求复合函数偏导数的链式法则解
复合函数求导法则

导数存在,且可用下列公式计算
z
z
u
z
v
,
x u x v x
z y
z u
u y
z v
v y
.
链式法则如图示
u
x
z
v
y
z z u z v , x u x v x z z u z v . y u y v y
例 1 设 z eu sin v ,而u xy,v x y , 求 z 和z . x y
即 z f[(x ,y )x ,y ],令 vx, wy,
v 1, w 0,
x
x
zf uf, x u x x
v 0, w 1.
y
y
区
z f uf . y u y y
别 类 似
两者的区别
把 z f (u, x, y)
把复合函数zf[(x,y),x,y]中 的 u 及 y 看 作 不
中 的y看 作 不 变 而 对 x的 偏 导 数 变 而 对 x 的 偏 导 数
同理有 f2, f11, f22.
w x
f u f v
u x v x
f1yfz2 ;
2w xz
( z
f1
yzf2)
fz1yf2yzfz2;
f 1 z
fu1uzfv1vz f1 1xf1 y ;2
f 2 z
f2uf2v u z v z
f2 1xf2 y ;2
于是
2w xz
f11xfy12 yf2 y(f z 2 1xf2 y )2
连续偏导数,求 w 和 2w . x xz
(3)求抽象函数的二阶偏导数时要注意,对一 切一阶偏导数来说其结构图仍与原来函数的结 构图相同。
复合函数求偏导

w w du w v w t x u dx v x t x
2x w y w yz w, u v t
w y
w v
v y
w t
t y
x
w v
xz
w. t
w w t xy w. z t z t
3.设函数w=f(u,v)有连续偏导数,而 u (x), v (x)
可导,则复合函数
z f [(x), (x)]
只是自变量x的函数, 求z对x的导数 dz .
dx
可得
dz z du z dv.
(5)
dx u dx v dx
在这里,函数z是通过二元函数z=f(u,v)而成为x的
x
x
例1
设 z eu sinv,u xy,v x y, 求 z , z . x y
解法1 得
z z u z v x u x v x
eu sin v y eu cos v 1
exy[ y sin(x y) cos(x y)],
x y
自变量x到达z的路径有二条,第一路径上只有一
个函数,即z是x的函数.第二路径上有两个函数z和v.自 变量y到达z的路径只有一条,于是 z , z 的偏导数
x y 公式应是:
z f f v,
x x v x z f v .
(6)
y v y
一元复合函数.因此,z对x的导数 dz 又称为z对x的全 dx
导数.对公式(5)应注意,由于z,u,v这三个函数都是x
的一元函数,故对x的导数应写成 dz , du , dv ,而不能
2 复合函数偏导数的链式法则

存在,求 z = f ( x,ϕ ( x)) 关于 x 的一阶与二阶导数. 例3
例4 变换下,证明
1 ∂u ∂u ∂u ∂u + 2 = + . ∂r r ∂θ ∂x ∂y
2 2 2
Байду номын сангаас
2
∂u ∂u ∂x ∂u ∂y = ⋅ + ⋅ ∂t ∂x ∂t ∂y ∂t
∂u ∂u ∂x ∂u ∂y = ⋅ + ⋅ , ∂s ∂x ∂s ∂y ∂s
及
这个公式称为求复合函数偏导数的链式法则. 下面讲几个特殊情形. 若 u = f ( x, y ) ,而 x, y 依赖于一个变量 t ,即
x = ϕ (t ), y = ψ (t ),
那么,就有
等式右边的最后一项,我们有意识地把它写成 .为的 ∂u 是免得它与等式左边的 ∂t 混淆起来.右端的 是表示 在函数u = f ( x, y, t )中把 x, y 看做常数,对 t 求偏导数,而左 ∂u 端的 ∂t 是表示在 u = f (ϕ ( s, t ),ψ ( s, t ), t ) 中把 s 视为常数, 对 t 求偏导数,二者切不可混淆.
则有 再有,若
du ∂u dx ∂u dy = ⋅ + ⋅ . dt ∂x dt ∂y dt x, y 是自变量 s, t 的函数,而函数 u
除随
x, y 而变化外还依赖于 t ,即 u = f ( x, y, t ); x = ϕ ( s, t ), y = ψ ( s, t ), ∂u ∂u ∂x ∂u ∂y ∂u = ⋅ + ⋅ + ∂t ∂x ∂t ∂y ∂t ∂t
2 复合函数偏导数的链式法则
9(4)多元复合函数的求导法则

∂u ∂u ∂u sinθ = cosθ − ∂x ∂ r ∂θ r
∂ u ∂ u = ∂u + 1 ∂u 得 + ∂ y ∂r r 2 ∂ θ ∂x
2 2
2 2
多元复合函数的求导法则
∂u ∂u ∂u sin θ cos θ − = ∂x ∂r ∂θ r
x2 + y2 +z2
∂u ∂u 求 , ∂x ∂y
u
+2ze
x2 + y2 +z2
2 2
⋅ 2 xsin y
4 2
= 2 x (1+ 2 x2 sin2 y) ex
∂u ∂ f ∂ f ∂z + ⋅ = ∂y ∂y ∂z ∂y
+ y +x sin y
x y z
x y
= 2ye
x2 + y2 +z2
∂z ∂z ∂u ∂z ∂v ∂z ∂w = + + ∂x ∂u ∂x ∂v ∂x ∂w ∂x
∂z ∂z ∂u ∂z ∂v ∂z ∂w = + + ∂y ∂u ∂y ∂v ∂y ∂w ∂y
u
z
x
v w
y
多元复合函数的求导法则
例2 设z = e u sin v , u = xy , v = x + y , 求 ∂z 和 ∂z . ∂x ∂y ∂z ∂z ∂u ∂z ∂v 解 = ⋅ + ⋅
r θ
x y
多元复合函数的求导法则
y u = F(r,θ ), r = x + y , θ = arctan x ∂ u ∂ u ∂ r ∂u ∂ θ ∂ u y ∂ u x = + = + ∂ y ∂ r ∂ y ∂ θ ∂ y ∂r r ∂ θ r 2 r x ∂u ∂u cos θ sin θ + u = ∂r ∂θ r y θ
一链式法则

的函数,它的全微分形式是一样的.
注意,在复合函数情形下,du, dv也是u, v的函数,
因而高阶全微分不具有形式不变性。
Yunnan University
§2. 求复合函数偏导数的链式法则
例 8 设 z eu sin v,而 u xy,v x y,
求全微分 dz .
解:
dz
z u
du
z v
§2. 求复合函数偏导数的链式法则
二、复合函数的全微分
设函数z f (u,v)具有连续偏导数,则 u,v 不论是
自变量还是中间变量,总有全微分
dz
z u
du
z v
dv 。
事实上,
(1)如果 u,v 是自变量,结论显然。
(2)如果 u,v 是中间变量,u ( x, y), v ( x, y).
§2. 求复合函数偏导数的链式法则
等式两边求导,得
x0 f1' y0 f2' nt n1 f x0 , y0 .
当t 1时,有
x0 f1' y0 f2' n f x0 , y0 .
将 x0 , y0 换成D内任一点 x, y ,有
xf1'
yf
' 2
nf
x,
y,
即
f x
f y
nf .
任意的二次可微函数,求证: 2 u t 2
a2
2u x 2
.
Yunnan University
§2. 求复合函数偏导数的链式法则
证明: u ' ', u a ' a ',
x
t
2u x 2
''
复合函数求导(链式法则)

复合函数求导(链式法则)(建议阅读原文)预备知识微分若有两个一元函数 f(x) 和 g(x),我们可以把 g 的函数值作为 f 的自变量,得到一个新的函数称为f(x) 和 g(x) 的复合函数,记为 f[g(x)].如果我们已知两个函数 f(x) 和 g(x) 的导函数 f'(x) 和 g'(x),那么我们可以通过以下公式求复合函数 f[g(x)] 的导数.\begin{align}&f[g(x)]' = f'[g(x)]g'(x)&(1)\\\end{align}对于多个函数的复合函数,我们也有类似的公式,例如\begin{align}&f[g(h(x))]' =f'[g(h(x))]g'[h(x)]h'(x)&(2)\\\end{align}例1 基本初等函数的复合函数求导我们已经知道基本初等函数的导数的导函数,下面对它们的一些常见的复合函数进行求导. \sin^2 x 可以看作幂函数 f(x) = x^2 和 g(x) =\sin x 的复合函数,已知 f'(x) = 2x, g'(x) = \cos x,代入式 1 得\begin{align}&(\sin^2 x)' = 2\sin x \cosx&(3)\\\end{align}几何理解为了方便表示,我们把 g 的函数值和 f 的自变量记为 u,把 f 的函数值记为 y.图 1:可以将 \sin^2 x 看做 f(u) = u^2 和 g(x) = \sin x 的复合函数我们可以用类似图 1 的图像来直观地理解复合函数.先画出y = f(u) 和 u = g(x) 的图像,并将 g(u) 的图像逆时针旋转90° 使得两图的 u 轴对齐.这样对于任何定义域中的自变量 x,我们只需要先在 g(x) 的图中画出 u 的位置,再对应到 f(u) 的图像中求出 y 的位置即可.现在我们要讨论的问题是,若已知两函数的导函数 f'(x) 和 g'(u)(假设它们在定义域内处处可导)如何求复合函数 f[g(x)] 的导数.对于给定的 x,我们先来看当 x 增加 \Delta x 时 y 的增量 \Delta y 的大小.我们可以使用与图 1 类似的方法画出图 2 ,然后只需要令 \Delta x \to 0,就可以根据定义求出复合函数的导数\begin{align}&f[g(x)]' =\frac{\mathrm{d}}{\mathrm{d}{x}} f[g(x)] =\lim_{\Delta x\to 0} \frac{\Delta y}{\Deltax}&(4)\\\end{align}图 2:用图 1 中的方法求出任意 \Delta x 对应的 \Delta y在这个过程中,我们在得到 \Delta y 之前先得到了 u 的增量 \Delta u.当 \Delta x 较小时有微分近似(式2 )\begin{align}&\Delta {u} \approx g'(x) \Delta{x}\qquad \Delta{y} \approx f'(u)\Delta{u}&(5)\\\end{align}当 \Delta x \to 0 时对应的微分关系(式 1 )为\begin{align}&\,\mathrm{d}{u} = g'(x) \,\mathrm{d}{x} \qquad \,\mathrm{d}{y} = f'(u)\,\mathrm{d}{u}&(6)\\\end{align}将上式中的左边代入右边得 \begin{align}&\,\mathrm{d}{y} = f'(u) g'(x) \,\mathrm{d}{x} = f'[g(x)]g'(x)\,\mathrm{d}{x}&(7)\\\end{align}而复合函数的微分是 \begin{align}&\,\mathrm{d}{y} =f[g(x)]' \,\mathrm{d}{x}&(8)\\\end{align}对比以上两式(微分和导数的关系)得\begin{align}&f[g(x)]' = f'[g(x)]g'(x)&(9)\\\end{align}这就是复合函数的求导公式.在上面的例子中\begin{align}&g(x) = \sin x \qquad g'(x) = \cos x\qquad f(u) = u^2 \qquad f'(u) = 2u\qquad&(10)\\\end{align}代入上式得\begin{align}&\frac{\mathrm{d}}{\mathrm{d}{x}} \sin^2 x = 2\sin x \cos x&(11)\\\end{align}复合函数的求导公式也叫链式法则,原因是我们可以把以上推导过程用导数的另外一种符号表示如下.\begin{align}&\,\mathrm{d}{y} =\frac{\mathrm{d}{y}}{\mathrm{d}{u}} \,\mathrm{d}{u} = \frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{x}}\,\mathrm{d}{x}&(12)\\\end{align}得 \begin{align}&\frac{\mathrm{d}{y}}{\mathrm{d}{x}} = \frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{x}}&(13)\\\end{align}这种书写方式让人不禁想把 \mathrm{d}{y}/\mathrm{d}{x} 看做是 \,\mathrm{d}{y} 和 \,\mathrm{d}{x} 相除,这样的符号分割是错误的,尤其是在以后学习高阶导数和偏导数时.多重复合函数要对多重复合函数如 f[g(h(x))] 求导,可以先对 g[h(x)] 求导得 g'[h(x)]h'(x) 再得到\begin{align}&f[g(h(x))]' =f'[g(h(x))]g'[h(x)]h'(x)&(14)\\\end{align}令 v = h(x),用微分符号可以表示为\begin{align}&\frac{\mathrm{d}{y}}{\mathrm{d}{x}} =\frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{v}}\frac{\mathrm{d}{v}}{\mathrm{d}{x}}&(15)\\\end{align}任意多重的复合函数求导同理可得.例2 对函数求导\begin{align}&\frac{1}{\sqrt{x^2+a^2}}&(16)\\\end{alig n}首先令 f(x) = 1/\sqrt{x} 再令 g(x) = x^2+a^2,上式等于 f[g(x)].由基本初等函数的导数, \begin{align}&f'(x) = -\frac{1}{2\sqrt{x^3}} \qquad g'(x) =2x&(17)\\\end{align}代入式 9 ,得\begin{align}&\frac{\mathrm{d}}{\mathrm{d}{x}}\frac{1}{\sqrt{x^2+a^2}} = f'[g(x)] g'(x) = -\frac{x}{\sqrt{(x^2+a^2)^3}}&(18)\\\end{align}一种较灵活的情况是,当三个变量只有一个自由度1时,任何一个变量都可以看做任何另外两个变量的函数2,这时可以根据需要灵活运用链式法则,如例 3 .例3 加速运动公式假设质点做一维运动,位移,速度和加速度分别记为 x(t), v(t) = \mathrm{d}{x}/\mathrm{d}{t},a(t) = \mathrm{d}{v}/\mathrm{d}{t},但若把速度 v 看做复合函数 v[x(t)],根据链式法则有\begin{align}&a = \frac{\mathrm{d}{v}}{\mathrm{d}{t}} = \frac{\mathrm{d}{v}}{\mathrm{d}{x}}\frac{\mathrm{d}{x}}{\mathrm{d}{t}} =\frac{\mathrm{d}{v}}{\mathrm{d}{x}} v&(19)\\\end{align}写成微分表达式,有 a \,\mathrm{d}{x} = v\,\mathrm{d}{v}.注意到 \,\mathrm{d}\left(v^2 \right) = 2v \,\mathrm{d}{v},代入得\begin{align}&\,\mathrm{d}\left(v^2 \right) = 2a\,\mathrm{d}{x}&(20)\\\end{align}若质点做匀加速运动,该式的物理意义是在任何一段微小时间内,速度平方的增量正比于这段时间内的位移增量.在一段时间 [t_1,t_2] 内把这些增量累加起来,就得到高中熟悉的运动学公式 \begin{align}&v_2^2-v_1^2 = 2a(x_2-x_1)&(21)\\\end{align}其中 x_1,v_1 和 x_1,v_1 分别是 t_1,t_2 时刻的位置和速度.1. 即任何一个变量值确定后,另外两个变量也随之确定2.姑且假设不会出现一个自变量对应两个函数值的情况。
(完整版)3多元复合函数与隐函数的求导法则

z f [φ(t),ψ(t)]
z f (u,v)
u φ(t)
v ψ(t)
dz z du z dv dt u dt v dt
全导数
例 1 设 z eu sin v ,而u xy,v x y 求 z 和z . x y
解 z z u z v eu sin v y eu cos v 1
x y
证
z 0 F ( x2 y2 ) ,
z
1
F ( x2
y2) ,
x
x
y
y
下求 F ( x2 y2 )对x, y的偏导.记u x2 y2,
x u x v x eu ( y sin v cos v)
z y
z u
u y
z v
v y
eu sin v x eu cos v 1
eu( x sin v cos v)
例 2 设 z u2 v2 ,而u x y,v x y ,
求 z 和z . x y
解 z z u z v 2u 1 2v 1 4x x u x v x
§3复合函数与隐函数的偏导数
一、多元复合函数的导数(链式法则)
定理:z f [( x, y),( x, y)]
z f (u,v) u ( x, y)
v (x, y)
z z u z v z z u z v x u x v x y u y v y
链式法则如图示 z f [( x, y),( x, y)]
解 dz z du z dv z dt u dt v dt t
v et u sin t cost
et cos t et sin t cos t
et (cos t sin t ) cos t
例5
二元复合函数求偏导

二元复合函数求偏导二元复合函数求偏导是高等数学中的一个重要概念,它在微积分、统计学和金融学等领域中都有广泛应用。
本文将介绍二元复合函数求偏导的定义、求法以及应用。
一、定义二元复合函数指的是由两个变量组成的函数,例如f(x,y)=g(u,v),其中u=u(x,y)和v=v(x,y)是关于x和y的函数。
对于这样的函数,我们可以通过求偏导来研究它们的性质。
二、求法对于一个二元复合函数f(x,y)=g(u,v),我们可以通过链式法则来求它的偏导数。
具体来说,如果我们想求f关于x的偏导数,那么可以按照以下步骤进行:1. 求出u关于x的偏导数:u_x = ∂u/∂x2. 求出v关于x的偏导数:v_x = ∂v/∂x3. 将上述结果代入g中得到g_x = ∂g/∂u * u_x + ∂g/∂v * v_x4. 最后将g_x代入f中得到f_x = g_x同理,我们也可以求出f关于y的偏导数:1. 求出u关于y的偏导数:u_y = ∂u/∂y2. 求出v关于y的偏导数:v_y = ∂v/∂y3. 将上述结果代入g中得到g_y = ∂g/∂u * u_y + ∂g/∂v * v_y4. 最后将g_y代入f中得到f_y = g_y需要注意的是,这里的符号“∂”表示偏导数,而不是普通的导数。
三、应用二元复合函数求偏导在实际应用中有很多用处。
例如,在金融学中,我们可以通过求偏导来研究不同投资方案之间的收益率差异。
在微积分中,我们可以通过求偏导来研究曲面的切线和法线。
在统计学中,我们可以通过求偏导来估计参数值和预测未来趋势。
总之,二元复合函数求偏导是一个非常重要的概念,在数学和实际应用中都有广泛应用。
掌握这个概念对于提高数学素养和解决实际问题都有很大帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yunnan University
e [ y sin( x y ) cos( x y )]dx
xy
z y
e xy [ x sin( x y ) cos( x y )]dy .
§2. 求复合函数偏导数的链式法则
例 9 已知 e
解
xy
d e
2 z e 0 ,求 z 和 z .
Yunnan University
§2. 求复合函数偏导数的链式法则
u u 证明: ' ', a ' a ', x t 2u 2u 2 2 '' '', a '' a '', 2 2 x t 所以
2 2u u 2 a . 2 2 t x
将 x0 , y0 换成D内任一点 x , y , 有 xf yf nf x , y ,
' 1 ' 2
即 f f x y nf . x y
Yunnan University
§2. 求复合函数偏导数的链式法则
对z f x , y
x 2 y 2 , 它满足
Yunnan University
§2. 求复合函数偏导数的链式法则
二、复合函数的全微分
设函数 z f ( u, v ) 具有连续偏导数,则 u,v 不论是 自变量还是中间变量,总有全微分
dz z du z d,结论显然。
(2)如果 u,v 是中间变量, u ( x , y ), v ( x , y ). 有全微分:
§2. 求复合函数偏导数的链式法则
一、链式法则
定理1 设u f
x , y , x x , t , y x , t , 此时,
x y x y 若 , 及 , 在某点 s, t 都存在,而f x , y t t s s 在相应于 s , t 的点 x , y 可微,则成立公式: u u x u y t x t y t 及 u u x u y s x s y s
§2. 求复合函数偏导数的链式法则
例2 解:
dz d 2 z 设z f x , y , y x , 求 , 2 . dx dx dz f x f y f x f y ' x
dx x x y x
再求导,得
d 2 z f x f x y f y f y ' x ' x f y ' x 2 dx x y x x y f x 2 2 f xy ' x f y 2 ' x f y '' x .
例 8 设 z e u sin v ,而 u xy , v x y , 求全微分 dz .
解:
dz z du z dv u v
(e u sin v )d ( xy ) (e u cos v )d ( x y ) (e u sin v ) ydx xdy (e u cos v )dx dy e u ( y sin v cos v )dx e u ( x sin v cos v )dy
u u u ' ' f1 y f 2 x x x 2 u '' '' '' ' f11 2 xf12 yf12 f 2 xy
Yunnan University
§2. 求复合函数偏导数的链式法则
u '' '' '' '' f f y f f y y 11 12 12 22 2 x '' '' '' 2 f11 2 f12 y f 22 y
2
例4 设u x x y y x y , 则 2u 2u 2u 2 2 0. 2 x x y y
u 证明: x ' y ', x
Yunnan University
§2. 求复合函数偏导数的链式法则
2u ' ' x '' y '' 2 ' x '' y '', 2 x
u u x u y u t x t y t t
Yunnan University
§2. 求复合函数偏导数的链式法则
u u x u y s x s y s
u u 例1 设u x y , x 2 st , y t s , 求 , . s t
u u u 2 2 0. 2 x xy y
2 2 2
例6. 设f tx , ty t f x , y , 则有
n
证明: 设f
x , y 的定义域D, 有条件知 x0 , y0 D, 有 f tx0 , ty0 t n f x0 , y0 .
f tx , ty tf x , y , 即为一次函数,所以 z z x y f x, y x y x y .
2 2
例7. 设u x at x at , 其中 与 是
2 2u u 2 任意的二次可微函数,求证: 2 a . 2 t x
x
u
y
t
x
u
y
s
§2. 求复合函数偏导数的链式法则 特殊情形
(1) u f ( x , y ), x t , y t , 则有 du u dx u dy dt x dt y dt (2) u f ( x , y , t ), x s , t , y s , t , 则有
Yunnan University
§2. 求复合函数偏导数的链式法则
Yunnan University
§2. 求复合函数偏导数的链式法则
Yunnan University
2
Yunnan University
§2. 求复合函数偏导数的链式法则
u 2 u 2 u , 2, . 例3 设u f x y , xy , 求 x x xy
解: 把函数看作复合函数:
u f , , x y, xy.
按求导公式,则有
f f x y nf . x y
Yunnan University
§2. 求复合函数偏导数的链式法则 等式两边求导,得
x0 f1' y0 f 2' nt n1 f x0 , y0 . x0 f y0 f n f x0 , y0 .
' 1 ' 2
当t 1时,有
2u ' x '' ' y '', y x u x ' y ', y 2u x '' ' y '' ' x '' 2 ' y ''. 2 y
则
Yunnan University
§2. 求复合函数偏导数的链式法则
Yunnan University
§2. 求复合函数偏导数的链式法则 该公式称为求复合函数偏导数的链式法则。
链式法则如图示
u u x u y t x t y t
u u x u y s x s y s
Yunnan University
z du z dv . u v 全微分形式不变形的实质: 无论 z 是自变量 u,v 的函数或中间变量 u,v 的函数,它的全微分形式是一样的. 注意,在复合函数情形下,du, dv也是u, v的函数,
因而高阶全微分不具有形式不变性。
Yunnan University
§2. 求复合函数偏导数的链式法则
Yunnan University
§2. 求复合函数偏导数的链式法则
z z dz dx dy x y z u z v dx z u z v dy u y v y u x v x u dx u dy z v dx v dy z v x u x y y
2 2
u u x u y 解: 2 x 2t 1 2 s 4 xt 2 s s x s y s u u x u y 2 x 2 s 1 s 4 xs 1 t x t y t
Yunnan University
z
z
xy
2z e
d (0),
x
y
e
xy
z
d ( xy ) 2dz e dz 0,
xy
z
(e 2)dz e
xy
( xdy ydx ),
xy ye xe dz z dx z dy, ( e 2) ( e 2)
z ye z , x e 2
Yunnan University
xy
z xe xy z . y e 2
§2. 求复合函数偏导数的链式法则
Yunnan University
§2. 求复合函数偏导数的链式法则
Yunnan University
§2. 求复合函数偏导数的链式法则
Yunnan University