1.3.1函数的单调性和导数

合集下载

1.3.1函数的单调性与导数

1.3.1函数的单调性与导数

= cos x − x sin x − cos x = − x sin x y y = sin x
o
π


x
sin 如图,当x ∈ (π ,2π )时, x < 0,∴− x sin x > 0,
即:y ' > 0
∴该函数在(π ,2π )上为增函数。
已知导函数的下列信息: 已知导函数的下列信息:
o x
2
的单调性。 的单调性。
y
y = x2
的图象, 的函数 h(t ) = −4.9t 2 + 6.5t +10 的图象 图(2)表示高台跳水运 表示高台跳水运
观 下图(1)表示高台跳水运动员的高度 下图 表示高台跳水运动员的高度 h 随时间 t 变化 察:
的图象. 动员的速度 v 随时间 t 变化的函数 v(t ) = −9.8t + 6.5的图象 运动员从起跳到最高点, 运动员从起跳到最高点 以及从最高点到入水这两段时间 v 的运动状态有什么区别? 的运动状态有什么区别 h ①运动员从起跳到 (1) (2) 最高点, 最高点,离水面的高度h t
(04年全国理 年全国理) 年全国理
函数y = x cos x − sin x在下面哪个区间内是增函数( B ) π 3π 3π 5π A. ( , ) B. (π ,2π ) C. ( , ) D. (2π ,3π ) 2 2 2 2
解: y ' = x 'cos x + x(cos x)'− (sin x)'
1.3 导数在研究函数中的应用
判断函数单调性有哪些方法? 判断函数单调性有哪些方法?
定义法 图象法
y = x3 − 3x ?

05《函数的单调性与导数》02

05《函数的单调性与导数》02

1 3 2 例题5:求函数f ( x) = − ax + x +1(a ≤ 0)的单调区间 3
练习 b 求函数f ( x) = x + (b > 0)的单调区间 x
y
y = f ( x)
1 2 x o
y
y = f ( x)
1 2 x
y
y = f '( x)
2 x
o
(A)
y
(B)
y
o
y = f ( x)
2 1 x
y = f ( x)
x
o
o 1 2
(C)
(D)
ቤተ መጻሕፍቲ ባይዱ
已知f (x)是f(x)的导函数 的导函数, 已知f/(x)是f(x)的导函数, (x)的图像如图所示 那么f(x) 的图像如图所示, f/(x)的图像如图所示,那么f(x) 的图像只可能是
1.3.1 函数的单调性与导数 第二课时
复习提问: 复习提问:
1.函数的导数与函数单调性的关系 1.函数的导数与函数单调性的关系
2.运用导数确定函数的单调性的方法步骤 2.运用导数确定函数的单调性的方法步骤
1.函数的导数与函数单调性的关系 函数的导数与函数单调性的关系
在某个区间( 在某个区间(a,b)内,如果 f ′( x) > 0 ,那么函数 在这个区间内单调递增 y = f (x)在这个区间内单调递增;; 如果 f ′( x) < 0,那 么函数 y = 在这个区间内单调递减. f (x)在这个区间内单调递减.
练习:求以下函数的单调区间: 练习 求以下函数的单调区间: 求以下函数的单调区间
1. f ( x) = 2 x + 3 x − 12 x + 1

函数单调性与导数教案

函数单调性与导数教案

1.3.1函数的单调性与导数【三维目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间过程与方法:1.通过本节的学习,掌握用导数研究单调性的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想。

情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。

【教学重点难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。

教学难点:探索函数的单调性与导数的关系。

【教 具】多媒体 【教学方法】问题启发式 【教学过程】 一.复习回顾复习 1:导数的几何意义复习2:函数单调性的定义,判断单调性的方法,(图像法,定义法)问题提出:判断y=x 2的单调性,如何进行(分别用图像法,定义法完成)那么如何判断();,0,sin )(π∈-=x x x x f 的单调性呢引导学生图像法,定义去尝试发觉有困难,引出课题:板书课题:函数的单调性与导数二.新知探究探究任务一:函数单调性与其导数的关系:问题1:如图(1)表示高台跳水运动员的高度h 随时间t 变化的函数105.69.4)(2++-=t t t h 的图像,图(2)表示高台跳水运动员的速度5.68.9)(')(+-==t t h t V h 的图像.通过观察图像, 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别此时你能发现)(')(t h t h 和这两个函数图像有什么联系吗启发:函数)('t h 在(0,a)上是大于0,函数)(t h 在(0,a)上有何特点呢函数)('t h 在(a ,b)上是小于0,那么函数)(t h 在(a,b)上有何特点呢问题2:观察图(1)~图(4),探讨函数与其导函数是否也存在问题(1)的关系呢问题3:通过对问题1和问题2的观察,你能得到原函数的单调性与其导函数的正负号有何关系你能得到怎样的结论(形成初步结论,板书结论:函数的单调性与导数的关系:在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.) 问题4:上述结论主要是通过观察得到的,你能结合导数的几何意义为切线的斜率,你能从这个角度给予说明吗探究任务二:()0'=x f 与函数单调性的关系:问题5:若函数()x f 的导数()0'=x f ,那么()x f 会是一个什么函数呢(板书:特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常值函数.)问题6:平时我们遇到很多需要数形结合的题目,那么现在我们知道了导数的正负能帮助我们判断函数的单调性,那么我们能否利用导数信息画出函数的大致图像呢例1:已知某函数的导函数的下列信息:当;0)('41><<x f x 时,当;0)('1,4<<>x f x x 时,或 当.0)('1,4===x f x x 时,或试画出函数()x f 图像的大致形状.跟踪练习1、设()y f x '=是函数()y f x =的导数, ()y f x '=的 图象如图所示, 则()y f x =的图象最有可能是( )问题7:根据我们得到的导数与单调性之间关系的结论,你能否利用此结论来求函数的单调区间呢例3:判断下列函数的单调性,并求出单调区间:(1)();,0,sin )(π∈-=x x x x f (2);12432)(23+-+=x x x x f (3);3)(3x x x f +=(4);32)(2--=x x x f (5)f(x)=x +ln x(对于(2)让学生课后探究尝试单调性的定义法和图象法)问:你对利用导数去研究函数的单调性有什么看法你能总结出利用导数求单调区间的步骤吗(简单易行)(板书“求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域;(2)求导数''()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间.问题8:导数能帮助我们简洁的求出单调区间,画出大致图象,但我们知道就是递增(递减)也有快与慢的区别,在导数上如何体现呢下面我们就来看一下下面这个问题例3.如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:在导数几何意义那节我们就感受了增加与减少也由快慢之分,那么我们以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如右图, 函数()y f x =的图象 ,在(0,)b 或(,0)a 内的图象“陡峭”, 在(,)b +∞ 或(,)a -∞ 内的图象平缓.(跟踪练习)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是( )三,课堂练习1.确定下列函数的单调区间(1)y =xe x - (2)y =3x -x 3 x x xf ln 23)()3(2-=四,课堂小结1.函数导数与单调性的关系:若函数y =f (x )在某个区间内可导, 如果f ′(x )>0, 则f (x )为增函数;如果f ′(x)<0, 则f (x )为减函数.2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.五,作业设计 课本98页,A 组1,2】。

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.3 1.3.1 函数的单调性与导数

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.3 1.3.1 函数的单调性与导数

1
自 测 自 评
1 2 4.函数 y= x -ln x 的单调递减区间为( 2 A.(-1,1] C.[1,+∞) B.(0,1] D.(0,+∞)
)
栏 目 链 接
答案:B
栏 目 链 接
题型1
求函数的单调区间
例1 求下列函数的单调区间: (1)f(x)=ax2+bx+c(a>0); (2)f(x)=3x2-2ln x.
栏 目 链 接
题型2
证明函数的单调性
例2 求证:函数f(x)=ex-x+1在(0,+∞)内是增函数,
在(-∞,0)内是减函数.
栏 目 链 接
分析:先求导数,再推证在该区间内导数恒大于零或 恒小于零,即可证明函数单调性问题.
证明:由f(x)=ex-x+1,得f′(x)=ex-1. 当x∈(0,+∞)时,ex-1>0,即f′(x)>0,
跟 踪 训 练
1.求下列函数的单调区间: (1)f(x)=x4-2x2+3; ex (2)f(x)= . x-2
栏 目 链 接
解析:(1)函数 f(x) 的定义域为 R. f′(x)=4x3-4x=4x(x2-1)=4x(x+1)(x-1). 令 f′(x)>0,则 4x(x+1)(x-1)>0, 解得-1<x<0 或 x>1, 所以函数 f(x)的单调递增区间 为(-1,0)和(1,+∞).
栏 目 链 接
∴f(x)在(0,+∞)内是增函数.
当x∈(-∞,0)时,ex-1<0,f′(x)<0, ∴f(x)在(-∞,0)内是减函数.
点评: 函数 f(x) 在某一区间上 f′(x) > 0 是 f(x) 是增函
数的充分不必要条件,若在此区间内有有限个点使f′(x) =0,f(x)在该区间内为增函数,因此,在证明f(x)在给 定区间内是增函数时,证明f′(x)≥0(但f′(x)=0不恒成立) 即可.

1.3.1函数的单调性与导数.

1.3.1函数的单调性与导数.

1.在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的 过程中,只能在定义域内通过讨论导数的符号,来判断函数的单调区间. 2.在对函数划分单调区间时,除了必须确定使导数等于零的点外,还要注意定 义区间内的不连续点或不可导点. 3.注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充 分条件.如f(x)=x3是R上的可导函数,也是R上的单调递增函数,但当x=0 时,f′(x)=0.
27
金太阳新课标资源网 老师都说好!
28

金太阳新课标资源网 老师都说好!
[例3] 已知x>1,求证:x>ln(1+x).
[分析]
设 f(x)=x-ln(1+x), 只需证得 f(x)在(1, +∞)
1 x 上的函数值恒大于零即可,根据 f′(x)=1- = 1+x 1+x >0(x>1), f(x)在(1, 得 +∞)上是增函数, 故当 x>1 时, f(x)>f(1) =1-ln2>0 恒成立,则原式得证.
11
金太阳新课标资源网 老师都说好!
12
金太阳新课标资源网 老师都说好!
1.函数y=f(x)在区间(a,b)内的单调性与导数的关系 如果f′(x)>0,那么函数y=f(x)在这个区间内 单调递增 ;如果f′(x)<0,那么函数y=f(x) 在这个区间内 单调递减 .如果f′(x)=0,那么函数y=f(x)在这个区间内为 . 常数函数 2.求函数单调区间的步骤 (1)确定f(x)的定义域; (2)求导数f′(x); (3)由f′(x)>0(或f′(x)<0)解出相应的x的范围.当f′(x)>0时,f(x)在相应区间上是 ;当f′(x)<0时,f(x)在相应区间上是 .

初中数学:1.3.1函数的单调性与导数

初中数学:1.3.1函数的单调性与导数

练习
判断下列函数的单调性, 并求出单调区间:
例3 如图, 水以常速(即单位时间内注入水的体积相同)注 入下面四种底面积相同的容器中, 请分别找出与各容器对应 的水的高度h与时间t的函数关系图象.
h
h
h
h
O
t
(A)
O
t
(B)
O
t
(C)
O
t
(D)
一般地, 如果一个函数在某一范围内导数 的绝对值较大, 那么函数在这个范围内变化得 快, 这时, 函数的图象就比较“陡峭”(向上或 向下); 反之, 函数的图象就“平缓”一些.
可知 在此区
间内单调递减;
y
当 x = 4 , 或 x = 1时,
综上, 函数 图象
O1
4
的大致形状如右图所示.
x
题2 判断下列函数的单调性, 并求出单调区间:
解: (1) 因为
, 所以
因此, 函数 (2) 因为

上单调递增.
, 所以

, 即 时, 函数

, 即 时, 函数
单调递增; 单调递减.
题2 判断下列函数的单调性, 并求出单调区间:
也能使f(x)在这个区间上单调,
所以对于能否取到等号的问题需要单独验证
增例2:
本题用到一个重要的转化:
例3:方程根的问题 求证:方程
只有一个根。
作业:
已知函数f(x)=ax³+3x²-x+1在R上是减函数, 求a的取值范围。
解:

内是减函数.
由 的递减区间是 函数.
, 解得 , 即函数
, 所以函数

内是减
一、求参数的取值范围

1.3.1函数的单调性与导数

1.3.1函数的单调性与导数
已知函数f(x)=ax³ +3x² -x+1在R上是减函数, 求a的取值范围。 解:f(x)=ax³ +3x² -x+1在R上是减函数,
∴f’(x)=3ax2+6x-1≤0在R上恒成立,
∴a<0且△=36+12a≤0,
∴a ≤-3
玉林市一中高二数学组
练习2 已知函数f (x )= 2ax - x 3,x (0, 1],a 0, 若f (x )在(0, 1]上是增函数,求a的取值范围。
'(x)>0(或<0) 但由f(xf )在这个区间上单调递增(递减) 而仅仅得到 是不够的。还有可 能导数等于0也能使f(x)在这个区间上单调,
本题用到一个重要的转化: 所以对于能否取到等号的问题需要单独验证
m≥f(x)恒成立 m f (x)max m f (x)恒成立 m f (x)min
玉林市一中高二数学组
2.用定义证明函数的单调性的一般步骤: 取值→作差→变形→定号→下结论 3. 判断函数单调性有哪些方法? 定义法
图象法
玉林市一中高二数学组
思考:那么如何求出下列函数的单调性呢? (1)f(x)=2x3-6x2+7 (2)f(x)=ex-x+1 (3)f(x)=sinx-x 发现问题:用单调性定义讨论函数单调性虽然
分析:
当x 3或x 2时,f '( x ) 0; f ( x )在此区间递增 当x 3或x 2时,f '( x ) 0. f ( x )图象在此两处
附近几乎没有升降
试画出函数
f ( x ) 图象的大致形状。
变化,切线平行x轴
y f ( x)
y A B

高中数学_函数单调性与导数教学设计学情分析教材分析课后反思

高中数学_函数单调性与导数教学设计学情分析教材分析课后反思

1.3.1函数的单调性与导数(第二课时)教学设计【教学目标】1.知识与能力:会利用导数解决函数的单调性及单调区间。

会求单调区间,会讨论含参函数单调性2.过程与方法:通过利用导数研究单调性问题的探索过程,体会从特殊到一般的、数形结合的研究方法。

3.情感态度与价值观:通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,同时通过学生动手、观察、思考、总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。

通过导数研究单调性的步骤的形成和使用,使得学生认识到利用导数解决一些函数(尤其是三次、三次以上的多项式函数)的问题,因而认识到导数的实用价值。

【教学重点和难点】对于本节课学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由特殊到一般、数到形、直观到抽象的转变,对学生是比较困难的。

根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。

教学重点:1.利用导数研究函数的单调性,求函数的单调区间.(重点)2.利用数形结合思想理解导函数与函数单调性之间的关系,及单调性的逆用.(难点)3.含参数的函数讨论单调性(难点)【教学设计思路】现代教学观念要求学生从“学会”向“会学”转变,本节可从单调性与导数的关系的发现到应用都有意识营造一个较为自由的空间,让学生能主动的去观察、猜测、发现、验证,积极的动手、动口、动脑,使学生在学知识同时形成思想、方法。

整个教学过程突出了三个注重:1、注重学生参与知识的形成过程,体验应用数学知识解决简单数学问题的乐趣。

2、注重师生、生生间的互相协作、共同提高。

3、注重知能统一,让学生获得知识同时,掌握方法,灵活应用。

根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图像,会根据单调性求字母范围。

教学过程:(一)复习回顾,温故知新让学生填写导数公式,运算法则,复合函数求导法则(利用选号程序,挑选两名幸运的同学回答,可提升学生注意力)设计意图:通过复习回顾,加深对公式的记忆和理解,尤其是运算法则,复合函数求导公式的理解,有利于本节熟练应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 3.1 函数的单调性和导数课前预习学案一、预习目标1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的步骤。

二、预习内容1.利用导数的符号来判断函数单调性: 一般地,设函数()y f x =在某个区间可导,如果在这个区间内'()0f x >,则()y f x =为这个区间内的 ; 如果在这个区间内'()0f x <,则()y f x =为这个区间内的 。

思考:(1)若f '(x )>0是f (x )在此区间上为增函数的什么条件?回答:提示: f (x )=x 3,在R 上是单调递增函数,它的导数恒>0吗? (2)若f '(x ) =0在某个区间内恒成立,f (x )是什么函数 ?若某个区间内恒有f '(x )=0,则f (x )为 函数.2.利用导数确定函数的单调性的步骤:(1) 确定函数f (x )的定义域; (2) 求出函数的导数;(3) 解不等式f '(x )>0,得函数的单调递增区间; 解不等式f '(x )<0,得函数的单调递减区间.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一.学习目标:1了解可导函数的单调性与其导数的关系.2掌握利用导数判断函数单调性的方法.学习重点:利用导数符号判断一个函数在其定义区间内的单调性. 二、学习过程 【引 例】1.确定函数243=-+y x x 在哪个区间内是增函数?在哪个区间内是减函数?解答:, 问 1)、为什么243=-+y x x 在(,2)-∞上是减函数,在(2,)+∞上是增函数? 解答:,2)、研究函数的单调区间你有哪些方法? 解答:, 2、确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数?哪个区间内是减函数? 解答:, 【探 究】我们知道函数的图象能直观的反映函数的变化情况,下面通过函数的图象规律来研究。

研究二次函数243=-+y x x 的图象;(1) 画出二次函数243=-+y x x 的图象,研究它的单调性。

(2) 提问:以前我们是通过二次函数图象的哪些特征来研究它的单调性的? 回答:(3) 我们最近研究的哪个知识(通过图象的哪个量)能反映函数的变化规律?观察图像,能得到什么结论 回答:【新课讲解】根据刚才观察的结果进行总结:导数与函数的单调性有什么关系?一般地,设函数()y f x =在某个区间可导,如果在这个区间内'()0f x >,则()y f x =为这个区间内的 ; 如果在这个区间内'()0f x <,则()y f x =为这个区间内的 。

思考:(1)若f '(x )>0是f (x )在此区间上为增函数的什么条件?回答:提示: f (x )=x 3,在R 上是单调递增函数,它的导数恒>0吗? (2)若f '(x ) =0在某个区间内恒成立,f (x )是什么函数 ?若某个区间内恒有f '(x )=0,则f (x )为 函数.结论应用:由以上结论知:函数的单调性与其 有关,因此我们可以用 去探讨函数的单调性。

下面举例说明: 【例题讲解】例1、 求证:31y x =+在(,0)-∞上是增函数。

归纳步骤:1、 ;2、 ;3、 。

例2、 确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数,哪个区间内是减函数.小结:用导数求函数单调区间的步骤: (1) ; (2) ; (3) 【课堂练习】1.确定下列函数的单调区间 (1)y =x 3-9x 2+24x (2)y =3x -x 32、设)x (f y '=是函数)x (f y =的导数, )x (f y '=的 图象如图所示, 则)x (f y =的图象最有可能是( )课后练习与提高1.(2007年浙江卷)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )2.已知函数x x x f ln )(=,则( ) A .在),0(+∞上递增 B .在),0(+∞上递减C .在⎪⎭⎫ ⎝⎛e 1,0上递增D .在⎪⎭⎫⎝⎛e 1,0上递减 3.函数53)(23--=x x x f 的单调递增区间是_____________.y x O y x O y x O y x O A . B . C . D .1.3.1函数的单调性和导数教案一、教材分析以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数。

在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单。

根据课程标准,本节分为四课时,此为第一课时。

二、教学目标 1,知识目标:1)正确理解利用导数判断函数的单调性的原理; 2)掌握利用导数判断函数单调性的步骤。

2,能力目标:学生经历发现问题、提出问题、分析问题、解决问题的过程,提高创新能力。

3,情感、态度与价值观目标:在愉悦的学习氛围中,学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。

三、教学重点难点教学重点:利用导数判断函数单调性。

教学难点:利用导数判断函数单调性。

. 四、教学方法:探究法 五、课时安排:1课时 六、教学过程 【引 例】1.确定函数243=-+y x x 在哪个区间内是增函数?在哪个区间内是减函数? 解:2243(2)1y x x x =-+=--,在(,2)-∞上是减函数,在(2,)+∞上是增函数。

问:1)、为什么243=-+y x x 在(,2)-∞上是减函数,在(2,)+∞上是增函数?2)、研究函数的单调区间你有哪些方法?(1)观察图象的变化趋势;(函数的图象必须能画出的)(2)利用函数单调性的定义。

(复习一下函数单调性的定义)2、确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数?哪个区间内是减函数? (1)能画出函数的图象吗? (2)能用单调性的定义吗?试一试,提问一个学生:解决了吗?到哪一步解决不了?(产生认知冲突)【发现问题】定义是解决单调性最根本的工具,但有时很麻烦,甚至解决不了。

尤其是在不知道函数的图象的时候,如函数f (x )=2x 3-6x 2+7,这就需要我们寻求一个新的方法来解决。

(研究的必要性)事实上用定义研究函数243=-+y x x 的单调区间也不容易。

【探 究】我们知道函数的图象能直观的反映函数的变化情况,下面通过函数的图象规律来研究。

问:如何入手?(图象) 从函数f (x )=2x 3-6x 2+7的图象吗?}都是反映函数随自变量的变化情况。

1、研究二次函数243=-+y x x 的图象; (1) 学生自己画图研究探索。

(2) 提问:以前我们是通过二次函数图象的哪些特征来研究它的单调性的? (3) (开口方向,对称轴)既然要寻求一个新的办法,显然要换个角度分析。

(4) 提示:我们最近研究的哪个知识(通过图象的哪个量)能反映函数的变化规律? (5)学生继续探索,得出初步规律。

几何画板演示,共同探究。

得到这个二次函数图象的切线斜率的变化与单调性的关系。

(学生总结): ①该函数在区间(,2)-∞上单调递减,切线斜率小于0,即其导数为负; 在区间(2,)+∞上单调递增,切线斜率大于0,即其导数为正;注:切线斜率等于0,即其导数为0;如何理解?②就此函数而言这种规律是否一致?是否其它函数也有这样的规律呢? 2、先看一次函数图象;3、再看两个我们熟悉的函数图象。

(验证) (1) 观察三次函数3y x =的图象;(几何画板演示)(2) 观察某个函数的图象。

(几何画板演示)指出:我们发现函数的单调性与导数的符号有密切的关系。

这节课我们就来学习如何用导数研究函数的单调性(幻灯放映课题)。

【新课讲解】4、请同学们根据刚才观察的结果进行总结:导数与函数的单调性有什么关系?请一个学生回答。

(幻灯放映) 一般地,设函数()y f x =在某个区间可导,则函数在该区间内 如果在这个区间内'()0f x >,则()y f x =为这个区间内的增函数; 如果在这个区间内'()0f x <,则()y f x =为这个区间内的减函数。

若在某个区间内恒有'()0f x =,则()f x 为常函数。

这个结论是我们通过观察图象得到的,只是一个猜想,正确吗?答案是肯定的。

严格的证明需要用到中值定理,大学里才能学到。

这儿我们可以直接用这个结论。

小结:数学中研究问题的常规思想方法是:从特殊到一般,从简单的复杂。

结论应用:由以上结论知:函数的单调性与其导数有关,因此我们可以用导数法去探讨函数的单调性。

下面举例说明: 【例题讲解】例1、 求证:31y x =+在(,0)-∞上是增函数。

由学生叙述过程老师板书:因为 '3'2(1)2y x x =+=,(,0)x ∈-∞,所以 20x >,即'0y >,所以函数31y x =+在(,0)-∞上是增函数。

注:我们知道31y x =+在R 上是增函数,课后试一试,看如何用导数法证明。

学生归纳步骤:1、求导;2、判断导数符号;3、下结论。

例2、 确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数,哪个区间内是减函数. 由学生叙述过程老师板书:解:f ′(x )=(2x 3-6x 2+7)′=6x 2-12x , 令6x 2-12x >0,解得x >2或x <0∴当x ∈(-∞,0)时,f ′(x )>0,f (x )是增函数;当x ∈(2,+∞)时,f ′(x )>0,f (x )是增函数.令6x 2-12x <0,解得0<x <2.∴当x ∈(0,2)时,f ′(x )<0,f (x )是减函数. 学生小结:用导数求函数单调区间的步骤: (1) 确定函数f (x )的定义域; (2) 求函数f (x )的导数f ′(x ).(3) 令f ′(x )>0解不等式,得x 的范围就是递增区间.令f ′(x )<0解不等式,得x 的范围,就是递减区间【课堂练习】1.确定下列函数的单调区间 (1)y =x 3-9x 2+24x (2)y =3x -x 3(1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 2、设)x (f y '=是函数)x (f y =的导数, )x (f y '=的 图象如图所示, 则)x (f y =的图象最有可能是( )小结:重点是抓住导函数的图象与原函数的图象从哪里发生联系? 【课堂小结】1.函数导数与单调性的关系:若函数y =f (x )在某个区间内可导,如果f ′(x )>0, 则f (x )为增函数;如果f ′(x)<0, 则f (x )为减函数.2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂. 【课后练习】 1.(2007年浙江卷)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )2.已知函数x x x f ln )(=,则( )A .在),0(+∞上递增B .在),0(+∞上递减C .在⎪⎭⎫ ⎝⎛e 1,0上递增D .在⎪⎭⎫ ⎝⎛e 1,0上递减3.函数53)(23--=x x x f 的单调递增区间是_____________.【课堂作业】课本p 42习题2.4 1,2 【课后记】本节课是一节新授课,课本所提供的信息很简单,如果直接得出结论,学生也能接受,可学生只能进行简单的模仿应用。

相关文档
最新文档