初二数学第二章(湘教版)测试题
湘教版八年级上册数学第2章 三角形 复习检测(含答案)

湘教版八年级数学上第二章三角形期末复习及答案一、选择题1.能把一个三角形分成两个直角三角形的是三角形的()A. 高B. 角平分线C. 中线D. 外角平分线2.如果等腰三角形有一条边长是6,另一条边长是8,那么它的周长是()A. 20B. 20或22C. 22D. 243.下列命题正确的是()A. 两条直角边对应相等的两个直角三角形全等B. 一条边和一个锐角对应相等的两个三角形全等C. 有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D. 有两条边对应相等的两个直角三角形全等4.如图:△ABC中,D点在BC上,现有下列四个命题:①若AB=AC,则∠B=∠C.②若AB=AC,∠BAD=∠CAD,则AD⊥BC,BD=DC.③若AB=AC,BD=DC,则AD⊥BC,∠BAD=∠CAD.④若AB=AC,AD⊥BC,则BD=DC,∠BAD=∠CAD.其中正确的有()A. 1个B. 2个C. 3个D. 4个5.如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定6.Rt△ABC中,∠C=90°,∠B=46°,则∠A=()A. 44°B. 34°C. 54°D. 64°7.以下各命题中,正确的命题是()(1)等腰三角形的一边长4 cm,一边长9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A. (1)(2)(3)B. (1)(3)(5)C. (2)(4)(5)D. (4)(5)8.如图OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A. 60°B. 50°.C. 45°D. 30°9.下列语句中,属于命题的是()A. 直线AB和CD垂直吗B. 过线段AB的中点C画AB的垂线C. 同旁内角不互补,两直线不平行D. 连结A,B两点10.下列属于尺规作图的是()A. 用刻度尺和圆规作△ABCB. 用量角器画一个300的角C. 用圆规画半径2cm的圆D. 作一条线段等于已知线段二、填空题11.已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是________ cm.12.锐角三角形ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=________度.13.等腰三角形的腰长是6,则底边长3,周长为________.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件________.15.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形的底边长是________.16.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是________.17.如图.在△ABC中,点D在BC边上,BD=DC,点E在AD上,CF∥AB,∠BAD=∠DEF,若AB=5,CF=2.则线段EF的长为________.18.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AC+CD=BD,若CD=1,则BD=________.三、解答题19.如图图形中哪些具有稳定性?20.如图△ABC中,BE是∠ABC的外角平分线,BE交AC的延长线于E,∠A=∠E,求证:∠ACB=3∠A.21.如图,已知A,F,E,B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:△ACF≌△BDE.22.如图,△ABC中,AB=AC,点M.N分别在BC所在直线上,且AM=AN,BM=CN吗?说明理由.23.如图,已知:AO=BO,OC=OD.求证:∠ADC=∠BCD.四、综合题24.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6求BC的长.小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请回答:(1)△BDE是________三角形.(2)BC的长为________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案一、选择题1. A2.B3.A4.D5.B6.A7.D8.A9.C10.D二、填空题11.15 12.45 13.15 14.AB=AC15.5cm16.()n﹣1×75°17.3 18.3三、解答题19.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然(1)、(4)、(6)3个.20.证明:∵BE是∠ABC的外角平分线,∴∠EBD=∠EBC,∵∠A=∠E,∴∠EBD=∠EBC=∠A+∠E=2∠A,∵∠ACB=∠E+∠EBC,∴∠ACB=3∠A21.证明:∵AC⊥CE,BD⊥DF(已知),∴∠ACE=∠BDF=90°(垂直的定义),在Rt△ACE和Rt△BDF中,,∴Rt△ACE≌Rt△BDF(HL),∴∠A=∠B(全等三角形的对应角相等),∵AE=BF(已知),∴AE﹣EF=BF﹣EF(等式性质),即AF=BE,在△ACF和△BDE中,,∴△ACF≌△BDE(SAS)22.解:BM=CN,理由:过点A作AD⊥MN于点D,∵AB=AC∴BD=CD,∵AM=AN,∴MD=ND,则BM=CN.23.证明:在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD四、综合题24.(1)等腰(2)5.8。
湘教版数学八年级下册第二章检测卷及答案.docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】单元检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形2.在下列图形中,既是轴对称图形又是中心对称图形的是()3.下列命题是真命题的是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形4.如图,菱形ABCD中,对角线AC,BD交于点O,点E为AD边的中点,菱形ABCD 的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14第4题图第5题图第6题图5.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC 的长为()A.43cm B.4cm C.23cm D.2cm6.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC 相交于点E,则下列结论正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE7.如图是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误8.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,其中正确的有()A.①②③B.①②④C.②③④D.①③④9.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a2第9题图第10题图10.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7 2 D.7 3二、填空题(每小题3分,共24分)11.若n边形的每个外角都是45°,则n=________.12.如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D,E,测得DE的长度为360米,则A,B两地之间的距离是________米.第12题图第13题图13.如图,菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,请添加一个条件______________,使四边形ABCD是正方形.14.矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=________°.15.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于________.第15题图第16题图16.如图,活动衣帽架由三个相同的菱形组成,利用四边形的不稳定性,调整菱形的内角∠A,使衣帽架拉伸或收缩.若菱形的边长等于10cm ,∠A=120°,则AB=________,AD=________.17.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为________.第17题图第18题图18.如图,菱形ABCD中,点E,F分别是BC,CD的中点,过点E作EG⊥AD于点G,连接GF,EF.若∠A=80°,则∠DGF的度数为________.三、解答题(共66分)19.(8分)一个多边形内角和的度数比外角和的度数的4倍多180度,求这个多边形的边数.20.(8分)如图,在锐角三角形ABC中,AD⊥BC于点D,点E,F,G分别是AC,AB,BC的中点.求证:FG=DE.21.(12分)如图,在▱ABCD中,点E,F为对角线AC上的两点,且AE=CF,连接DE,BF.(1)写出图中所有的全等三角形;(2)求证:DE∥BF.22.(12分)如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线,DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.23.(12分)如图,将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,连接AE,CF,AC.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形AECF的边长;②求折痕EF的长.24.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D为AB的中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若点D为AB的中点,当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案与解析1.C 2.C 3.D 4.A 5.C 6.D 7.C8.B 解析:根据平行四边形的面积公式及“垂线段最短”的性质可知,当其面积最大时,其一边上的高与邻边重合,即其形状为矩形.此时,AC =AB 2+BC 2=32+42=5,故①正确;∠A =∠C =90°,∴∠A +∠C =180°,故②正确;若AC ⊥BD ,则此矩形又为正方形,有AB =BC ,显然不符合题意,故③错误;根据矩形的对角线相等的性质,可知AC =BD ,故④正确,综上可知,①②④正确.故选B.9.A10.C 解析:如图所示,由题意易证△ABE ≌△CDF .∴∠ABE =∠CDF .∵∠AEB =∠BAD =90°,∴∠ABE +∠BAE =90°,∠DAG +∠BAE =90°,∴∠ABE =∠DAG =∠CDF ,∴∠DAG +∠ADG =∠CDF +∠ADG =90°,即∠DGA =90°,同理得∠CHB =90°,∴四边形EGFH 为矩形.在△ABE 和△DAG 中,⎩⎪⎨⎪⎧∠ABE =∠DAG ,∠AEB =∠DGA =90°AB =DA ,,∴△ABE ≌△DAG (AAS),∴DG =AE =5,AG =BE =DF =12,∴AG -AE =DF -DG =7,即EG =FG =7,∴EF =EG 2+FG 2=7 2.故选C.11.8 12.720 13.∠BAD =90°(答案不唯一) 14.120 15.20 16.10cm 30cm 17.5 18.50° 解析:延长AD ,EF 相交于点H .易证△CEF ≌△DHF ,∴∠H =∠CEF ,EF =FH .由EG ⊥AD ,F 为EH 的中点,易知GF =HF ,由题意知∠C =∠A =80°,CE =CF ,∴∠CEF =50°,∴∠DGF =∠H =∠CEF =50°.19.解:设这个多边形的边数为n ,根据题意得(n -2)·180°=4×360°+180°,解得n =11.(7分)故多边形的边数为11.(8分)20.证明:∵AD ⊥BC ,∴∠ADC =90°.又∵点E 为AC 的中点,∴DE =12AC .(4分)∵点F ,G 分别为AB ,BC 的中点,∴FG 是△ABC 的中位线,∴FG =12AC ,∴FG =DE .(8分)21.(1)解:△ABC ≌△CDA ,△ABF ≌△CDE ,△ADE ≌△CBF .(6分)(2)证明:∵AE =CF ,∴AF =CE .(8分)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAF =∠DCE .在△ABF 和△CDE 中,AB =CD ,∠BAF =∠DCE ,AF =CE ,∴△ABF ≌△CDE (SAS),∴∠AFB =∠CED ,∴DE ∥BF .(12分)22.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,∠BAE =∠DCF .(3分)又∵AE =CF ,∴△ABE ≌△CDF .(6分)(2)解:四边形BEDF 是菱形.(7分)理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵AE =CF ,∴DE =BF ,∴四边形BEDF 是平行四边形,∴BO =DO .(9分)又∵BG =DG ,∴GO ⊥BD ,∴四边形BEDF 是菱形.(12分)23.(1)证明:∵矩形ABCD 折叠使A ,C 重合,折痕为EF ,∴OA =OC ,EF ⊥AC ,EA =EC .∵AD ∥BC ,∴∠F AC =∠ECA .(2分)在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠F AO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF≌△COE ,∴OF =OE .(4分)∴四边形AECF 为菱形.(6分)(2)解:①设菱形AECF 的边长为x ,则AE =CE =x ,BE =BC -CE =8-x .(7分)在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8-x )2+42=x 2,解得x =5,即菱形的边长为5.(9分)②在Rt △ABC 中,AC =AB 2+BC 2=45,∴OA =12AC =2 5.在Rt △AOE 中,OE =AE 2-AO 2=5,∴EF =2OE =2 5.(12分) 24.(1)证明:∵DE ⊥BC ,∴∠DFB =90°.∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE .(2分)∵MN ∥AB ,∴四边形ADEC 是平行四边形,∴CE =AD .(4分)(2)解:四边形BECD 是菱形.(5分)理由如下:∵点D 为AB 的中点,∴AD =BD .∵CE =AD ,∴BD =CE .∵BD ∥CE ,∴四边形BECD 是平行四边形.(7分)∵∠ACB =90°,点D 为AB 的中点,∴CD =BD ,∴四边形BECD 是菱形.(9分)(3)解:当∠A =45°时,四边形BECD 是正方形.(10分)理由如下:∵∠ACB =90°,∠A =45°,∴∠ABC =∠A =45°,∴AC =BC .∵点D 为BA 的中点,∴CD ⊥AB ,∴∠CDB =90°.(12分)由(2)知四边形BECD 是菱形,∴四边形BECD 是正方形.即当∠A =45°时,四边形BECD 是正方形.(14分)初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
湘教版八年级数学上册第2章测试题及答案

湘教版八年级数学上册第2章测试题及答案2.1 三角形一、选择题1.小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A. 3kmB. 7kmC. 3km或7kmD. 不小于3km也不大于7km2.下列长度的各组线段首尾相接能构成三角形的是()A. 3cm、5cm、8cmB. 3cm、5cm、6cmC. 3cm、3cm、6cmD. 3cm、5cm、10cm3.在△ABC中,∠A=60°,∠C=70°,则∠B的度数是()A. 50°B. 60°C. 70°D. 90°4.图中的五角星是用螺栓将两端打有孔的5根木条连接而构成的,它的形状不稳定.如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓()A. 1个B. 2个C. 3个D. 4个5.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC= ∠BAC.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个6.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短8.已知三角形两边的长分别是3和7,则第三边的长可以是()A. 3B. 6C. 10D. 169.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,则A、B间的距离不可能是()A. 5米B. 10米C. 15米D. 20米二、填空题10.在△ABC中,∠C=90°,∠A:∠B=1:2,则∠A=________ 度.11.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=______度.12.工人师傅砌墙的时候,常在长方形门框上斜定一根木条,他利用的原理是________ .13.一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.14.一木工师傅现有两根木条,木条的长分别为40cm和50cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是________.15.在△ABC中,BD是AC边上的高,∠ABD=70°,∠DBC=40°,则∠ABC=________度.16.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=________ 度.17.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E=________.三、解答题18.已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是多少?19.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于点D,求∠DBC的度数.20.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.21.如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.参考答案一、选择题1.D2. B3.A4.A5.B6.A7.A 8B 9. A二、填空题10.30 11.25 12.三角形的稳定性13.90 14.10<x<90 15.110或30 16.50 17. 180°三、解答题18.解:设三角形中与这个外角不相邻的两个内角中较小的为x,则另一个为x+10.x+x+10=60°,解得x=25°.所以三个内角分别是120°,35°,25° .19.解:因为∠C=∠ABC=2∠A,所以∠C+∠ABC+∠A=5∠A=180°,所以∠A=36°.所以∠C=∠ABC=2∠A=72°.因为BD⊥AC,所以∠DBC=90°﹣∠C=18°.20.解:因为AD是△ABC的角平分线,∠BAC=60°,所以∠DAC=∠BAD=30°.因为CE是△ABC的高,∠BCE=40°,所以∠B=50°,所以∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.21.解:如图,连接AD并延长AD至点E,因为∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,所以∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C.因为∠A=90°,∠B=21°,∠C=32°,所以∠BDC=90°+21°+32°=143°.2.2 命题与证明一、选择题1.已知下列命题:(1)若a>0,b>0,则a+b>0;(2)若a≠b,则a2≠b2;(3)是2的平方根;(4)近似数0.030万,精确到十位;(5)代数式+(3x﹣1)0中,x的取值范围是x≥ .其中真命题的个数是()A. 5B. 2C. 3D. 42.为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数可以作为反例的是()A. 32B. 16C. 8D. 43.下列语句,不是命题的是()A. 对顶角相等B. 连接A,B两点C. 钝角大于D. 平角都相等4.下列定理有逆定理的是()A. 直角都相等B. 同旁内角互补,两直线平行C. 对顶角相等D. 全等三角形的对应角相等二、填空题5.写出一个原命题是真命题,逆命题是假命题的命题:________.6.命题“同旁内角互补,两直线平行”写成“如果…,那么…”的形式是 ________,它是 ________命题(填“真”或“假”).7.命题“对顶角相等”的逆命题是________.8.命题“等角的余角相等”写成“如果…,那么…”的形式是________.9.“等角对等边”的逆命题是________.10.将命题“互为相反数的两个数之和等于零”写成:如果________,那么________.三、解答题11.请判断下列命题的真假性,若是假命题请举反例说明.(1)若a>b,则a2>b2;(2)两个无理数的和仍是无理数;(3)若一个三角形的三边a,b,c满足(a﹣b)(b﹣c)(c﹣a)=0,则此三角形是等边三角形;(4)若三条线段a,b,c满足a+b>c,则这三条线段a,b,c能够组成三角形.12.证明命题“三角形的三内角和为180°”是真命题.13.写出命题“如果一个三角形是直角三角形,那么它的两个锐角的角平分线所夹的锐角是45°”的逆命题,并证明这个命题是真命题.14.请写出命题“等角的余角相等”的条件和结论;这个命题是真命题吗?如果是,请你证明;如果不是,请给出反例.参考答案一、选择题1. C2. D3.B4.B二、填空题5.对顶角相等6.如果同旁内角互补,那么两直线平行真7.相等的角为对顶角8.如果两个角相等,那么这两个角的余角相等9.等边对等角10.两个数互为相反数这两个数之和等于0三、解答题11. 解:(1)若a>b,则a2>b2,是假命题,例如:0>﹣1,但02<(﹣1)2;(2)两个无理数的和仍是无理数,是假命题,例如:﹣+=0,和是有理数;(3)若一个三角形的三边a,b,c满足(a﹣b)(b﹣c)(c﹣a)=0,则此三角形是等边三角形,是假命题,例如:a=b,b≠c时,(a﹣b)(b﹣c)(c﹣a)=0,此三角形是等腰三角形;(4)若三条线段a,b,c满足a+b>c,则这三条线段a,b,c能够组成三角形,是假命题,例如:三条线段a=3,b=2,c=1满足a+b>c,但这三条线段不能够组成三角形.12.已知:∠A、∠B、∠C为△ABC的三个内角,求证:∠A+∠B+∠C=180°.证明:作射线BD,过C点作CE∥AB,如图.∵CE∥AB,∴∠1=∠A,∠2=∠B,而∠C+∠1+∠2=180°,∴∠A+∠B+∠C=180°.∴命题“三角形的三内角和为180°”是真命题.13.解:逆命题是:如果一个三角形的两个角的角平分线所夹的锐角是45°,那么这个三角形是直角三角形.已知:如图,在△ABC中,BE是∠ABC的角平分线,交AC于点E,AD是∠CAB的角平分线,交BC 于点D,BE和AD相交于点O,且∠EOA=45°.求证:△ABC是直角三角形.证明:∵BE是∠ABC的角平分线,AD是∠CAB的角平分线,∴∠OAB=∠CAB,∠OBA=∠CBA,∴∠OAB+∠OBA=(∠CAB+∠CBA),∴180°﹣∠AOB=(180°﹣∠C),∴∠AOB=90°+∠C.又∵∠EOA=45°,∴∠AOB=135°=90°+∠C,∴∠C=90°,∴△ABC是直角三角形.14.解:条件:两个角分别是两个相等角的余角;结论:这两个角相等.这个命题是真命题.已知:∠1=∠2,∠3是∠1的余角,∠4是∠2的余角.求证:∠3=∠4.证明:∵∠3是∠1的余角,∠4是的余角,∴∠3=90°﹣∠1,∠4=90°﹣∠2.又∵∠1=∠2,∴∠3=∠4.2.3 等腰三角形一、选择题1.设计一张折叠型方桌子如图,若AO=BO=50cm,CO=DO=30cm,将桌子放平后,要使AB距离地面的高为40cm,则两条桌腿需要叉开的∠AOB应为()A. 60°B. 90°C. 120°D. 150°2.如图,∠ABC=50°,BD平分∠ABC,过点D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为()A. 25°B. 130°C. 50°或130°D. 25°或130°3.如图,AB∥CD,点E在BC上,CD=CE,若∠ABC=34°,则∠BED的度数是()A. 104°B. 107°C. 116°D. 124°4.一个等腰三角形的两边长分别是4和9,则它的周长为()A. 17B. 20C. 22D. 17或225.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,且BC=6cm,则BD=()A. 1cmB. 2cmC. 3cmD. 4cm6.如图,一个等边三角形纸片剪去一个角后变成一个四边形,则图中∠1+∠2的度数为()A. 180°B. 220°C. 240°D. 300°7.在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,AB=4cm,则BD的长为().A. 3B. 4C. 1D. 78.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A. 75°或15°B. 75°C. 15°D. 75°或30°9.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB 交AE的延长线于点F,则DF的长为()A. 4.5B. 5C. 5.5D. 6二、填空题10.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为D,且AD=4cm,则AC=________.11.如图,在△ABC中,AB=BC,∠B=70°,则∠A=________°.12.已知一个等腰三角形的腰长是6,则底边长a的取值范围是________ .13.己知,如图,在△ABC中,∠C=90°,∠A=24°,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹),直线________ 即为所求.14.等腰三角形顶角的度数为131°18′,则底角的度数为________.15.等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为________.16.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=12,BC=16,则线段EF的长为________.17.如图,已知△ABC是等边三角形,AB=5cm,AD⊥BC,DE⊥AB,DF⊥AC,则∠BAD=________,∠ADF=________,BD=________,∠EDF=________.三、解答题18.如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.19.如图,在△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.20.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?21.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC=3AD.22.已知:如图,D、E是△ABC中BC边上的两点,AD=AE,要证明△ABE≌△ACD,应该再增加一个什么条件?请你增加这个条件后再给予证明.参考答案一、选择题1.C2.D3.B4.C5.C6.C7.C8.A9. C二、填空题10.8cm 11.55 12.0<a<12 13.CD 14.24°21′ 15.8cm 16.2 17.30° 60° 2.5cm 120°三、解答题18.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C==40°.∵AB=AC,AD⊥BC,∠BAC=100°,∴AD平分∠BAC,∴∠BAD=∠CAD=50°.19.解:∵AB=AC,∴∠B=∠C.∵BD=AD,∴∠B=∠DAB.∵AC=DC,∴∠DAC=∠ADC=2∠B,∴∠BAC=∠BAD+∠DAC=∠B+2∠B=3∠B.又∵∠B+∠C+∠BAC=180°,∴5∠B=180°,∴∠B=36°,∠C=36°,∠BAC=108°.20.解:∵∠ADB=30°,∠ACB=15°,∴∠CAD=∠ADB﹣∠ACB=15°,∴∠ACB=∠CAD,∴AD=CD=20.又∵∠ABD=90°,∴AB=AD=10,∴树的高度为10米.21.证明:在△ABC中,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.又∵AD⊥AC,∴∠DAC=90°.∵∠C=30°,∴CD=2AD,∠BAD=∠B=30°,∴AD=DB,∴BC=CD+BD=AD+DC=AD+2AD=3AD.22.解:本题答案不唯一,增加一个条件可以是:EC=BD,或AB=AC,或BE=CD,或∠B=∠C或∠BAD=∠CAE或∠BAE=∠CAD等.增加∠B=∠C证明过程如下:证明:∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC,∴△ABD≌△ACE(AAS),∴∠BAD=∠CAE.∵∠BAD+∠DAE=∠CAE+∠DAE,∴∠BAE=∠CAD,∴△ABE≌△ACD(AAS).2.4 线段的垂直平分线一、选择题1.如图,在△ABC中,AB=AC,AD为△ABC的角平分线,过AB的中点E作AB的垂线交AC于点F,连接BF,若AB=5,CD=2,则△BFC的周长为()A. 7B. 9C. 12D. 142.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A. 30°B. 40°C. 50°D. 60°3.如图,在△ABC中,△ADE的周长为8,DH为AB的中垂线,EF垂直平分AC,则BC的长为()A. 4B. 6C. 8D. 164.如图,在△ABC中,已知AB=AC,DE垂直平分AC,且AC=8,BC=6,则△BDC的周长为()A. 20B. 22C. 10D. 145.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于点D,若AB=6,则AE的值是()A. 3B. 2C. 3D. 26.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD 的度数为()A. 10°B. 15°C. 40°D. 50°7.如图,在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,若BC=6,则DE的长为()A. 6B. 5C. 4D. 38.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A. 13B. 15C. 17D. 199.如图,∠C=90°,AB的垂直平分线交BC于点D,连接AD,若∠CAD=20°,则∠B=()A. 20°B. 30°C. 35°D. 40°10.如图,OA、OB分别是线段MC、MD的垂直平分线,MD=5cm,MC=7cm,CD=10cm,一只小蚂蚁从点M出发爬到OA边上任意一点E,再爬到OB边上任意一点F,然后爬回M点处,则小蚂蚁爬行的路径最短可为()A. 12cmB. 10cmC. 7cmD. 5cm二、填空题11.如图,在△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于点D,交AB于点E,下述结论:①BD平分∠ABC;②AD=BD=BC;③△BDC的周长等于AB+BC;④D是AC的中点.其中正确的命题是________(填序号).12.如图,在△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC=________.13.如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB于点E,则∠BCE 等于________ °.14.证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P.证明:∵点P是AB边垂直平分线上的一点,∴________ =________(________).同理可得,PB=________,∴________ =________(等量代换),∴________(到一条线段两个端点距离相等的点,在这条线段的________),∴AB、BC、AC的垂直平分线相交于点P,且________.15.线段的垂直平分线是________的点的集合.16.一条线段的垂直平分线必定经过这条线段的________点,一条线段只有________条垂直平分线.17.在等腰三角形ABC中,AB=AC=8cm,腰AB的垂直平分线交另一腰AC于点D,若△BCD的周长为10cm,则底边BC的长为________cm.18.在△ABC中,∠C=90°,∠B=∠22.5°,DE垂直平分AB交BC于点E,BC=2+2,则AC=________.三、解答题19.如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.20.如图,在△ABC中,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=6 ,AE⊥BC于点E,求EC的长.21.已知在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于点F.求证:∠BAF=∠ACF.22.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.参考答案一、选择题1.B2.B3.C4. D5. B6.A7.D8.B9.C 10.B二、填空题11.①②③12.15 13.6014.PB PA 垂直平分线上任意一点,到线段两端点的距离相等PC PA PC 点P在AC的垂直平分线上垂直平分线上PA=PB=PC 15.到线段两个端点距离相等16.中一17.2 18.2三、解答题19.证明:∵AD是高,∴AD⊥BC.又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE.又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE,∴EC=AE,∴点E在线段AC的垂直平分线上.20.解:如图,连接AD,∵AB的垂直平分线交BC于点D,∴BD=AD.∵DE=6,BD=6,∴AD=6,∴∠ADE=45°,∴∠B=22.5°.∵∠C=60°,∴∠BAC=97.5°.∵∠ADE=∠B+∠DAB=45°,AE⊥BC,∴DE=AE=6.∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴AC=2CE.在Rt△ACE中,AC2=AE2+CE2,即4CE2=62+CE2,∴CE2=12,解得EC=2.21.证明:∵AD是∠BAC的平分线,∴∠1=∠2.∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠FDA(等边对等角).∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF.22.解:∵DE是AC的垂直平分线,AE=3cm,∴AD=CD,AC=2AE=2×3=6(cm),∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=13(cm),∴△ABC的周长为AB+BC+AC=13+6=19(cm).2.5 全等三角形一、选择题1.如图,已知AB=AD,∠1=∠2=50°,∠D=100°,那么∠ACB的度数为()A. 30°B. 40°C. 50°D. 60°2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙3.已知△ABC≌△DEF,且∠A=100°,∠E=35°,则∠F=()A. 35°B. 45°C. 55°D. 70°4.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠ABC=∠EFD,BC=FD5.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A. 3B. 5C. 7D. 3或76.已知△ABD≌△DEF,AB=DE,∠A=60°,∠E=40°,则∠F的度数为()A. 30°B. 70°C. 80°D. 100°7.如图,点D在AB上,点E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD 的是()A. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC8.如图,FD⊥AO于点D,FE⊥BO于点E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件有()A. 1个B. 2个C. 3个D. 4个9.下列可使两个直角三角形全等的条件是()A. 一条边对应相等B. 两条直角边对应相等C. 一个锐角对应相等D. 两个锐角对应相等10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A. 0个B. 1个C. 2个D. 3个二、填空题11.斜边和一条直角边分别 ________的两个三角形全等(可以简写成“________”或“HL”).12.如图,在Rt△ABC中,∠C=90°,AB=8,AD平分∠BAC,交BC边于点D,若CD=2,则△ABD的面积为________ .13.如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE= ________.14.如图,△ABC和△A′B′C′是两个全等的三角形,其中某些边的长度及某些角已知,则x=______.15.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是________ .16.如图,线段AD与BC相交于点O,连接AB、CD,且∠B=∠D,要使△AOB≌△COD,应添加一个条件是________(只填一个即可).17.如图,AC⊥CB,AD⊥DB,要使△ABC≌△ABD,可补充的一个条件是________.18.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE 的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是________.(填写序号)三、解答题19.如图,已知△ACF≌△DBE,AD=9 cm,BC=5 cm,求AB的长.20.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.21.如图,在△ABC中,∠A=90°,BD是角平分线,DE⊥BC于点E,若AD=3,BC=4,求△BDC的面积.22.如图,在△ABC中,BE,CF分别是边AC,AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,则AG与AD有何关系?试给出你的结论的理由.23.如图,BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.参考答案一、选择题1. A2.B3.B4.C5.D6. C7.B8.D9.B 10.D二、填空题11.对应相等斜边、直角边12.8 13.60°14.60°15.16.OB=OD17.AC=AD(答案不唯一)18.①③④三、解答题19.解:∵△ACF≌△DBE,∴CA=BD,∴CA﹣BC=DB﹣BC,即AB=CD,∴AB+CD=2AB=AD﹣BC=9﹣5=4(cm),∴AB=2cm.20.证明:∵AB∥CD,∴∠BAC=∠ECD.在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.21.解:因为∠A=90°,所以DA⊥AB.又BD是角平分线,且DE⊥BC于点E,所以DE=AD=3,所以易得△BDC的面积为6.22.解:AG=AD,AG⊥AD. 理由:∵在△ABC中,BE,CF分别是边AC,AB上的高,∴∠BFP=∠CEP=∠AFO=90°,∴∠ABD+∠FPB=90°,∠ACG+∠EPC=90°.∵∠FPB=∠EPC,∴∠ACG=∠ABD.在△ABD和△GCA中,,∴△ABD≌△GCA(SAS),∴AG=AD,∠AGC=∠BAD.∵∠AFO=90°,∴∠BAD+∠AOF=90°,∴∠AGC+∠AOF=90°,∴∠GAD=180°﹣90°=90°,∴AG⊥AD.23.证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.又∵DE⊥AB,DF⊥AC,∴点D在∠BAC的平分线上.2.6 用尺规作三角形一、选择题1.下列作图语言规范的是()A. 过点P作线段AB的中垂线B. 过点P作∠AOB的平分线C. 在直线AB的延长线上取一点C,使AB=ACD. 过点P作直线AB的垂线2.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A. 40°B. 55°C. 65°D. 75°3.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线4.如图,已知△ABC,∠ABC=2∠C,以B为圆心任意长为半径作弧,交BA、BC于点E、F ,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P,作射线BP交AC于点D,则下列说法不正确的是()A. ∠ADB=∠ABCB. AB=BDC. AC=AD+BDD. ∠ABD=∠BCD5.已知线段a,求作等边三角形ABC,使AB=a,作法如下:①作射线AM;②连接AC、BC;③分别以点A和点B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB,使AB=a.其合理顺序为()A. ①②③④B. ①④②③C. ①④③②D. ②①④③6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以点B、C为圆心,大于BC的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,正确的有()A. 1个B. 2个C. 3个D. 4个7.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定8.观察图中尺规作图的痕迹,下列结论错误的是()A. PQ为∠APB的平分线B. PA=PBC. 点A、B到PQ的距离不相等D. ∠APQ=∠BPQ9.按下列条件画三角形,能唯一确定三角形的形状和大小的是()A. 三角形的一个内角为60°,一条边长为3cmB. 三角形的两个内角为30°和70°C. 三角形的两条边长分别为3cm和5cmD. 三角形的三条边长分别为4cm、5cm和8cm10.下列属于尺规作图的是()A. 用刻度尺和圆规作△ABCB. 用量角器画一个30°的角C. 用圆规画半径2cm的圆D. 作一条线段等于已知线段二、填空题11.一个三角形木板,去了一个角,你能作出所缺角的平分线所在的直线吗? ________(填“能”或“不能”).12.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规在边AC上作一点P,且使PA=PB(不写作法,保留作图痕迹);(2)当∠B=________ 度时,PA:PC=2:1.13.下列语句是有关几何作图的叙述.①以点O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB ,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有________(填序号).14.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是________ .15.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是________ .16.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为________度.17.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为 ________.18.已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c.①以点B为圆心,c为半径画弧;②连接AB,AC;③作BC=a;④以C点为圆心,b为半径画弧,两弧交于点A.作法的合理顺序是 ________ (填序号).三、解答题19.如图,有分别过A、B两个加油站的公路l1、l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路l1、l2的距离也相等.请用尺规作图作出点P(不写作法,保留作图痕迹)20.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.21.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.22.如图,已知点E在直线AB外,请用三角板与直尺画图,并回答第(3)题:①过点E作直线CD,使CD∥AB;②过点E作直线EF,使EF⊥AB,垂足为F;③请判断直线CD与EF的位置关系,并说明理由.23.如图,已知∠α和∠β,线段c,用直尺和圆规作出△ABC,使∠A=∠α,∠B=∠β,AB=c(要求画出图形,并保留作图痕迹,不必写出作法)24.按要求画图:(1)作BE∥AD交DC于点E;(2)连接AC,作BF∥AC交DC的延长线于点F;(3)作AG⊥DC于点G.参考答案一、选择题1.D2. C3.C4.B5.C6.C7.C8. C9.D 10.D二、填空题11.能12.60 13.③⑤14.SSS15.到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线16.32 17.65°18.③①④②三、解答题19.解:如图.20.解:作法:①作∠DO'B'=∠AOB;②在∠DO'B'的外部作∠A'OD=∠AOB,则∠A'O'B'就是所求的角.21.(1)解:如图,AP为所作.(2)解:∵AD∥BC,∴∠DAP=∠APB=55°.∵AP平分∠DAB,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°.22.解:①、②如图:③CD⊥EF.理由:∵CD∥AB,∴∠CEF=∠EFB.∵EF⊥AB,∴∠EFB=90°,∴∠CEF=90°,∴CD⊥EF.23.解:如图,△ABC就是所求作的三角形.24.解:(1)如图,BE即为所求.(2)如图,BF即为所求.(3)如图,AG即为所求.。
湘教版八年级上册数学第二章三角形单元测试卷(含答案解析)

湘教版八年级上册数学第二章三角形单元测试卷第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.已知三角形的三边长分别为a、b、c,化简|a+b−c|−2|a−b−c|+|a+b+c|得( )A. 4a−2cB. 2a−2b−cC. 4b+2cD. 2a−2b+c2.如图,在△ABC中,以点B为圆心,AB为半径画弧交BC于点D,以点C为圆心,AC为半径画弧交BC于点E,连接AE,AD.设∠ACB=α,∠EAD=β,则∠B的度数为( )A. 2β−αB. α−12β C. 2α−β D. α+12β3.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列命题中,属于假命题的是( )A. 若∠C=∠A+∠B,则△ABC是直角三角形B. 若c2=b2−a2,则△ABC是直角三角形,且∠C=90°C. 若(c+a)(c−a)=b2,则△ABC是直角三角形D. 若∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是( )A. a=2,b=−2B. a=2,b=3C. a=−2,b=−2D. a=−2,b=−35.下列命题:①若|a|>|b|,则a>b;②直角三角形的两个锐角互余;③如果a=0,那么ab=0;④同旁内角互补,两直线平行.其中,原命题和逆命题均为真命题的有( )A. 0个B. 1个C. 2个D. 3个6.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E的度数为( )A. 25°B. 20°C. 15°D. 7.5°7.如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=( )A. a+b2B. a−b2C. a−bD. b−a8.在如图所示的尺规作图中,与AD相等的线段是( )A. 线段ACB. 线段BDC. 线段DCD. 线段DE9.如图,AB//CD,BE垂直平分AD,DC=BC.若∠A=70°,则∠C的度数为( )A. 100°B. 110°C. 115°D. 120°10.如图,Rt△ABC沿直线边AB所在的直线向下平移得到△DEF,下列结论中不一定正确的( )A. S四边形ADHC=S四边形BEFHB. AD=BDC. AD=BED. ∠DEF=90°11.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B顺时针旋转得到△CBQ,连接PQ,则以下结论中不正确是( )A. ∠PBQ=60°B. ∠APB=150°C. S △PQC =6D. S △BPQ =8√312. 下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;⑤作图语句:连接AD ,并且平分∠BAC.其中正确的有个.( )A. 0B. 1C. 2D. 3第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .14. 已知等腰三角形的一个内角为40∘,则它的顶角的度数为 .15. 如图,在△PAB 中,PA =PB ,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK.若∠MKN =40°,则∠P 的度数为 .16. 已知线段a ,b 和m ,求作△ABC ,使BC =a ,AC =b ,BC 边上的中线AD =m.下面作法的合理顺序为 (填序号):①延长CD 到B ,使BD =CD ;②连接AB ;③作△ADC ,使DC =12a ,AC =b ,AD =m .三、解答题(本大题共8小题,共72分。
湘教版八年级数学上册第二章测试卷

第2章检测卷一、选择题(本题共10小题,每小题4分,共40分)1. 以下列各组长度的线段为边,能构成三角形的是 ( )A .7,3,4B .5,6,12C .3,4,5D .1,2,3 2.如图四个图形中,线段BE 是△ABC 的高的图是( )3.如图1,在△ABC 中,D 是BC 延长线上一点,∠ B = 40°,∠ACD = 120°,则∠A 等于( )A .90°B . 80°C .70°D .60°4. 给对顶角下定义,下列叙述中正确的是( )A. 相等的角叫作对顶角B. 有公共边且相等的角叫作对顶角C. 有公共顶点且相等的两个角叫作对顶角D. 一个角和它的两条边的反向延长线所构成的角叫作对顶角 5. 图中全等的三角形是( )A B C D (D)E C B A (C)E C B A (B)E C B A (A)E C B A AB C D 40° 120° 图1A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ6. 如图,下面是利用尺规作AOB∠的角平分线OC的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是()作法:○1以O为圆心,任意长为半径作弧,交OA,OB于点D,E.○2分别以D,E为圆心,以大于1DE的2长为半径作弧,两弧在AOB∠内交于点C.○3作射线OC.则OC就是AOB∠的平分线.A.SSS B.SAS C.ASA D.AAS7.下列命题中,真命题的个数有 ( )①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等.A.0个B.1个 C.2个D.3个8.已知∠A:∠B:∠C=1:2:2,则△ABC三个角度数分别是()A.40º、 80º、 80º B.35º、70º、70ºC.30º、 60º、 60º D.36º、 72º、 72º9.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45º”,应先假设()A.两个锐角都小于45 ºB.两个锐角都大于45 ºC.一个锐角小于45 ºD.一个锐角小于或等于45 ºABCDE 10.满足下列哪种条件时,能判定△ABC 与△DEF 全等的是( )A .∠A=∠E ,AB = EF ,∠B =∠D ; B .AB=DE ,BC = EF ,∠C=∠F ; C .AB=DE ,BC = EF ,∠A=∠E ;D .∠A =∠D ,AB = DE ,∠B=∠E 二、填空题(本题共8小题,每小题4分,共32分) 11. 已知等腰三角形的两边长是5cm 和11cm ,则它的周长是 .12. 如图2,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF =12,CF =3,则AC = . 13. 如图3,△ABD ≌△ACE,则AB 的对应边是___________,∠BAD 的对应角是__________.14. 如图4所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是 .15. 把命题“同旁内角互补”,改写成“如果……,那么……”的形式是 . 16.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有______________性.17.命题:“如果,那么”的逆命题是________________________________,该命题是________命题(填真或假).18.如图,已知,DAB CAE ∠=∠,AC=AD. 给出下列条件: ① AB=AE ;② BC=ED ;③D C ∠=∠;④E B ∠=∠.其中能使△ABC ≌△AED 的条件为______ . A BCDEFBA图4图2 图3(注:把你认为正确的答案序号都填上). 三、解答题(本题共3小题,共28分)19. (本题8分)用尺规作图的方法在△ABC 中分别画出:(1)AB 边上的高CD ; (2)AC 边上的高BE ; (3)∠C 的角平分线CF ; (4)BC 上的中线AM .20. (本题10分) 在△ABC 中,15A B B C ∠-∠=∠-∠=︒,求∠A 、∠B 、∠C 的度数.A BC21. (本题10分)已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.第2章检测卷一、选择题:1.C; 2. D; 3.B; 4.D; 5.D;6.A;7.D;8.D;9.B;10.D二、填空题:11. 27; 12. 15; 13.AC,∠CAE; 14. 8; 15.如果两个角是同旁内角,那么这两个角互补; 16.稳定; 17.如果22ba=,那么ba=; 18.①、③、④.三、解答题:19. 略20. 7560,45∠=︒∠=︒∠=︒,.A B C21. 证明:∵AB//CD∴∠ABD=∠BDC又∵AD//BC ∴∠ADB=∠CBD.在△ABD和△CDB中,∠ABD=∠BDC , AD//BC,∠ADB=∠CBD ∴△ABD≌△CDB(ASA).解题技巧专题:圆中辅助线的作法——形成精准思维模式,快速解题◆类型一 遇弦过圆心作弦的垂线或连半径1.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是( ) A .4 B .23 C .8 D .43第1题图 第2题图2.如图,已知⊙O 的半径OD 与弦AB 互相垂直,垂足为点C ,若AB =16cm ,CD =6cm ,⊙O 的半径为________. ◆类型二 遇直径添加直径所对的圆周角3.如图,AB 是⊙O 的直径,C ,D ,E 都是⊙O 上的点,则∠ACE +∠BDE 等于( )A .60°B .75°C .90°D .120°第3题图第4题图4.如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是________.5.如图,△ABC的顶点均在⊙O上,AD为⊙O的直径,AE⊥BC于E.求证:∠BAD=∠EAC.类型三遇切线连接圆心和切点6.已知⊙O的半径为1,圆心O到直线l的距离为2,过l上任一点A作⊙O的切线,切点为B,则线段AB长度的最小值为( )A.1 B. 2 C. 3 D.27.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为________.8.★如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC =∠ABD ; (2)求证:AD 2=AM ·AB ;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.。
湘教版八年级数学上第二章《三角形》测试卷含答案

湘教版八年级数学(上)第二章《三角形》测试卷一、选择题( 30 分)B1、如图,已知在 Rt △ABC中,∠ C=90°,沿图中1虚线减去∠ C,则∠ 1+∠2 等于()A. 315 °,B. 270 °,C. 18 0°,D. 135 °,22、已知三角形三边长分别为4、5、x,则 x 不行能C是()AA.3,B.5,C.7 ,D. 9,3、如图,在△ ABC中, AB=AC,AD=DE,20°∠ BAD=20°,∠ EDC=10°,则∠ DAE的度数()BA.30 °,B. 40°,C.60°,D. 80 °,D4、已知等腰三角形的两边长是 5 和 6,则这个三角形的周长是(A.11,B.16,C. 17,D. 16或,A175、如图,在△ ABC中, AB=AC,BD⊥AC,CE⊥AB, O是 BD、CE的交点,则图中的全等E三角形有()O A. 3对, B.4对, C.5对, D. 6对, B6、如图,过△ ABC的极点 A,作 BC边上的高,以下作法正确的选项是(A ADA AD BCB B BC D C DCA B C DAE 10°C )DC)7、在△ ABC与△ A′B′C′中,已知∠ A=∠ A′, AB=A′B′,以下说法正确的选项是()A.若增添条件 AC=A′C′,则△ ABC≌△ A′B′C′;B.若增添条件∠ B=∠ B′,则△ ABC≌△ A′B′C′;,C.若增添条件∠ C=∠ C′,则△ ABC≌△ A′B′C′;D.若增添条件 BC=B′C′,则△ ABC≌△ A′B′C′;8、以下命题是真命题的是()A. 互补的角是邻补角;B. 同位角相等;C. 对顶角相等;D. 同旁内角互补;9、如图,等腰△ ABC中, AB=AC,ABD均分∠ ABC,∠ A=36°,则∠ 1 的度数为()A.36 °,B. 60 °,C.72°,D. 108°,10、△ ABC≌△ DEF,AB=2,AC=4,若△ DEF D的周长为偶数,则 EF 的取值为()B 1A.3,B.4 ,C.5 ,D.3或4或5;C二、填空题( 24 分)11、把一副三角板按如下图的方式搁置,则两条斜边所形成的钝角а = 。
湘教版八年级上册数学第2章三角形选择题训练(解析版)

第2章三角形选择题训练1.三角形的内角和等于()A.90°B.180°C.270°D.360°2.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,103.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是()A.50°B.60°C.70°D.80°5.判断命题“如果n<1,那么n 2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.6.下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分7.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2B.3C.4D.2或48.如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°9.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°10.如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°11.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.1512.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°13.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC14.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.215.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.116.如图,在等边三角形ABC中,AE=CD,CE与BD相交于点G,EF⊥BD于点F,若EF=2,则EG的长为()A.B.C.D.417.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙18.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c19.如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A.B.C.D.20.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD21.如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°22.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.1323.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.24.如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF 的长为()A.B.3C.2D.25.如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是()A.64°B.32°C.30°D.40°26.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°27.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°28.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①29.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于RD.只有正方形的外角和等于360°30.下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm31.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.332.如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()33.如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°34.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段DC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD?OE35.已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个36.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE 的长是()第2章三角形选择题训练参考答案与试题解析1.【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.【点评】本题主要考查了三角形的内角和定理,熟记“三角形的内角和等于180度“是解题的关键.2.【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.3.【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.4.【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.【点评】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,本题较为综合,但难度不大.5.【分析】反例中的n满足n<1,使n 2﹣1≥0,从而对各选项进行判断.【解答】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【分析】由平行四边形的性质得出A是假命题;由同角(或等角)的余角相等,得出B是真命题;由线段垂直平分线的性质和正方形的性质得出C、D是真命题,即可得出答案.【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;B.同角(或等角)的余角相等;真命题;C.线段垂直平分线上的点到线段两端的距离相等;真命题;D.正方形的对角线相等,且互相垂直平分;真命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【解答】解:①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边为4;②4是底边时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,综上所述,第三边为4.故选:C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.8.【分析】根据等腰三角形和平行线的性质即可得到结论.【解答】解:∵AC=CB,∠C=40°,∴∠BAC=∠B=(180°﹣40°)=70°,∵AD=AE,∴∠ADE=∠AED=(180°﹣70°)=55°,∵GH∥DE,∴∠GAD=∠ADE=55°,故选:C.【点评】本题考查了等边三角形的性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.9.【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.10.【分析】由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.【解答】解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.【点评】本题考查了等腰三角形的性质定理,三角形的外角性质定理及三角形的内角和,这些都是一些基础知识点,难度不大.11.【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【解答】解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故选:B.【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.12.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.14.【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE ≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.15.【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH(AAS),得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC ≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;【点评】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.16.【分析】由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,AB=AC=BC,由“SAS”可证∠ACE=∠DBC,由外角的性质可得∠EGF=60°,由直角三角形的性质可求EG的长.【解答】解:∵△ABC是等边三角形∴∠ABC=∠BAC=∠ACB=60°,AB=AC=BC,∵AE=CD,∠BAC=∠ACB,AC=BC∴△AEC≌△CDB(SAS)∴∠ACE=∠DBC,∵∠EGF=∠BCG+∠DBC=∠BCG+∠ACE=∠ACB∴∠EGF=60°,且EF⊥BD∴∠FEG=30°∴EF=FG=2,EG=2FG∴EG=故选:B.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,求∠EGF =60°是本题的关键.17.【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.【分析】由∠ADC=2∠B且∠ADC=∠B+∠BCD知∠B=∠BCD,据此得DB=DC,由线段的中垂线的性质可得答案.【解答】解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握三角形外角的性质、中垂线的性质及其尺规作图.20.【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠OCN=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.21.【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.22.【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.23.【分析】作线段BC的垂直平分线可得线段BC的中点.【解答】解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.【点评】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.24.【分析】利用线段垂直平分线的性质得到FB=FC,CG=BG=2,FG⊥BC,再证明BF=CF,则CF 为斜边AB上的中线,然后根据勾股定理计算出AB,从而得到CF的长.【解答】解:由作法得GF垂直平分BC,∴FB=FC,CG=BG=2,FG⊥BC,∵∠ACB=90°,∴FG∥AC,∴BF=CF,∴CF为斜边AB上的中线,∵AB==5,∴CF=AB=.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.25.【分析】根据平行线的性质求出∠EAD,根据角平分线的定义得到∠EAC=2∠EAD=64°,根据三角形的外角性质计算即可.【解答】解:∵AD∥BC,∴∠EAD=∠B=32°,∵AD是△ABC的外角∠EAC的平分线,∴∠EAC=2∠EAD=64°,∵∠EAC是△ABC的外角,∴∠C=∠EAC﹣∠B=64°﹣32°=32°,故选:B.【点评】本题考查的是平行线的性质、三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.26.【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.【点评】本题考查的是三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.27.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.【点评】此题考查三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.28.【分析】首先写出各个命题的逆命题,然后进行判断即可.【解答】解:①两直线平行,内错角相等;其逆命题:内错角相等两直线平行是真命题;②对顶角相等,其逆命题:相等的角是对顶角是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形是假命题;故选:C.【点评】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.29.【分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项.【解答】解:A、三角形两边的和大于第三边,正确,是真命题;B、正六边形的每个中心角都等于60°,正确,是真命题;C、半径为R的圆内接正方形的边长等于R,正确,是真命题;D、所有多边形的外角和均为360°,故错误,是假命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和等知识,难度不大.30.【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点评】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.31.【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.32.【分析】连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.【解答】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC?BN=×1=,∴S△OBC=BC?ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.33.【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.【点评】本题考查的是三角形内角和定理、对顶角的性质,掌握三角形内角和等于180°是解题的关键.34.【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD?OE,但不能得出∠OCD=∠ECD,故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).35.【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点评】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.36.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.。
湘教版八年级数学上册第2章测试卷

第二章三角形1.(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹);并判断BE与CD的大小关系为:BE CD.(不需说明理由)(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE、CD,BE与CD有什么数量关系?并说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B、E的距离.已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.2.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.3.如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?4.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.5.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.6.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.7.如图,A,B,C,D,E,F,M,N是某公园里的8个独立的景点,D,E,B 三个景点之间的距离相等;A,B,C三个景点距离相等.其中D,B,C在一条直线上,E,F,N,C在同一直线上,D,M,F,A也在同一条直线上.游客甲从E点出发,沿E→F→N→C→A→B→M游览,同时,游客乙从D点出发,沿D →M→F→A→C→B→N游览.若两人的速度相同且在各景点游览的时间相同,甲、乙两人谁最先游览完?请说明理由.8.如图,有一池塘,要测量池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?9.如图,一条输电线路需跨越一个池塘,池塘两侧A、B处各立有一根电线杆,但利用现有皮尺无法直接量出A、B间的距离,请你设计一个方案,测出A、B 间的距离,并说明理由.10.小华用四根竹棒扎成如图的风筝的框架,已知AE=DE,BE=CE,你认为小华的风筝两脚的大小相等(即∠B=∠C)吗?请说明理由.1.如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角板的三个顶点A、B、C分别槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中你发现线段AD与BE有什么关系?试说明你的结论.2.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,∠CBA=32°,求∠EFD的度数.3.如图,要测量池塘A、B两点间的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再过D点作出BF的垂线DG,并在DG上找一点E,使A、C、E 在一条直线上,这时,测量DE的长就是AB的长,为什么?4.小明用三角板按如图所示的方法画角平分线,在∠AOB的两边分别取OC=OD,再分别以C、D为垂足,用三角板作OA、OB的垂线,交点为P,作射线OP,则OP就是∠AOB的角平分线,你认为小明的做法有道理吗?请你给出合理的解释.5.阅读材料,解答问题:在数学课上,李老师和同学们一起探讨角平分线的作法时,李老师用直尺和圆规作角的平分线,作法如下:①如图1,在OA和OB上分别截取OD、OE,使OD=OE;②分别以D、E为圆心,以大于的长为半径作弧,两弧交于点C;③作射线OC,则OC就是∠AOB的平分线.小聪只带了直角三角板,他发现利用三角板也可以作角平分线,作法如下:①如图2,利用三角板上的刻度,在OA和OB上分别画点M、N,使OM=ON;②分别过点M、N作OM、ON的垂线,交于点P;③作射线OP,则OP就是∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.请你按要求完成下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的方法是.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法(要求:画出图形,并简述过程和理由)6.如图要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,并使点A、C、E三点在同一条直线上,因此只要测得ED的长就知道AB的长.请说明这样测量正确性的理由.7.如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与BC是否相等?说明你的理由.解:在△ADE和△BCF中,∴△ADE≌△BCF ()∴AD=BC ()8.某中学七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案,设计方案:先在平地上取一个可直接到达A,B的点E(AB为池塘的两端),连接AE,BE,并分别延长AE至D,BE至C,使ED=AE,EC=BE.测出CD的长作为AB之间的距离.他的方案可行吗?请说明理由.若测得CD为10米,则池塘两端的距离是多少?9.某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长.(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后回答下列问题:(1)方案(I)是否可行?,理由是;(2)方案(II)是否切实可行?,理由是.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?(4)方案(II)中,若使BC=n•CD,能否测得(或求出)AB的长?理由是,若ED=m,则AB= .考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x +12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C .第三象限D .第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y =(5-m 2)x 和关于x 的一元二次方程(m +1)x 2+mx +1=0中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是 .12.(甘孜州中考)若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是 . .◆类型三 一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y =(m +1)x +m -1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k ≠0 13.B 14.k ≥1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名
得分
一、选择题(每小题 3 分,共 24 分)
1.如图 1,线段 AD 把△ABC 分成面积相等的两部分,则
AD 是(
)
A.△ABC 的角平分线
B.△ABC 的中线
C.△ABC 的高
D.以上都不对
图1
2.在下列长度的四根木棒中,能与长为 4 cm,9 cm 的两根木棒钉成一个三角形
D 为 AB 延长线上一点,点 E 在 BC 边上,且 BE=BD, 连结 AE,DE,DC. (1)求证:△ABE≌△CBD; (2)若∠CAE=30°,求∠BDC 的度数.
图18
参考答案 1.B 2.C 3.B 4.D 5.D 6.A 7.C 8.D 9.同一平面内,若 a⊥b,c⊥b a∥c 真 10.AF 11.40 12.50° 13.∠B=∠C(或 AB=AC 或∠AEB=∠ADC 或∠BDC=∠CEB 等) 14.70° 15.70° 16.5 17.如图所示.
三、解答题(共 72 分)
17.(13分)如图 13,已知 AD 是△ABC 的中线。求证: AD< 1 (AB+AC).
2
图 13
18.(12 分)如图 14 所示,在△ABC 中,ACB=90°,CD⊥AB,AE 平分∠CAB 交 CD 于 F,FG∥CB 交 AB 于 G,求证: AG=AC.
(
)
A.3
B.4
C.5
D.6
7.下列条件中,能判定△ABC 为直角三角形的是
(
)
A.∠A=∠B=∠C
B.∠A+∠B=2∠C
C.∠A∶∠B∶∠C=1∶2∶3
D.∠A=12∠B=12∠C
8.如图 4,AB=CD,△ABC 与△BDE 都是等边三角形,若 ABC 不动,将△BDE
绕点 B 旋转,则在旋转的过程中,AE 与 CD 的大小关系为
10.如图 6 所示,CD⊥AB,CE⊥BC,AF⊥BF,则△ABC 的边 BC 上的高是线 段________.
图7 图6
11.如图 7,AB∥CD,AE=AF,CE 交 AB 于点 F,∠C=110°,则∠A=______
12.用反证法证明命题“若 a-b>0,则 a>b”,应假设
可推出
与
相矛盾。
13.如图 8,点 D、E 分别在线段 AB,AC 上,AE=AD,
不添加新的线段和字母,要使△ABE≌△ACD,需添
加 的 一 个 条 件 是 ________________________( 只 写 一
个条件即可).
图8
14.如图 10 所示,在四边形 ABCD 中,AB=CD,AB∥CD,若∠B=70°,则 ∠D=________.
图 16
21.(12分)如图 17,点 B,C 在∠SAF 的两边上.且 AB=AC.
(1)请按下列语句用尺规画出图形(不写作法,保留作图痕迹).
①AN⊥BC,垂足为 N;
②∠SBC 的平分线交 AN 延长线于 M;
③连接 CM.
(2)该图中有________对全等三角形.
图17
22.(13 分) 如图 18,在△ABC 中,AB=CB,∠ABC=90°,
的是 (
)
A.4 cm
B.5 cm
C.9 cm
D.13 cm
3.如图 2,工人师傅做了一个长方形窗框 ABCD,E,F,G,H
分别是四条边 AD,DC,CB,AB 上的中点,为了使它稳固,
需要在窗框上钉一根木条,这根木条不应钉在(
)
A.A,C 两点之间
B.E,G 两点之间
C.B,F 两点之间
D.G,H 两点之间
图 10
图 11
图 12
15.如图 11 所示,在△ABC 中,CD=DE,AC=AE,∠DEB=110°,则∠C=
________.
16.如图 12,在△ABC 中,BC=5 cm,BP,CP 分别是∠ABC 和∠ACB 的平分
ቤተ መጻሕፍቲ ባይዱ
线,且 PD∥AB,PE∥AC,则△PDE 的周长是______cm.
19.(10分)如图 15,点 B,F,C,E 在一条直线上, FB=CE,AB∥ED,AC∥FD.求证:AC=DF.
图 14
20.(12 分)如图 16,在△ABC 中,线段 AB,AC 的垂 直平分线分别交 BC 于 P,Q 两点,且 BP=PQ=QC. 试证明△APQ 为等边三角形.
图15 图 15
4.下列各图中,∠1 大于∠2 的是(
)
图2
5.根据下列已知条件,能唯一画出△ABC 的是(
)
A.AB=3,BC=3,AC=7
B.AB=5,BC=7,∠A=50°
C.∠A=65°,∠B=55°,AB=3
D.∠C=90°,AB=5
图3
图4
6.如图 3,AB∥CD,BC∥AD,AB=CD,BE=DF,其中全等三角形的对数是
18.∠C=34° 19.证明略 20.证明略 21.(1)略 (2)3 22.(1)证明略 (2)75°
(
)
A.AE=CD
B.AE>CD
C.AE<CD
D.无法确定
二、填空题(每小题 3 分,共 24 分)
9 .“ 同 一 平 面 内 , 若 a⊥b , c ⊥ b , 则 a∥c” 这 个 命 题 的 条 件 是 ______________________,结论是___________________________________, 这个命题是______命题.