第一章 第三讲 命题与量词
第1章1.2.1 命题与量词

27
4.下列语句是存在量词命题的是 ( ) A.整数n是2和5的倍数 B.存在整数n,使n能被7整除 C.x>7 D.∀x∈M,p(x)成立 B [B选项中有存在量词“存在”,故是存在量词命题,A和C 不是命题,D是全称量词命题. ]
栏目导航
28
全称量词命题和存在量词命题的改写
【例5】 用全称量词或存在量词表示下列语句. (1)不等式x2+x+1>0恒成立; (2)当x为有理数时,13x2+12x+1也是有理数; (3)方程3x-2y=10有整数解.
44
4.下列命题:①若xy=1,则x,y互为倒数;②平行四边形是 梯形;③若x,y互为相反数,则x+y=0,其中真命题为________.
①③ [①是真命题;②平行四边形不是梯形,假命题;③是真 命题.]
栏目导航
45
课时分层 作 业
点击右图进入…
栏目导航
Thank you for watching !
栏目导航
37
[解] (1)真命题. (2)假命题,如边长为1的正方形的对角线长 2 ,它的长度就不能用有理数表示.(3)假命题,因为该方程的判别 式Δ=-31<0,故无实数解.
栏目导航
38
1.根据命题的意义,可以判断真假的陈述句是命题,真命题要 给出证明,假命题只需举一反例即可.
2.判断命题是全称量词命题还是存在量词命题,主要是看命题 中是否含有全称量词和存在量词,有些全称量词命题虽然不含全称 量词,可以根据命题涉及的意义去判断.
14
栏目导航
15
(1)B (2)①②④ [(1)只有 B 选项可判断真假. (2)①不是命题,因为是疑问句不是陈述句; ②④分别是感叹句和祈使句,所以都不是命题; ③⑤是命题,因为它们能判断真假.]
第一章 命题与量词、基本逻辑联结词

§1.2命题与量词、基本逻辑联结词2014高考会这样考 1.以量词为载体,判断命题的真假;2.考查基本逻辑联结词的含义,在与其他知识交汇处命题.复习备考要这样做 1.充分理解逻辑联结词的含义,注意和日常用语的区别;2.对量词的练习要在“含一个量词”框架内进行,不要随意加深;3.注意逻辑与其他知识的交汇.1.命题的概念能够判断真假的语句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示:形如“对M中的所有x,p(x)”的命题,用符号简记为“∀x∈M,p(x)”.3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.(2)存在性命题:含有存在量词的命题.(3)存在性命题的符号表示:形如“存在集合M中的元素x,q(x)”的命题,用符号简记为∃x∈M,q(x).(4)全称命题与存在性命题的否定4.(1)命题中的“且”、“或”、“非”叫做逻辑联结词.(2)命题真值表:[难点正本1.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.2.逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同.如“x∈A或x∈B”,是指:x∈A且x∉B;x∉A且x∈B;x∈A且x∈B三种情况.再如“p真或q 真”是指:p真且q假;p假且q真;p真且q真三种情况.1.下列命题中,所有真命题的序号是________.①5>2且7>4;②3>4或4>3;③2不是无理数.答案①②解析①5>2和7>4都真,故5>2且7>4也真.②3>4假,4>3真,故3>4或4>3真.③2是无理数,故2不是无理数为假命题.点评对含有“或”、“且”、“非”的复合命题的判断,先判断简单命题,再根据真值表判断复合命题.2.已知命题p:∃x∈R,x2+1x2≤2,命题q是命题p的否定,则命题p、q、p∧q、p∨q中是真命题的是________.答案p、p∨q解析x=±1时,p成立,所以p真,q假,p∨q真,p∧q假.3.若命题“∃x∈R,有x2-mx-m<0”是假命题,则实数m的取值范围是________.答案[-4,0]解析“∃x∈R有x2-mx-m<0”是假命题,则“∀x∈R有x2-mx-m≥0”是真命题.即Δ=m2+4m≤0,∴-4≤m≤0.4.(2012·湖北)命题“∃x ∈∁R Q ,x 3∈Q ”的否定是 ( )A .∃x ∁R Q ,x 3∈QB .∃x ∈∁R Q ,x 3QC .∀x ∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3Q答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3Q .命题“∃x ∈∁R Q ,x 3∈Q ”的否定是“∀x ∈∁R Q ,x 3Q ”,故应选D. 5.有四个关于三角函数的命题: p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y p 3:∀x ∈[0,π],1-cos 2x2=sin x p 4:sin x =cos y ⇒x +y =π2其中的假命题是( )A .p 1,p 4B .p 2,p 4C .p 1,p 3D .p 2,p 3答案 A解析 p 1为假命题;对于p 2,令x =y =0,显然有sin(x -y )=sin x -sin y ,即p 2为真命题;对于p 3,由sin 2x =1-cos 2x2,当x ∈[0,π]时,sin x ≥0,sin x =1-cos 2x2.于是可判断p 3为真命题;对于p 4,当x =5π4时,有sin x =cos y =-22,这说明p 4是假命题.题型一 含有逻辑联结词的命题的真假例1 已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4思维启迪:先判断命题p 1、p 2的真假,然后对含逻辑联结词的命题根据真值表判断真假.答案 C解析 命题p 1是真命题,p 2是假命题,故q 1为真,q 2为假,q 3为假,q 4为真. 探究提高 (1)判断含有逻辑联结词的复合命题的真假,关键是对逻辑联结词“且”“或”“非”含义的理解.(2)解决该类问题的基本步骤:①弄清构成复合命题中简单命题p 和q 的真假;②明确其构成形式;③根据复合命题的真假规律判断构成新命题的真假.写出由下列各组命题构成的“p ∨q ”、“p ∧q ”、“綈p ”形式的复合命题,并判断真假:(1)p :1是素数;q :1是方程x 2+2x -3=0的根;(2)p :平行四边形的对角线相等;q :平行四边形的对角线互相垂直;(3)p :方程x 2+x -1=0的两实根的符号相同;q :方程x 2+x -1=0的两实根的绝对值相等.解 (1)p ∨q :1是素数或是方程x 2+2x -3=0的根.真命题. p ∧q :1既是素数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是素数.真命题.(2)p ∨q :平行四边形的对角线相等或互相垂直.假命题. p ∧q :平行四边形的对角相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题.(3)p ∨q :方程x 2+x -1=0的两实根的符号相同或绝对值相等.假命题. p ∧q :方程x 2+x -1=0的两实根的符号相同且绝对值相等.假命题. 綈p :方程x 2+x -1=0的两实根的符号不相同.真命题. 题型二 含有一个量词的命题的否定例2 写出下列命题的否定,并判断其真假: (1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+2x +2≤0; (4)s :至少有一个实数x 使x 3+1=0.思维启迪:否定量词,否定结论,写出命题的否定;判断命题的真假. 解 (1)綈p :∃x ∈R ,x 2-x +14<0,假命题.(2)綈q :至少存在一个正方形不是矩形,假命题. (3)綈r :∀x ∈R ,x 2+2x +2>0,真命题.(4)綈s :∀x ∈R ,x 3+1≠0,假命题.探究提高 全称命题与存在性命题的否定与命题的否定有一定的区别,否定全称命题和存在性命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论.而一般命题的否定只需直接否定结论即可.(1)已知命题p :∀x ∈R ,sin x ≤1,则( )A .綈p :∃x ∈R ,sin x ≥1B .綈p :∀x ∈R ,sin x ≥1C .綈p :∃x ∈R ,sin x >1D .綈p :∀x ∈R ,sin x >1(2)命题p :∃x ∈R,2x +x 2≤1的否定綈p 为__________________________________. 答案 (1)C (2)∀x ∈R,2x +x 2>1 题型三 逻辑联结词与命题真假的应用例3 已知p :方程x 2+mx +1=0有两个不相等的负实数根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若“p ∨q ”为真命题,“p ∧q ”为假命题,求实数m 的取值范围. 思维启迪:判断含有逻辑联结词的命题的真假,关键是判断对应p ,q 的真假,然后 判断“p ∧q ”,“p ∨q ”,“綈p ”的真假.解 p 为真命题⇔⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0⇒m >2;q 为真命题⇔Δ=[4(m -2)]2-4×4×1<0⇒1<m <3.由“p ∨q ”为真命题,“p ∧q ”为假命题,知p 与q 一真一假.当p 真,q 假时,由⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3⇒m ≥3;当p 假,q 真时,由⎩⎪⎨⎪⎧m ≤2,1<m <3⇒1<m ≤2.综上,知实数m 的取值范围是(1,2]∪[3,+∞).探究提高 含有逻辑联结词的命题要先确定构成命题的(一个或两个)命题的真假,求出此时参数成立的条件,再求出含逻辑联结词的命题成立的条件.已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若“p 且q ”为假,“p 或q ”为真,求a 的取值范围. 解 ∵函数y =a x 在R 上单调递增,∴p :a >1. 不等式ax 2-ax +1>0对∀x ∈R 恒成立,且a >0,∴a 2-4a <0,解得0<a <4,∴q :0<a <4.∵“p ∧q ”为假,“p ∨q ”为真,∴p 、q 中必有一真一假.①当p 真,q 假时,⎩⎪⎨⎪⎧a >1a ≥4,得a ≥4.②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤10<a <4,得0<a ≤1.故a 的取值范围为(0,1]∪[4,+∞).借助逻辑联结词求解参数范围问题典例:(12分)已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.审题视角 (1)p 、q 都为真时,分别求出相应的a 的取值范围;(2)用补集的思想,求 出綈p 、綈q 分别对应的a 的取值范围;(3)根据“p 且q ”为假、“p 或q ”为真,确 定p 、q 的真假. 规范解答解 ∵函数y =c x 在R 上单调递减,∴0<c <1. [2分] 即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1.[3分]又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1.[5分]又∵“p 或q ”为真,“p 且q ”为假, ∴p 真q 假或p 假q 真. [6分]①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.[8分] ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.[10分]综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.[12分]第一步:求命题p 、q 对应的参数的范围. 第二步:求命题綈p 、綈q 对应的参数的范围.第三步:根据已知条件构造新命题,如本题构造新命题“p 且q ”或“p 或q ”.第四步:根据新命题的真假,确定参数的范围. 第五步:反思回顾.查看关键点、易错点及解题规范.温馨提醒 解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点.方法与技巧1.要写一个命题的否定,需先分清其是全称命题还是存在性命题,对照否定结构去写,并注意与否命题的区别;对于命题否定的真假,可以直接判定,也可以先判定原命题,再判定其否定.判断命题的真假要注意:全称命题为真需证明,为假举反例即可;存在性命题为真需举一个例子,为假则要证明全称命题为真.2.要把握命题的形成、相互转化,会根据复合命题来判断简单命题的真假. 3.全称命题与存在性命题可以互相转化,即从反面处理,再求其补集. 失误与防范1.p ∨q 为真命题,只需p 、q 有一个为真即可,p ∧q 为真命题,必须p 、q 同时为真. 2.p 或q 的否定:非p 且非q ;p 且q 的否定:非p 或非q . 3.全称命题的否定是存在性命题;存在性命题的否定是全称命题.4.简单逻辑联结词内容的考查注重基础、注重交汇,较多地考查简单逻辑与其他知识的综合问题,要注意其他知识的提取与应用,一般先化简转化命题,再处理关系.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x >0答案 C解析 对于A ,当x =1时,lg x =0,正确;对于B ,当x =π4时,tan x =1,正确;对于C ,当x <0时,x 3<0,错误;对于D ,∀x ∈R,2x >0,正确. 2.(2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 答案 B解析 通过否定原命题得出结论.原命题的否定是“任意一个无理数,它的平方不是有理数”.3.(2012·山东)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假D .p ∨q 为真答案 C解析 p 是假命题,q 是假命题,因此只有C 正确.4.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ,使x 2+2ax +2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是( )A .{a |a ≤-2或a =1}B .{a |a ≥1}C .{a |a ≤-2或1≤a ≤2}D .{a |-2≤a ≤1}答案 A解析 由题意知,p :a ≤1,q :a ≤-2或a ≥1, ∵p 且q 为真命题,∴p 、q 均为真命题, ∴a ≤-2或a =1,故选A. 二、填空题(每小题5分,共15分)5.命题:“∀x ∈R ,e x ≤x ”的否定是__________________.答案 ∃x ∈R ,e x >x6.若命题p :关于x 的不等式ax +b >0的解集是{x |x >-ba },命题q :关于x 的不等式(x-a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”、“p ∨q ”、“綈p ”、“綈q ”中,是真命题的有________. 答案 綈p 、綈q解析 依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“綈p ”为真、“綈q ”为真.7.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“綈q 且p ”为真,则x 的取值范围是____________________.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“綈q 且p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3,所以x 的取值范围是x ≥3或1<x ≤2或x <-3.三、解答题(共22分)8.(10分)写出下列命题的否定,并判断真假: (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数; (3)s :∃x ∈R ,|x |>0.解 (1)綈q :∃x ∈R ,x 是5x -12=0的根,真命题. (2)綈r :每一个质数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.9.(12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果“p 或q ”为真命题,“p 且q ”为假命题,求c 的取值范围.解 由命题p 为真知,0<c <1, 由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若“p 或q ”为真命题,“p 且q ”为假命题, 则p 、q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1. 综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c |0<c ≤12或c ≥1.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2011·安徽)命题“所有能被2整除的整数都是偶数”的否定..是( )A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数 答案 D解析 由于全称命题的否定是存在性命题,本题“所有能被2整除的整数都是偶数”是全称命题,其否定为存在性命题“存在一个能被2整除的整数不是偶数”. 2.(2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是 ( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.3.设有两个命题,p :不等式e x 4+1e x >a 的解集为R ;q :函数f (x )=-(7-3a )x 在R 上是减函数,如果这两个命题中有且只有一个真命题,那么实数a 的取值范围是( ) A .1≤a <2 B .2<a ≤73C .2≤a <73D .1<a ≤2答案 A解析 记A ={a |不等式e x 4+1e x >a 的解集为R }; B ={a |f (x )=-(7-3a )x 在R 上是减函数}.由于函数y =e x 4+1e x 的最小值为1,故A ={a |a <1}. 又因为函数f (x )=-(7-3a )x 在R 上是减函数,故7-3a >1,即a <2,所以B ={a |a <2}.要使这两个命题中有且只有一个真命题,a 的取值范围为[(∁R A )∩B ]∪[(∁R B )∩A ], 而(∁R A )∩B =[1,+∞)∩(-∞,2)=[1,2),(∁R B )∩A =[2,+∞)∩(-∞,1)=∅,因此[(∁R A )∩B ]∪[(∁R B )∩A ]=[1,2),故选A.二、填空题(每小题5分,共15分)4.已知命题p :“∀x ∈R ,∃m ∈R,4x -2x +1+m =0”,若命题綈p 是假命题,则实数m 的取值范围是__________.答案 (-∞,1]解析 若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.5.设p :方程x 2+2mx +1=0有两个不相等的正根,q :方程x 2+2(m -2)x -3m +10=0无实根.则使“p ∨q ”为真,“p ∧q ”为假的实数m 的取值范围是____________. 答案 (-∞,-2]∪[-1,3)解析 设方程x 2+2mx +1=0的两个正根分别为x 1,x 2,则由⎩⎪⎨⎪⎧Δ1=4m 2-4>0x 1+x 2=-2m >0,得m <-1,∴p :m <-1. 由Δ2=4(m -2)2-4(-3m +10)<0知-2<m <3,∴q :-2<m <3.由p ∨q 为真,p ∧q 为假可知,命题p 和q 一真一假,当p 真q 假时,得⎩⎪⎨⎪⎧ m <-1m ≥3或m ≤-2,此时m ≤-2; 当p 假q 真时,得⎩⎪⎨⎪⎧m ≥-1-2<m <3,此时-1≤m <3, ∴m 的取值范围是(-∞,-2]∪[-1,3).6.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧綈q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.三、解答题7.(13分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p 或q ”是假命题,求a 的取值范围.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0,∴x =a 2或x =-a , ∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p 或q ”为真命题时,|a |≤2.∵命题“p 或q ”为假命题,∴a >2或a <-2.即a 的取值范围为{a |a >2或a <-2}.。
课件2:1.1 命题与量词

例1 判断下面的语句是否为命题?若是命题,指出它 的真假。 (1) 空集是任何集合的子集. (2)若整数a是素数,则a是奇数.
(3)对于任意的实数a,都有a2+1>0.
(4)若平面上两条直线不相交,则这两条直线平行.
例1 判断下面的语句是否为命题?若是命题,指出它 的真假。
第一章 常用逻辑用语
1.1 命题与量词
一、命题
1.定义:能判断真假的语句叫做命题. 2.如何判断某个语句是否命题? 首先,要看这个句子的句型.
一般的,陈述句,反意疑问句是命题,疑问句、祈使 句、感叹句都不是命题. 其次,要看能否判断真假,也就是判断其能否成立. 不能判断真假的语句不能叫命题.
特别地:在数学或其他科学技术中的一些猜想仍 是命题. 3.命题的表示方法:
(4)每一个向量都有方向.
(3)全称命题.
x R, x x 1
(4)全称命题. 向量a, a有方向
练习1.用量词“ ”表达下列命题:
(1)实数都能写成小数形式;
XR,x能写成小数形式
(2)凸多边形的外角和等于2π
X {x|x是凸n边形},x的外角和等于2
(3)任一个实数乘以-1都等于它的相反数
x M,p(x)
短语“有一个”或“至少有一个”在陈述中也表示 数量,逻辑中通常叫做存在性量词,并用符号
“ ”表示.含有存在性量词的命题叫做存在性命
题. 定义:2.存在性命题就是某集合中有(存在)一些 元素具有某种性质的命题.
设q(x)是某集合M的有些元素x具有的性质,那么存在性 命题就是形如“存在集合M中的元素x,q(x)”的命题.简
记为:x M,q(x)
命题与量词高一数学精讲课件(人教B版2019)

探究点2 全称量词与全称命题
全称量词
全称量词
读作“任意”
“∀ ”
r(x)是集合M 的所有元素 都具有的性
质
即时训练
探究点3 存在量词与存在量词命题
存在量词
读作“存在”
“”
r(x)是集合M 的某些元素都 具有的性质
即时训练
一个命题可以同时包含全称量词和存在量词以及多个变量
命题与量词
命题与量词
在古希腊时期,数学就已经 开始萌芽.当时有一个著名 的学派,叫毕达哥拉斯学派. 毕达哥拉斯学派提出的著名 命题“万物皆数”是该学派 的哲学基石. 初中我们已经学习过许多命 题,比如“对顶角相等”, 那么什么是命题?这节课我 们一起来探究一下吧.
1.了解命题的有关概念,能判断一个语句是否是命题. 2.理解全称量词、存在量词和全称量词命题、存在量词命题的概念、 表示方法.(重点) 3.掌握全称命题和存在性命题真假性的判定方法. (难点)
两个量词
两种命题
全称量词命题和存在量词命题.
两种命题真假的判断方法 ①推理论证法;②特例验证法.
探究点1 命题的概念
语句(1)、(2)判断一个语句是否是命题吗?
即时训练
(1)(3)(4)(6)
(2)(5)
判断一个命题是假命 题,只需要举一个反 例即可; 判断一个命题为真命 题,需经过严格的推 理论证,在判断时, 要有推理依据. 数学中的定义、定 理、公理和公式都是 真命题.
高中数学第一章常用逻辑用语3.3全称命题与特称命题的否定课件北师大选修21101504107

1
2
3
4
5
2.设x∈Z,集合 A是奇数集,集合 B是偶数集.若命题p:任意x∈A,2x∈B, 则( D ) A.綈p:任意x∈A,2x∈BB.綈p:任意x∉A,2x∉B C.綈p:存在x∉A,2x∈BD.綈p:存在x∈A,2x∉B 解析 命题p:任意x∈A,2x∈B是一个全称命题,其命题的否定綈p应为 存在x∈A,2x∉B,选D.
自主学习
重点突破
自查自纠
知识梳理
自主学习
知识点一
全称命题的否定
全称命题p:任意x∈M,p(x), 它的否定綈p: 存在x0∈M,綈p(x0) . 知识点二 特称命题的否定 特称命题p:存在x0∈M,p(x0), 它的否定綈p: 任意x∈M,綈p(x) . 知识点三 全称命题与特称命题的关系 全称命题的否定是 特称 命题. 特称命题的否定是 全称 命题.
反思与感悟
解析答案
跟踪训练3
已知f(x)=3ax2+6x-1(a∈R).
(1)当a=-3时,求证:对任意x∈R,都有f(x)≤0;
证明 当a=-3时,f(x)=-9x2+6x-1,
∵Δ=36-4×(-9)×(-1)=0,
∴对任意x∈R,都有f(x)≤0.
解析答案
(2)如果对任意x∈R,不等式f(x)≤4x恒成立,求实数a的取值范围.
第一章 §3 全称量词与存在量词
3.3 全称命题与特称命题的否定
学习 目标
1.通过探究数学中一些实例,归纳总结出全称命题与特称命题的否 定在形式上的变化规律. 2.通过例题和习题的学习,能够根据含有一个量词的命题与它们的 否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.
栏目 索引
知识梳理 题型探究 当堂检测
课件3:1.2.1 命题与量词

存在量词命题“存在M中的一个x0,使p(x0)成立”, 符号简记为: x0∈M,p(x0), 读作:“存在一个x0属于M,使p(x0)成立” 含有存在量词的命题,叫做存在量词命题.
课堂探究 语句(1)(2)不能判断真假,不是命题; 语句(3)(4)可以判断真假,是命题.
(1)与(3)区别是对所有的x∈R,x>3; (2)与(4)区别是对任意一个x∈Z,2x+1是整数.
短语“所有的”“任意一个”在逻辑中通常叫做 全称量词,并用符号“ ”表示 含有全称量词的命题,叫做全称量词命题.
解:(1)2是素数,但2不是奇数,所以为假命题. (2)真命题. (3) 2 是无理数,但( 2)2=2是有理数.所以 为假命题.
变式练习 判断下列全称量词命题的真假: (1)每个指数函数都是单调函数; (2)任何实数都有算术平方根; (3) x∈{x|x是有理数},x2是有理数.
解:(1)真命题; (2)-4没有算术平方根,所以为假命题; (3)真命题.
解:(1)∀m∈R,方程x2+x-m=0必有实根.
当m=-1时,方程无实根,是假命题.
(2)∃x∈R,使x2+x+4≤0.
x2+x+4=
+ (x 1)2 2
15 4
>成立,
所以为假命题.
课堂小结 全称量词命题“对M中任意一个x,有p(x)成立”,
符号简记为:x∈M,p(x),
读作:对任意x属于M,有p(x)成立, 含有全称量词的命题,叫做全称量词命题.
1.2.1 命题与量词
学习目标 1.理解全称量词与存在量词的定义及常见形式. 2.能运用全称量词与存在量词解决一些简单问题. 3.全称量词与存在量词及其应用.(重点、难点)
新课标2023版高考数学一轮总复习第1章预备知识第3节全称量词命题与存在量词命题教师用书

第三节全称量词命题与存在量词命题考试要求:能正确地对全称量词命题与存在量词命题进行否定.一、教材概念·结论·性质重现1.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示.含有全称量词的命题叫做全称量词命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用符号“∃”表示.含有存在量词的命题叫做存在量词命题.2.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x∈M,p(x)∃x∈M,p(x)∀x∈M,p(x)1.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定,否则易出错.2.注意“或”“且”的否定,“或”的否定为“且”,“且”的否定为“或”.二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)“∀x∈R,x2≥0”的否定是“∃x∈R,x2<0”.( √)(2)“长方形的对角线相等”是存在量词命题.( ×)(3)“∃x∈R,x2+1=0”为真命题.( ×)(4)写存在量词命题的否定时,存在量词变为全称量词.( √)(5)“∃x∈M,p(x)”与“∀x∈M,p(x)”的真假性相反.( √) 2.已知命题p:∀x>0,总有(x+1)e x>1,则p为( )A.∃x≤0,使得(x+1)e x≤1B.∃x>0,使得(x+1)e x≤1C.∀x>0,使得(x+1)e x≤1D.∀x≤0,使得(x+1)e x≤1B 解析:“∀x >0,总有(x +1)e x >1”的否定是“∃x >0,使得(x +1)e x≤1”. 3.(多选题)下列命题为全称量词命题的是( ) A .奇函数的图象关于原点对称 B .正四棱柱都是平行六面体 C .棱锥仅有一个底面D .存在大于等于3的实数x ,使x 2-2x -3≥0ABC 解析: A ,B ,C 中命题都省略了全称量词“所有”,所以A ,B ,C 都是全称量词命题;D 中命题含有存在量词“存在”,所以D 是存在量词命题.故选ABC .4.(多选题)下列命题是“∃x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3成立 B .对有些x ∈R ,有x 2>3成立 C .任选一个x ∈R ,都有x 2>3成立 D .至少有一个x ∈R ,使得x 2>3成立ABD 解析:原命题为存在量词命题,A ,B ,D 选项均为对应的存在量词命题,是原命题的表述方法,C 为全称量词命题.5.以下四个命题中既是存在量词命题又是真命题的是( ) A .锐角三角形有一个内角是钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2B 解析:锐角三角形的内角都是锐角,所以A 项是假命题;当x =0时,x 2=0,满足x 2≤0,所以B 项既是存在量词命题又是真命题;因为2+(-2)=0不是无理数,所以C项是假命题;对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 项是假命题.考点1 全称量词命题、存在量词命题的否定——基础性1.(2021·南昌测试)命题“∀x ≥0,sin x ≤x ”的否定为( ) A .∃x <0,sin x >x B .∃x ≥0,sin x >xC .∀x ≥0,sin x >xD .∀x <0,sin x ≤xB 解析:原命题是全称量词命题,其否定是存在量词命题.因为否定的是结论而不是条件,所以A 选项错误,B 选项正确.故选B .2.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2D 解析:改变量词,否定结论.所以p 应为“∃x ∈R ,∀n ∈N *,使得n <x 2.”3.(2021·安徽滁州联合质检)命题“∃x ∈R,2x 2<cos x ”的否定为________________. ∀x ∈R,2x 2≥cos x 解析:存在量词命题的否定为全称量词命题,所以命题“∃x ∈R,2x 2<cos x ”的否定为“∀x ∈R,2x 2≥cos x ”.1.解决此类问题一般是先改写量词,再否定结论.2.对于省去量词的命题要结合命题的含义加上量词,再对量词进行改写.考点2 全称量词命题、存在量词命题的真假判断——综合性(1)下列四个命题中的真命题是( )A .∀n ∈R ,n 2≥nB .∃n ∈R ,∀m ∈R ,m ·n =mC .∀n ∈R ,∃m ∈R ,m 2<n D .∀n ∈R ,n 2<nB 解析:对于选项A ,令n =12,即可验证其为假命题;对于选项C ,D ,可令n =-1加以验证,均为假命题.(2)(多选题)已知集合A ={y |y =x 2+2},集合B ={x |y =lg x -3},则下列命题中的真命题是( )A .∃m ∈A ,mB B .∃m ∈B ,m AC .∀m ∈A ,m ∈BD .∀m ∈B ,m ∈AAD解析:因为A={y|y=x2+2}=[2,+∞),B={x|y=lg x-3}=(3,+∞),所以B A,则A,D是真命题.全称量词命题与存在量词命题真假的判断方法命题名称真假判断方法一判断方法二全称量词命题真所有对象使命题为真否定为假假存在一个对象使命题为假否定为真存在量词命题真存在一个对象使命题为真否定为假假所有对象使命题为假否定为真1.(2022·重庆一中模拟)命题p:∀x∈[0,+∞),(log32)x≤1,则( )A.p是假命题,p:∃x∈[0,+∞),(log32)x>1B.p是假命题,p:∀x∈[0,+∞),(log32)x≥1C.p是真命题,p:∃x∈[0,+∞),(log32)x>1D.p是真命题,p:∀x∈[0,+∞),(log32)x≥1C解析:因为0<log32<1,所以∀x∈[0,+∞),(log32)x≤1,所以p是真命题,p:∃x∈[0,+∞),(log32)x>1.2.(多选题)命题p:存在实数x∈R,使得数据1,2,3,x,6的中位数为3.若命题p为真命题,则实数x的取值集合可以为( )A.{3,4,5} B.{x|x>3}C.{x|x≥3} D.{x|3≤x≤6}ABCD解析:根据中位数的定义可知,只需x≥3,则1,2,3,x,6的中位数必为3,选项A,B,C,D中的取值集合均满足x≥3.考点3 全称量词命题、存在量词命题的应用——应用性(1)“∀x∈[-2,1],x2-2a≤0”为真命题的一个充分不必要条件是( )A.a≥0B.a≥1C.a≥2 D.a≥3D解析:“∀x∈[-2,1],x2-2a≤0”为真命题,即2a≥x2在x∈[-2,1]时恒成立,所以2a≥4,所以a≥2,即“∀x∈[-2,1],x2-2a≤0”为真命题的充要条件是a≥2,所以可转化为求“a≥2”的充分不必要条件,即找集合A ={a |a ≥2}的非空真子集,结合选项知故选D .(2)(多选题)(2021·辽宁盘锦模拟改编)使命题“∃x ∈[-1,2),f (x )=-x 2+ax +4≤0”为假命题的充分不必要条件可以为( )A .0≤a <3B .0<a <3C .a <3D .1<a <2BD 解析:若命题p “∃x ∈[-1,2),f (x )=-x 2+ax +4≤0”为假命题,则命题p“∀x ∈[-1,2),f (x )=-x2+ax +4>0”为真命题,则⎩⎪⎨⎪⎧f-1>0,f 2≥0,即⎩⎪⎨⎪⎧-1-a +4>0,-4+2a +4≥0,解得0≤a <3,结合选项知BD 正确.例2(1)改为“∃x ∈[-2,1),x 2-2a ≤0”为真命题,则a 的取值范围为________. AB 解析:“∀x ∈[-2,1],x 2-2a ≤0”为真命题,即2a ≥x 2在x ∈[-2,1]时恒成立,所以2a ≥4,所以a ≥2,即“∀x ∈[-2,1],x 2-2a ≤0”为真命题的充要条件是a ≥2,所以可转化为求“a ≥2”的必要不充分条件.结合选项知选AB .解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.1.命题“存在x ∈R ,使x 2+ax -4a <0为假命题”是命题“-16≤a ≤0”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件A 解析:因为存在x ∈R ,使x 2+ax -4a <0为假命题,所以任意x ∈R ,使x 2+ax -4a ≥0为真命题,则Δ=a 2+16a ≤0,解得-16≤a ≤0.故选A .2.若“∃x ∈(0,+∞),λx >x 2+1”是假命题,则实数λ的取值范围是________. (-∞,2] 解析:因为∃x ∈(0,+∞),λx >x 2+1是假命题,所以∀x ∈(0,+∞),x 2+1≥λx 为真命题,即λ≤x +1x 在(0,+∞)上恒成立.当x ∈(0,+∞)时,x +1x≥2,当且仅当x =1时,等号成立,所以λ≤2.。
第一章1.1命题与量词

题型五 全称命题与存在性命题真假判断
例5 判断下列命题的真假. (1 x∈R,都有x2-x+1>1/2. (2 α,β,使cos(α-β)=cosα-cosβ. (3 x,y∈N,都有x-y∈N. (4 x,y∈Z,使得2x+y=3.
【分析】审题→判断是全称命题,还是存在性命 题→利用数学知识加以判断→得出结论 【解】(1)真命题. ∵x2-x+1-1/2=x2-x+1/2 =(x-1/2)2+1/4≥1/4>0. ∴ x∈R,x2-x+1>1/2恒成立. (2)真命题.例如α=π/4,β=π/2,符合题意.
题型三 命题真假的判断
例3 (1)形如a+6b的数都是无理数; (2)正项等差数列的公差大于0; (3)当m>1/4时,方程mx2-x+1=0无实 数根; (4)能被2整除的数一定能被4整除.
【解】(1)假命题.当a=b=0时,a+6b=0为有理数. (2)假命题.如数列20,17,14,11,8,5,2,它的公差为-3. (3)真命题.当m>1/4时,由于方程mx2-x+1=0的 Δ=1-4m<0,因此方程无实数根. (4)假命题.如数6,能被2整除,但不能被4整除.
变式训练
3.判断下列命题的真假. (1)△ABC中,若∠A>∠B,则sinA> sinB; (2)直线的倾斜角越大,则其斜率也越 大; (3)x=3是方程x2-2x-3=0的根.
解:(1)在△ABC中,由∠A>∠B a>b即2RsinA
>2RsinB,
∴sinA>sinB,即该命题为真命题.
(2)直线的倾斜角的取值范围是[0,π),
变式训练2.指出下列命题的件和结论. (1)当abc=0时,a=0或b=0或c=0. (2)弦的垂直平分线经过圆心,且平分弦所对 的弧. 解:(1)条件“abc=0”,结论“a=0或b=0或 c=0”.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
㈠ 教学目的 理解命题、量词、开句等概念,会做有关练习。 ㈡ 重点和难点 理解概念是重点,难点是量词的理解。 ㈢ 教学方法 让学生提前预习,再重点讲解,用练习加以巩固。 ㈣ 教学过程
一.命题
能够判断真假的句子(包括数学式子)叫 命题。
例如:(1)三角形内角和是1800 ;(2) 2+3=7 ;(3)3ቤተ መጻሕፍቲ ባይዱ2。
解:由x2-2x-3=0可解得: x= -1或x=3, 所以原命题可化简为:
对实数x,x= -1或x=3
所以原命题为假命题。
例2 判断下列命题的真假: (2)如果4-2x>3x-1,那么x<2。
解:由4-2x>3x-1可解得:x<1, 所以原命题可化简为: 如果x<1 ,那么x<2, 所以原命题为真命题。
三.命题真假的判断
判断一个命题为真,就要保证命题对所有的情 况都成立;判断一个命题为假,只要举出一个反例 即可。
例1 判断下列命题的真假:
(1)对实数x,x2>1;
(2)对实数x,x2≥0;
(3) 一个实数x,使x2=1。
对于比较复杂的命题,可以先化简再判断。
例2 判断下列命题的真假:
(1)对实数x,x2-2x-3=0;
正确的句子叫真命题,错误句子的叫假命题。
要防止出现如下错误:正确句子的是命题, 不正确的句子不是命题。
不能判断真假的语句,不是命题。
例如:(1)祝你健康!(2)你会说英语吗? (3)你快离开这里!(4)x-1=0。
二.量词
“存在”()和“任意(”)是两个量词。
“存在”() “至少有一个” 和“任意(”) “所有”