理论力学第六章 刚体的运动

合集下载

理论力学6—刚体的基本运动

理论力学6—刚体的基本运动
34.8
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
1、角速度矢量和角加速度矢量
角速度矢量
dj
ww
dt

大小
角速度矢沿轴线,弯向表示刚体转动的方向。
指向用右手螺旋法则。
w wk
角加速度矢量

dw dw

k k
dt
dt
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
2

例6-6
某定轴转动刚体通过点M0(2,1,3),其角速度矢w 的方向
余弦为0.6,0.48,0.64,角速度 的大小ω=25rad/s 。求:刚体上点
M(10,7,11)的速度矢。
解:角速度矢量
w wn
其中 n (0.6,0.48,0.64)
M点相对于转轴上一点M0的矢径
r rM rM0 10,7,11 2,1,3 8,6,8
Z2=60,Z3=12,Z4=70。(a)求减速箱的总减速比i13 ;(b)如
果n1=3000r/min,求n3.
1
n1
2
n2
3
n3
4
解:求传动比:
n1 n1 n2 Z 2 Z 4
i13
34.8
n3 n2 n3 Z1 Z 3
则有:
n1 3000
n3

86r / min
i13
4 rad
dw dw d
dw



w
dt
d dt
d
dw
w
0.2
d
解:
w
w wdw
0

理论力学06_4刚体平面运动_加速度

理论力学06_4刚体平面运动_加速度

§6.3* 平面运动刚体上点的加速度由于平面运动可以看成是随同基点的牵连平移与绕基点的相对转动的合成运动,于是图形上任一点的加速度可以由加速度合成定理求出。

设已知某瞬时图形内A 点的加速度a A ,图形的角速度为ω,角加速度为α,如图6-13所示。

以A 点为基点,分析图形上任意一点B 的加速度a B 。

因为牵连运动为动坐标系随同基点的平移,故牵连加速度a e =a A 。

相对运动是点B 绕基点A 的转动,故相对加速度a r =a BA ,其中a BA 是点B 绕基点A 的转动加速度。

由式 (5.3.7)可得图6-13 加速度分析的基点法 α (6.3.1) BA A B αα+=由于B 点绕基点A 转动的加速度包括切向加速度和法向加速度a ,故式(6.3.1)可写为t BA a n BAa (6.3.2) n t BA BA A B a a a ++=即平面图形上任意一点的加速度,等于基点的加速度与该点绕基点转动的切向加速度和法向加速度的矢量和。

当基点A 和所求点B 均作曲线运动时,它们的加速度也应分解为切向加速度和法向加速度的矢量和,因此,式(6.3.2)可表示为(6.3.3)n t n t n t BA BA A A B B a a a a a a +++=+在式(6.3.3)中,相对切向加速度与点A 和B 连线方向垂直,相对法向加速度沿点A 和B连线方向从B 指向A ;仅当点A 和B 的运动轨迹已知时,才可以确定点A 和B 的切向加速度a 和及法向加速度和a 。

t BA a n BA a t A t B a n A a n B 在应用式(6.3.2)或(6.3.3)计算平面图形上各点的加速度时,只能求解矢量表达式中的两个要素。

因此在解题时,要注意分析所求问题是否可解。

当问题可解时,将式(6.3.2)或(6.3.3)在平面直角坐标系上投影,即可由两个代数方程联立求得所需的未知量。

例6.3-2:半径为R 的车轮沿直线滚动,某瞬时轮心O 点的速度为v O ,加速度为a O ,如图a 所示。

刚体的简单运动—刚体绕定轴的转动(理论力学)

刚体的简单运动—刚体绕定轴的转动(理论力学)

主轴转动两圈后停止 0
2 02 2
0 10π2 2 4π
负号表示 的转向与主轴转动方向相反,故为减速运动。
小结
1.刚体绕定轴转动 刚体运动时,有上或其扩展部分有两点保持不动,这种运动
为刚体的绕定轴转动。通过两点的直线称为转轴,不在转轴上 的各点都在垂直于转轴的平面内做圆周运动。
2.角速度
三、定轴转动的角速度和角加速度
1、角速度
lim
Δt 0
Δ Δt
d
dt
代数量 正负与转角相同
若已知转动方程 f (t)
f (t)
刚体转动的快慢和方向 单位为 rad/s
2、角加速度
设当t 时刻为 , t +△t 时刻为 +△
角加速度
lim
t 0
t
d
dt
d2
dt2
f (t)
表征角速度变化的快慢 单位:rad/s2 (代数量)
§6-2 刚体绕定轴的转动
一、刚体绕定轴转动
刚体运动时,其上或其扩展部分有两点保持不动, 这种运动为刚体的绕定轴转动。通过两点的直线称为 转轴,不在转轴上的各点都在垂直于转轴的平面内做 圆周运动。
二、转角和转动方程
____ 转角,单位弧度(rad)
=f(t)
转动方程
方向规定: 从Z轴正向看
逆时针为正
f (t) 刚体转动的快慢和方向 单位为 rad/s (代数量)
3.角加速度
f (t)
如果与同号,则转动是加速的;如果与异号,则转动是减
速的。

如果与同号,则转动是加速的; 如果与异号,则转动是减速的。
与同号,转动加速
与异号,转动减速
O

刚体的定轴转动

刚体的定轴转动

角速度是代数量,其正负表示刚体的转向。角速度为正值时表
明转角随时间而增加,刚体作逆时针转动;反之,转角随时间而减
小,刚体作顺时针转动。
角速度的单位是rad/s。工程上还常用每分钟转过的圈数表示刚
体转动的快慢,称为转速,用n表示,单位是r/min。角速度ω与转速
n之间的换算关系为
2n n
60 30
理论力学
刚体的运动\刚体的定轴转动
刚体的定轴转动
刚体运动时,若刚体内或其延伸部分有一直线始终保持不动, 刚体的这种运动称为定轴转动,简称转动。这条保持不动的直线称 为转轴。显然,刚体转动时,刚体内不在转轴上的各点都在垂直于 转轴的平面内作圆周运动,其圆心都在转轴上,圆的半径为该点到 转轴的垂直距离。
刚体的定轴转动在工程实际中随处可见,例如电动机转子的转 动,胶带轮、齿轮的转动等。
目录
刚体的运动\刚体的定轴转动
1.1 转动方程
设某刚体绕固定轴z转动,如图所示,为确定 该刚体在任一瞬时的位置,过转轴z作一固定平 面Ⅰ,再过转轴z作一与刚体固连、随刚体一起 转动的动平面Ⅱ。这样,该刚体在任一瞬时的位
置就可以用动平面Ⅱ与定平面Ⅰ的夹角确定, 角称为刚体的转角。当刚体转动时,转角是时
间t的单值连续函数,即 (t)
上式称为刚体的转动方程。若转动方程已知,则刚体在任一瞬时的 位置就确定了。因此,转动方程反映了刚体转动的规律。
转角是一个代数量,其正负号的规定如下:从转轴z的正端向 负端看去,逆时针转为正,反之为负。转角的单位是rad。
目录
刚体的运动\刚体的定轴转动
【例6.2】已知汽轮机在启动时主动轴的转动方程为t3,式中 的单位是rad,t的单位是s,求t=3s时该轴的角速度和角加速度。

理论力学课后习题答案-第6章--刚体的平面运动分析

理论力学课后习题答案-第6章--刚体的平面运动分析

理论力学课后习题答案-第6章--刚体的平面运动分析第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。

试求动齿轮以圆心A 为基点的平面运动方程。

解:ϕc o s )(r R x A += (1) ϕsin )(r R y A+= (2)α为常数,当t = 0时,0ω=0ϕ= 0 221t αϕ= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R =ϕθr R =, ϕϕrrR A+=(4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R tr R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。

试以杆与铅垂线的夹角θ 表示杆的角速度。

解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。

作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。

则角速度杆AB习题6-1图A BCv 0hθ 习题6-2图 P ωAv CA BC v oh θ 习题6-2解图为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。

试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。

解:Rv R v A A ==ωRv R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。

设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。

理论力学运动学知识点总结

理论力学运动学知识点总结

理论力学运动学知识点总结第一篇:理论力学运动学知识点总结运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

• 角速度ω表示刚体转动快慢程度和转向,是代数量,以用矢量表示。

,当α与ω。

角速度也可• 角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α 与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示。

• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

• 传动比。

一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。

• 绝对运动:动点相对于定参考系的运动;• 相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。

2.点的速度合成定理。

• 绝对速度:动点相对于定参考系运动的速度;• 相对速度:动点相对于动参考系运动的速度;• 牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。

3.点的加速度合成定理。

• 绝对加速度:动点相对于定参考系运动的加速度;• 相对加速度:动点相对于动参考系运动的加速度;• 牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;• 科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。

• 当动参考系作平移或 = 0,或与平行时,= 0。

刚体的简单运动—转动刚体内各点的速度和加速度(理论力学)

二、角加速度 与an ,at的关系
设角加速度如图所示
A MO
O
切向加速度 at dv d (R) R d R (+)
dt dt
dt
R
an
v
at
即:转动刚体内任一点的切向加速度(又称转动加 速度)的大小,等于刚体的角加速度与该点到轴线
M
B
垂直距离的乘积。
它的方向由角加速度的符号决定,当是正值时,它沿圆周的切线,
[例]半径R=0.2m的圆轮绕定轴O的转动方程 t 2 4t ,单位为弧度。 求t=1s时,轮缘上任一点M的速度和加速度。如在此轮缘上绕一柔软而不
可伸长的绳子并在绳端悬一物体A,求当t=1s时,物体A的速度和加速度。 解:圆轮在任一瞬时的角速度和角加速度为
d 2t 4
dt
d2 2
• ①滑轮3s内的转数; • ②重物B在3s内的行程;
• ③重物B在t=3s时的速度;
• ④滑轮边上C点在初瞬时的加速度;
• ⑤滑轮边上C点在t=3s时的加速度。
解:① 因为绳子不可以伸长,所以有
C aA 1m/s2
aCt 1 2 rad/s2
R 0.5
( )常数
vC
vA
1.5m /s, 0 vC
4.5m /s2
a (at )2 (an )2 12 4.52 4.61 m/s2
C
C
C
tan aCt 1 0.222, 12.5
aCn 4.5
⑤ t=3s 时,
at a
1m/s2,a n
R 2
2
0.5 9
40.5m/s2
a 12 40.52 40.51m/s2,tan 1 0.0247, 1.41 C

理论力学6—刚体的基本运动分析


6.1 刚体的平行移动
平动的实例
夹 板 锤 的 锤 头
6.1 刚体的平行移动
2. 平动的特点
定理:当刚体作平动时,刚体内所有各点的轨迹形状完 全相同,而且在每一瞬时,刚体各点的速度相等,各点 的加速度也相等。 证明:
rA rB BA
◆速度 刚体平动时,刚体内任一线段AB 的长度和方向都保持不变。 因而 x


a a a R w
2 2 n 2
4
a tan 2 an w
( Rw ) 2 an Rw 2 R v2
即:转动刚体内任一点的法向加速度(又称向心加速度)的 大小,等于刚体角速度的平方与该点到轴线的垂直距离的 乘积,它的方向与速度垂直并指向轴线。
6.3 转动刚体内各点的速度和加速度
如果ω与同号,角速度的绝对 值增加,刚体作加速转动,这 时点的切向加速度 aτ 与速度 v 的指向相同。 如果ω与异号,刚体作减速转 动,aτ与v的指向相反。 点的全加速度为:
6.1 刚体的平行移动
刚体的两种最简单的运动是平行移动和定轴转动。以后可 以看到,刚体的更复杂的运动可以看成由这两种运动的合 成。因此,这两种运动也称为刚体的基本运动。
1. 刚体的平动
在运动过程中,刚 体上任意一条直线 都与其初始位置保 持平行。具有这种 特征的刚体运动, 称为刚体的平行移 动,简称为平动。
6.3 转动刚体内各点的速度和加速度
当刚体绕定轴转动时,刚体内任意一点都作圆周运动,圆心在 轴线上,圆周所在的平面与轴线垂直,圆周的半径 R 等于该点 到轴线的垂直距离。 由于点M绕点O作圆周运动,用自然法表示。点M的弧坐标为
s Rj
动点速度的大小为
ds dj v R Rw dt dt

理论力学中的刚体运动与力学参数计算

理论力学中的刚体运动与力学参数计算理论力学是力学的基础理论之一,研究物体在力的作用下的运动规律以及相关力学参数的计算。

刚体运动是理论力学研究的重要内容之一,刚体是指在外力作用下,物体内部各部分的相对位置保持不变的物体。

本文将针对理论力学中的刚体运动进行探讨,并介绍相关的力学参数计算方法。

一、刚体运动的类型刚体运动主要包括平动和转动两种类型。

平动是指刚体的质心沿直线轨迹运动,质心速度相等。

而转动是指刚体围绕某一轴旋转,各点角速度相等,且轴上任意两点连线垂直于轴。

根据刚体的运动类型,可以采用不同的方法进行力学参数的计算。

二、平动刚体运动的力学参数计算1. 速度:平动刚体的速度由质心速度来表示,质心速度的计算公式为v = Δx/Δt,其中Δx为质心位置变化的距离,Δt为质心位置变化所经过的时间。

2. 加速度:平动刚体的加速度由质心加速度来表示,质心加速度的计算公式为a = Δv/Δt,其中Δv为质心速度变化的差值,Δt为质心速度变化所经过的时间。

3. 质量:平动刚体的质量常用m来表示,可以通过测量质心处的物体质量来得到,计算公式为m = F/g,其中F为物体所受合力的大小,g为重力加速度。

三、转动刚体运动的力学参数计算1. 角速度:转动刚体的角速度由角位移与时间的比值来表示,角速度的计算公式为ω = Δθ/Δt,其中Δθ为角位移的变化值,Δt为变化所经过的时间。

2. 角加速度:转动刚体的角加速度由角速度变化的差值与时间变化量的比值来表示,角加速度的计算公式为α = Δω/Δt,其中Δω为角速度的变化差值,Δt为角速度变化所经过的时间。

3. 转动惯量:转动刚体的转动惯量常用I来表示,转动惯量决定了物体在旋转运动中的惯性大小。

转动惯量的计算公式为I = ΣmiRi^2,其中mi为物体质点的质量,Ri为质点到转轴的距离。

四、力学参数计算实例以平动刚体为例,假设一个质量为m的物体受到一个水平方向的恒定力F作用,求该物体在t时间后的速度v。

清华理论力学课后答案6

题 6-7 图 3
vE 10 = 3 = 5.77 rad/s , CE 3
r3 = r1 + 2r2 ,可得轮 1 的角速度 v r +r (顺时针) ω1 = M = 1 2 ω4 = 12ω4 , r1 r1
轮 1 的转速为 (顺时针). n1 = 12n4 = 10800 r/ min ,
kh da
习题解答
作图示几何关系,图中 v A = v ,解得
解法二:在直角三角形△ACO 中,
sin ϑ =
̇ cosϑ = − R x ̇ ϑ x2 ̇ = v, x = R sin ϑ ,解得 AB 杆的角速度为 其中, x
2 ̇ = − sin ϑ v , ϑ cos ϑ R (负号表示角速度转向与 ϑ 角增大的方向相反,即逆时针)
(d) (e) =
再选定销钉 B 为动点,摇杆为动系,如图(c) ,有
a B = aen + aet + ar + ac
由式(d),(e)得 大小: 方向: 向 BO 轴上投影 解出 ae = aBO − ac ,于是摇杆的角加速度为
τ n
a
n BO
a
n e
+
a
t e
+
a r + ac

2 RωO
O1B ⋅ ω 2 O1
其中 ae = aC′ = a A + a 大小: 方向: ? √
t c ′A

aB
=
aA

+

杆的角速度为 ω AB =
vA = 1 rad/s ,而 C 点的牵连速度为 C AB A
t a BA
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转角是一个代数量,其正负号的规定如下:从转轴z的正端向 负端看去,逆时针转为正,反之为负。转角的单位是rad。 目录
第六章 刚体的运动\刚体的定轴转动
6.2.2 角速度
角速度是反映刚体转动快慢的物理量。设在瞬t刚体的转角为, 经时间间隔 t,转角变为 + , 称为角位移。 / t *称 为刚体在t 时间间隔内的平均角速度,当t 趋于零时,即得刚体在 t瞬时的角速度为 d * lim lim
第六章 刚体的运动\刚体的定轴转动
6.2.3 角加速度
角加速度是反映刚体转动时角速度变化快慢的物理量。设在瞬时t 刚体的角速度为,经时间间隔t ,角速度改变了 , /t*称 为刚体在t时间间隔内的平均角加速度,当t 趋于零时,即得刚体 在t瞬时的角加速度为 d d 2 lim * lim 2
上两式表明,在任一瞬时A、B两点的速度相同,加速度也相同。 由于A、B两点是平移刚体上的任意两点,故可得结论:刚体平 移时其上各点的轨迹形状完全相同且互相平行,在同一瞬时各点的 速度和加速度都相同。 根据上述结论,刚体的平移可以用刚体内任意一点的运动来代 替。这样,刚体的平移问题就归结为上一章中已经研究过的点的运 动问题。 目录
目录
第六章 刚体的运动\刚体的平行移动
下面研究刚体平移时其上各点的轨迹、速度和加速度之间的关 系。 z A1 A2 A3 在平移刚体上任选一条直线AB,其 A 上A、B两点的轨迹及AB在不同瞬时t1、t2、 B1 B2 B3 B t3…的位置A1B1、A2B2,、A3B3、…如图所 O 示。由刚体及刚体平移的定义知,这些 y 线段都彼此平行且等长, 故四边形 x A1B1B2A2、 A2B2B3A3、…均为平行四边形 。显然,将折线A1A2A3… 沿AB方向移动AB一段距离后,便可与折线B1B2B3…逐点重合。当t1、 t2、t3、…无限接近时,折线A1A2A3…的极限就是A点的轨迹,而折 线B1B2B3…的极限就是B点的轨迹。由此可知,平移刚体上任意两 点的 的形状都相同,且彼此平行。
t 0 t 0
t
dt
上式表明, 刚体定轴转动的角速度等于转角对时间的一阶导数。 角速度是代数量,其正负表示刚体的转向。角速度为正值时表 明转角随时间而增加,刚体作逆时针转动;反之,转角随时间而减 小,刚体作顺时针转动。 角速度的单位是rad/s。工程上还常用每分钟转过的圈数表示刚 体转动的快慢,称为转速,用n表示,单位是r/min。角速度ω与转速 n之间的换算关系为 2 nπ nπ 60 30 目录
第六章 刚体的运动\刚体的定轴转动
6.2 刚体的定轴转动
刚体运动时,若刚体内或其延伸部分有一直线始终保持不动, 刚体的这种运动称为定轴转动,简称转动。这条保持不动的直线称 为转轴。显然,刚体转动时,刚体内不在转轴上的各点都在垂直于 转轴的平面内作圆周运动,其圆心都在转轴上,圆的半径为该点到 转轴的垂直距离。 刚体的定轴转动在工程实际中随处可见,例如电动机转子的转 动,胶带轮、齿轮的转动等。
目录
第六章 刚体的运动\刚体的定轴转动
6.2.1 转动方程
设某刚体绕固定轴z转动,如图所示,为确定 该刚体在任一瞬时的位置,过转轴z作一固定平 面Ⅰ,再过转轴z作一与刚体固连、随刚体一起 转动的动平面Ⅱ。这样,该刚体在任一瞬时的位 置就可以用动平面Ⅱ与定平面Ⅰ的夹角确定, 角称为刚体的转角。当刚体转动时,转角是时 间t的单值连续函数,即 (t ) 上式称为刚体的转动方程。若转动方程已知,则刚体在任一瞬时的 位置就确定了。因此,转动方程反映了刚体转动的规律。
目录
第六章 刚体的运动\刚体的平行移动 平移刚体上A、B两点的位置可用 矢量rA,、rB表示,且有
rA rB rBA
z
vA A1 A2 A 3
将上式两边对时间t求一阶和二阶导数, 注意到矢量rBA的大小和方向始终不变, 是常矢量,得 v A vB a A aB
rA O
x
A r vB AB B1 Biblioteka 2 B3 B aA rB aB y
第六章 刚体的运动\刚体的定轴转动
yM = 0
这就是M点的运动方程。M点沿x轴作直线运动,其速度和加速度分 别为 dxM vM vMx r sin t dt dv aM aMx Mx r 2 cos t dt 这也就是所求平移滑杆的速度和加速度。当其为正时,指向x轴正 向,为负时,指向x轴负向。 目录
t 0 t 0
t
dt
dt
上式表明,刚体定轴转动的角加速度等于角速度对时间的一阶导数, 或等于转角对时间的二阶导数。
角加速度是代数量,当为正时,的代数值随时间增大;反之, 则减小。当 与同号时,角速度的绝对值随时间增大,刚体加速 转动;当与异号时,角速度的绝对值随时间减小,刚体减速转动。 角加速度的单位是rad/s2。 目录
第六章 刚体的运动\刚体的平行移动
6.1 刚体的平行移动
刚体在运动过程中如果其上任一直线始终与其原来的位置保持 平行,则刚体的这种运动称为平行移动,简称平移。例如,车厢在 直线轨道上的运动,摆动式送料机上送料槽的运动等都是平移的实 例。其中车厢上各点的运动轨迹是直线,刚体的这种平移称为直线 平移,送料槽及平行连杆上各点的运动轨迹是曲线,称为曲线平移。
第六章 刚体的运动\刚体的平行移动
【例6.1】 曲柄滑杆机构如图所示,当曲柄OA绕定轴O转动时, 通过滑杆槽中的滑块A带动滑杆在水平滑道中往复移动。若曲柄OA 长为r,曲柄与x轴正向的夹角=t(其中 为常数),求滑杆运动 的速度和加速度。
目录
第六章 刚体的运动\刚体的平行移动 【解】 滑杆的运动显然是直线平移, 现选滑杆上滑杆槽的中点M来代表整个 滑杆的运动,在图示直角坐标系Oxy中, M点在任意瞬时的位置坐标为 x M r cos r cos t
相关文档
最新文档