A.17段B.32段C.33段D.34段9.若(a2+2a+1)2+|1﹣b|=0,则ab的值是()A.1 B.﹣1 C.±1 D.210.如图为阿辉,小燕一起到商店分别买了数杯饮料与在家分饮料的经过.若每杯饮料的价格均相同,则根据图中的对话,判断阿辉买了多少杯饮料()A.22 B.25 C.47 D.5011.已知地球的表面积约等于5.1亿平方公里,其中水面面积约等于陆地面积的倍,则地球上陆地面积约等于(精确到0.1亿平方公里)()A.1.5亿平方公里B.2.1亿平方公里C.3.6亿平方公里D.12.5亿平方公里12.我市今年参加中考人数约为42000人,将42000用科学记数法表示为()A.4.2×104B.0.42×105C.4.2×103D.42×10313.某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒13.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×107 15.上海世博园的占地面积约为5.28km2,它面积的百万分之一相当于()A.一本数学书的面积B.一块黑板的面积C.一间教室的面积D.一个操场的面积16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.132617.若与|b+1|互为相反数,则的值为()A.B.+1 C.﹣1 D.1﹣18.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.819.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2 B.2 C.4 D.﹣420.如图,某计算机中有、、三个按键,以下是这三个按键的功能.1.:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成7.2.:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.04.3.:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成36.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.10021.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)22.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a23.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<424.随地震波而来的是地底积蓄已久的能量.因为里氏震级并不像摄氏温度一样是等分性的指标,因此每两级地震所释放的能量也相差巨大.根据里克特在1953年提出的公式计算,每一级地震释放的能量都是次一级地震的倍.这意味着,里氏震级每高出0.1级,就会多释放出0.4125倍的能量(如7.8级比7.7级会多释放出0.4125倍的能量).那么5月12日下午2时28分四川汶川地区发生的8.0级大地震与5月25日下午4时21分四川青川一带发生的6.4级余震相比,前次所释放的能量约是后次的()A.22倍B.34倍C.40倍D.251倍25.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁参考答案1.解:(+4+0+5﹣3+2)+5×6=38个,∴这5天他共背诵汉语成语38个,故选:A.2.解:依题意得:机器人每5秒完成一个前进和后退,即前5个对应的数是1,2,3,2,1;6~10是2,3,4,3,2.根据此规律即可推导判断.(1)和(2),显然正确;(3)中,108=5×21+3,故x108=21+1+1+1=24,104=5×20+4,故x104=20+3﹣1=22,24>22,故错误;(4)中,2007=5×401+2,故x2007=401+1+1=403,2008=401×5+3,故x2008=401+3=404,正确.故选:D.3.解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.4.解:因为a=(﹣)67,b=(﹣)68,c=(﹣)69,68是偶数,b>0,﹣>﹣1,∴c>a,所以b>c>a,故选:C.5.解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.6.解:由表中数据可知:A﹣C=90①,C﹣D=80②,D﹣E=60③,E﹣F=﹣50④,F﹣G=70⑤,G﹣B=﹣40⑥,①+②+③+…+⑥,得:(A﹣C)+(C﹣D)+(D﹣E)+(E﹣F)+(F﹣G)+(G﹣B)=A﹣B=90+80+60﹣50+70﹣40=210.∴观测点A相对观测点B的高度是210米.故选:A.7.解:∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选:C.8.解:根据题意分析可得:连续对折5次后,共25段即32段;故剪刀沿对折5次后的绳子的中间将绳子剪断,有两端的两个线段长度是,其余的长度是,∵+×31=1,∴共有31+2=33段.故选:C.9.解:由题意得,a2+2a+1=0,1﹣b=0,解得,a=﹣1,b=1,则ab=﹣1,故选:B.10.解:根据题意得:[(1000+120)﹣(2000﹣1120)]÷6=40,880÷40=22(杯),则阿辉买了22杯饮料,故选:A.11.解:29÷(71+29)=0.29,5.1×0.29≈1.5亿平方公里.故选A.12.解:将42000用科学记数法表示为:4.2×104.故选:A.13.解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.14.解:52 000 000=5.20×107.故选:D.15.解:5.28×=5.28×10﹣6km2=5.28m2.故选:B.16.解:1×73+3×72+2×7+6=510,故选:C.17.解:∵与|b+1|互为相反数,∴+|b+1|=0,∴a+=0且b+1=0,∴a=﹣,b=﹣1,∴=+1.故选:B.18.解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴<<,∴9.98<<9.99,∴998<<999,即其个位数字为8.故选:D.19.解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.20.解:根据题意得:=10,=0.1,0.12=0.01,=0.1,=10,102=100,100÷6=16…4,则第100次为0.1.故选:B.21.解:3=,3得被开方数是的被开方数的30倍,3在第六行的第5个,即(6,5)是(6,2)故选:C.22.解:∵a﹣b=(﹣3)13﹣(﹣3)14﹣(﹣0.6)12+(﹣0.6)14=﹣313﹣314﹣12+14<0,∴a<b,∵c﹣b=(﹣1.5)11﹣(﹣1.5)13﹣(﹣0.6)12+(﹣0.6)14=(﹣1.5)11+1.513﹣0.612+0.614>0,∴c>b,∴c>b>a.故选:D.23.解:∵1<2,3<4,又∵<a<,∴1<a<4,故选:B.24.解:依题意得()1.6=≈251.故选:D.25.解:∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适,故选:A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟台市中考数学分类汇编专题02 数与式(2)
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分) (2019八下·兰西期末) 下列函数中,自变量的取值范围是的是()
A .
B .
C .
D .
2. (2分)(2020·云南模拟) 下列运算正确的是()
A . (xm)2=xm+2
B . (﹣2x2y)3=﹣8x5y3
C . x6÷x3=x2
D . x3•x2=x5
3. (2分)(2014·资阳) 下列运算正确的是()
A . a3+a4=a7
B . 2a3•a4=2a7
C . (2a4)3=8a7
D . a8÷a2=a4
4. (2分) (2017八下·兴隆期末) 计算的结果是()
A .
B .
C .
D . 3
5. (2分)若式子有意义,则x的取值范围是()
A . x≥3
B . x≤3
C . x>3
D . x=3
6. (2分)对于任意的正整数n ,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()
A . 3
B . 6
C . 10
D . 9
7. (2分) (2020七下·北仑期末) 若分式的值为0,则a的值为()
A . 4和﹣4
B . 4
C . ﹣4
D . 4和0
8. (2分) (2018八上·翁牛特旗期末) 下列式子正确的是()
A .
B .
C .
D . (x+3y)(x-3y)=x2-3y2
二、填空题 (共9题;共9分)
9. (1分)(2020·江北模拟) 因式分解:x2﹣1=________.
10. (1分)(2016·昆明) 计算:﹣ =________.
11. (1分)(2020·九江模拟) 因式分解: = ________.
12. (1分) (2017八下·弥勒期末) 因式分解:2x2﹣8=________.
13. (1分)两个正方形的边长和为20cm,它们的面积的差为40cm2 ,则这两个正方形的边长差为________ cm
14. (1分)分解因式:a2﹣16=________.
15. (1分) (2017八上·忻城期中) 化简: ________
16. (1分)(2017·商水模拟) 分解因式:(a﹣b)2﹣4b2=________.
17. (1分) (2019七下·九江期中) 若,则xy=________
三、计算题 (共6题;共50分)
18. (5分)(2018·南山模拟) 先化简,再求值:÷( +1﹣x),其中x=2.
19. (10分)(2011·深圳) 计算:.
20. (10分)(2017·祁阳模拟) 计算:(﹣1)2017+2sin60°﹣|﹣ |+(π﹣)0 .
21. (5分) (2020八下·温州月考) 计算:
(1)
(2)
22. (10分)计算:+|﹣3|﹣()﹣1﹣(2015+)0 .
23. (10分)计算:
(1);
(2)
四、综合题 (共1题;共8分)
24. (8分) (2019七下·青岛期末) 已知,,求下列式子的值:
(1);
(2) 4ab.
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共9题;共9分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、计算题 (共6题;共50分)
18-1、
19-1、
20-1、
21-1、
21-2、
22-1、
23-1、
23-2、
四、综合题 (共1题;共8分) 24-1、
24-2、。

相关文档
最新文档