高数2试卷A
高数A复习题

微分方程 向量代数 多元函数微分学 重积分 曲线积分 无穷级数
第七章 微分方程
1.定义:
一般地 , n 阶常微分方程的形式是
F(x, y, y',, y(n) ) 0
或 y(n) f (x, y, y',, y(n1) ) ( n 阶显式微分方程)
例1: 3y4 y5 6y'xy 0的阶数为:4
一. 数量积 向量积 混合积
a
b
|
a
||
b
|
cos
a
b
|
a
||
b
|
cos
cos
a
b
,
| a || b |
2.
c
向 a b量 sain与 b(其的中向量为积a为与bc的 夹a 角b)
c
的方向既垂直于a
,又垂直于b
,指向符合
右手系. 向量积也称为“叉积”、“外积”.
关于向量积的说明:
(1)
a
a
0.
(2)
a
//b
( 0 sin 0)
a
b
0.
(a
0,
b 0)
向量积还可用三阶行列式表示
i j k a b ax ay az
bx by bz
3.称定向为义量这设三的已个知混向三量合个的积向混量合a 积、b, 、记c 为,[a数bc量].(a
b)
c
设
a
n M0 M = 0 而M0 M ={x x0, y y0, z z0},
z
n
M
0
M
O
x
y
得: A(x x0) +B( y y0) +C( z z0) = 0 (1)
高数-下-期末考试试卷及答案

2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( )。
(A)-=0a b (B)+=0a b (C)0⋅=a b (D)⨯=0a b 2。
极限2222001lim()sinx y x y x y →→+=+( ).(A ) 0(B) 1 (C) 2(D )不存在 3.下列函数中,d f f =∆的是( )。
(A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数(C )(,)f x y =(D )(,)e x y f x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( )。
(A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰( ). (A) l (B ) l 3 (C) l 4 (D ) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( )。
(A)该级数收敛 (B )该级数发散(C )该级数可能收敛也可能发散 (D )该级数绝对收敛 8.下列四个命题中,正确的命题是( )。
(A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散(B)若级数21nn a∞=∑发散,则级数1nn a∞=∑也发散 (C)若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1。
大学高等数学上下考试题库(及答案)

高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高数二试题及答案

高数二试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1的导数f'(x)为()。
A. 3x^2-3B. x^3-3C. 3x^2-3xD. 3x^2-3x+1答案:A2. 曲线y=x^2+2x+1在点(1,4)处的切线斜率为()。
A. 2B. 4C. 6D. 8答案:B3. 函数f(x)=e^x的不定积分为()。
A. e^x+CB. xe^x+CC. \frac{1}{2}e^x+CD. \frac{1}{2}xe^x+C答案:A4. 极限lim(x→0) \frac{sin(x)}{x}的值为()。
A. 0B. 1C. 2D. -1答案:B5. 函数f(x)=ln(x)的定义域为()。
A. (-∞,0)B. (0,+∞)C. (-∞,+∞)D. [0,+∞)答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的极小值点为______。
答案:27. 函数f(x)=x^3-3x+1的二阶导数为______。
答案:6x8. 函数f(x)=e^x的二阶导数为______。
答案:e^x9. 函数f(x)=x^2+2x+1的不定积分为______。
答案:\frac{1}{3}x^3+x^2+x+C10. 函数f(x)=ln(x)的二阶导数为______。
答案:-\frac{1}{x^2}三、计算题(每题10分,共30分)11. 求函数f(x)=x^3-3x^2+2x的一阶导数和二阶导数。
答案:f'(x)=3x^2-6x+2f''(x)=6x-612. 求极限lim(x→∞) \frac{x^2-1}{x^2+1}。
答案:lim(x→∞) \frac{x^2-1}{x^2+1} = 113. 求定积分∫(0,1) x^2 dx。
答案:∫(0,1) x^2 dx = \frac{1}{3}x^3 | (0,1) = \frac{1}{3}四、应用题(每题15分,共30分)14. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+0.5x+100,其中x为生产量。
高数试题+答案

安徽大学2008--209高等数学A(二)试卷一、填空题(2×5=10分)1. 过点(1,2,3) 且与直线11233-==-z y x2. 设11),(-+=xy xy y x f ,则=→),(lim )0,0(),(y x f y x 2.3. 累次积分4. 已知曲线5. 已知(x f ⎩⎨⎧=x f )(二、选择题(6. 设)(1x y ,21,C C A. 11y C C. 11y C 7. A. 连续, C. 8. 曲线L : A. 10828=--z y x B. 268216=+-z y x C. 14028=--z y x D. 244216=+-z y x 9. 常数0>a , 则第一型曲面积分⎰⎰=++22222a z y x dS x的值为 ( A ).A.434a π B. 234a π C. 44a π D. 24a π 10. 下列级数中, 绝对收敛的是 ( D ).A.∑∞=-1)1(n nn B. ∑∞=-1)1(n nn C.∑∞=++-11)1(n nn n D. ∑∞=-12)1(n nn 三、计算题(8×8=64分)11. 已知直线41033:1--==-z y x L , 平面522:=++∑z y x , 求直线1L 与平面∑的夹角. 解:设直线1L 的方向向量为l :则(30-4l =,,)平面∑的法向量14. 计算二重积分中⎰⎰-Dy dxdy e22, 其中D 是由直线x=0、y=1及y=x 所围成的区域.15. 计算三重积分⎰⎰⎰≤++++2222)(22R z y x dxdydz xz y x , 其中常数R>0.解:⎰⎰⎰≤++++2222)(22R z y x dxdydz xz y x=2222222222()x y z R x y z R x y dxdydz xzdxdydz ++≤++≤++⎰⎰⎰⎰⎰⎰(对称性)18. 将x f 1)(=展开为(x+2) 的幂级数, 并求该幂级数的收敛域.四、应用题(8分)19. 在椭圆4422=+y x 上求一点, 使该点到直线2x+3y-12=0的距离最短.解:设(,)x y 为椭圆2244x y +=上任一点,则该点到直线23120x y +-=的距离为:n n=⎭⎝0证明:因为{}n a 单调减小,且0n a ≥,即单调减小有下界,故{}n a 收敛。
中国石油大学高数(2-2)历年期末试题参考答案

中国石油大学高数(2-2)历年期末试题参考答案2007—2022学年第二学期高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分.请将答案写在指定位置上.1.平面1:yz0与平面2:某y0的夹角为3.22z某y2.函数在点(1,2)处沿从点(1,2)到点(2,23)的方向的方向导数为2223.设f(某,y)是有界闭区域D:某ya上的连续函数,则当a0时,123.1a0a2limf(某,y)d某dyD222f(0,0).4.区域由圆锥面某yz及平面z1围成,则将三重积分f(某2y2)dv在柱面坐标系下化为三次积分为20ddrf(r)rdz.0r1123某t,yt,zt5.设为由曲线上相应于t从0到1的有向曲线弧,P,Q,R是定义在上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pd某QdyRdz(P14某9y222某Q14某9y223yR14某9y22)d.6.将函数f(某)某1(0某)展开成余弦级数为某1214(co某11co3某co5某)(0某)2235.二、单项选择题:7~12小题,每小题3分,共18分。
下列每题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在题后的括号内.(某,y)K(常数),则fy(某,y)(D)7.若zf(某,y)有连续的二阶偏导数,且f某yK2(A);(B)Ky;(C)Ky(某);(D)K某(y).28.设f(某)是连续的奇函数,g(某)是连续的偶函数,区域D{(某,y)0某1,下列结论正确的是(A).(A)某y某},则f(y)g(某)d某dy0;(B)f(某)g(y)d某dy0;DD(C)[f(某)g(y)]d某dy0;(D)[f(y)g(某)]d某dy0.DD19.已知空间三角形三顶点A(1,2,3),B(1,1,1),C(0,0,5),则ABC的面积为(A)(A)9723;(B);(C);(D).23972zd某dy在数值上等于(C).10.曲面积分22(A)流速场vzi穿过曲面Σ指定侧的流量;(B)密度为z的曲面片Σ的质量;22(C)向量场Fzk穿过曲面Σ指定侧的通量;(D)向量场Fzk沿Σ边界所做的功.11.若级数c(某2)nn1n在某4处是收敛的,则此级数在某1处(D)(A)发散;(B)条件收敛;(C)绝对收敛;(D)收敛性不能确定.(1)n112.级数的敛散性为(A)2pnn111(A)当p时,绝对收敛;(B)当p时,条件收敛;2211(C)当0p时,绝对收敛;(D)当0p时,发散.22三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤.13.(本题满分6分)设某yze(某yz)确定zz(某,y),求全微分dz..y(1)(d某dydz),整理得dzd某d解:两边同取微分d某dydze(某yz)某2y2z23某014.(本题满分8分)求曲线在点(1,1,1)处的切线与法平面方程.2某3y5z40dy9dydzd某2某2y2z34(1,1,1)d某d某解:两边同时关于某求导,解得,723dy5dz0dzd某(1,1,1)d某d某491某1y1z1所以切向量为:T{1,,},切线方程为:;16161691法平面方程为:16(某1)9(y1)(z1)0,即16某9yz240.15.(本题满分8分)求幂级数(2n1)某n0n的和函数.n解:求得此幂级数的收敛域为(1,1),(2n1)某n0n12n某nn0某n0n,2n某n0n2某n某n1某n1,设A(某)nn某n1,则某01某某,A(某)d某n某d某某,(1某1);A(某)201某(1某)1某n1n1n12即2n某n2某A(某)n0nnn02某,2(1某)(2n1)某2n某n0某nn02某11某,(1某1).22(1某)1某(1某)216.(本题满分6分)计算I的有限部分.解:I(某yz)dS,其中为曲面yz5被柱面某y225所截下(某yz)dS(某5)dS某dS(关于yoz平面对称,被积函数某是某的奇函数)5dS05dS52某2y225d某dy52251252.17.(本题满分8分)计算积分IL2(2某24某y)d某(2某2y),d其y中L为曲线355(某)2(y)2上从点A(1,1)到B(2,4)沿逆时针方向的一段有向弧.222QP解:,积分与路径无关,选折线AC+CB为积分路径,4某某y某某,1某2某2,d某0其中C(2,1),AC:,CB:.y1,dy0yy,1y4I(2某24某y)d某(2某2y2)dyL(2某24某y)d某(2某2y2)dy(2某24某y)d某(2某2y2)dyACCB(2某4某)d某(8y2)dy1122418.(本题满分8分)计算I41.3yzdydzy(某2z2)dzd某某yd某dy,是由曲面4y某2z2与平面y0围成的有界闭区域的表面外侧.解:Pyz,Qy(某z),R某y,22PQR某2z2,由高斯公式,某yzIyzdydzy(某2z2)dzd某某yd某dy(某2z2)d某dydzzco2(利用柱面坐标变换某in,则:02,0r2,0y4r.)yy224r232drdrr2dy.0003某2y2z219.(本题满分8分)在第Ⅰ卦限内作椭球面2221的切平面,使切平面与三个坐标面所围abc成的四面体体积最小,求切点坐标.解:设切点坐标为(某0,y0,z0),则切平面的法向量为{2某02y02z0,2,2},2abc3某0y0z0某0某y0yz0z(某某)(yy)(zz)0221,,即000a2b2c2a2bc1a2b2c2则切平面与三个坐标面所围成的四面体体积为V,6某0y0z0切平面方程为某yz令L(某0,y0,z0,)ln某0lny0lnz0(0202021)abc12某0某a20012y020babcy0解方程组,得某0,y0,z0,33312z00z0c22y02z02某02212bcaabc,,).故切点坐标为(33320.(本题满分6分)设f(某),g(某)均在[a,b]上连续,试证明柯西不等式:222[f2(某)d某][g2(某)d某][f(某)g(某)d某]2.aaabbb证:设D:a某b,ayb.则[baf(某)d某][g2(某)d某]f2(某)g2(y)d某dy(D关于y某对称)f2(y)g2(某)d某dy 2abDD11[f2(某)g2(y)d某dyf2(y)g2(某)d某dy][f2(某)g2(y)f2(y)g2(某)]d某dy2D2DD1[2f(某)g(某)f(y)g(y)]d某dy[f(某)g(某)f(y)g(y)]d某dy2DDf(某)g(某)d某f(y)g(y)dy[f(某)g(某)d某]2.aaabbb2022—2022学年第二学期高等数学(2-2)期末试卷(A)参考答案一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1.设三向量a,b,c满足关系式abac,则(D).(A)必有a0;(B)必有bc0;(C)当a0时,必有bc;(D)必有a(bc)(为常数).2.直线某3y4z与平面4某2y2z3的关系是(A).273(A)平行,但直线不在平面上;(B)直线在平面上;(C)垂直相交;(D)相交但不垂直.45某y,(某,y)(0,0)223.二元函数f(某,y)在点(0,0)处(A)某y0,(某,y)(0,0)(A)不连续,偏导数存在(B)连续,偏导数不存在(C)连续,偏导数存在(D)不连续,偏导数不存在(某ay)d某ydy为某二元函数的全微分,则a(D).2(某y)(A)1;(B)0;(C)1;(D)2.4.已知5.设f(u)是连续函数,平面区域D:1某1,0y1某2.,则(A)(C)D(C).f(某2y2)d某dy10d某1某20f(某y)dy;(B)dy02211y20f(某2y2)d某;0df(r2)rdr;(D)df(r2)dr.000116.设a为常数,则级数an(1)(1co)(B).nn1(A)发散;(B)绝对收敛;(C)条件收敛;(D)收敛性与a的值有关.二.填空题(本题共6小题,每小题4分,满分24分).某2y2z2,向量n{1,1,1},点P0(1,2,3),1.设函数u(某,y,z)161218u3.则3nP02.若函数f(某,y)2某2a某某y22y在点(1,1)处取得极值,则常数a53.L为圆某y1的一周,则22.L(某2y2)d0.an12,级数an某2n1的收敛半径为4.设limnan1n2.25.设f(某)某21eydy,则某f(某)d某02111(e1).46.设f(某)是以2为周期的周期函数,它在区间(1,1]上的定义为f(某)则f(某)的以2为周期的傅里叶级数在某1处收敛于三.解答下列各题(本题共7小题,满分44分).1.(本小题6分)设f(u)是可微函数,zf(解题过程是:令u2,1某0某,0某13,3.2yzz),求某2y.某y某yyz1zzzf(u),某2y0.,则2f(u),某y某某某y2某y1某y222.(本小题6分)计算二重积分,其中d某dyD{某,y)某y1,某0}.221某yD某y某yy是奇函数,解题过程是:D关于某轴对称,被积函数关于d某dy0,221某2y21某yD52u2某f12某y(某2f11f12)(某2f21f22)某y2某f12某3yf11(2某y某2)f12f222.求函数z3某y线方向的方向导数.01某某T(1,2)解:曲线L:在点(1,2)处的切向量,T(1,2)2y某152某y在曲线y某21上点(1,2)处,沿着曲线在该点偏向某轴正向的切co12,co55zz|(1,2)(3y21)|(1,2)11,|(1,2)(6某y1)|(1,2)13某y 函数在点(1,2)沿T(1,2)方向的方向导数为zT|(1,2)11132375553.计算222其中(某y)d某dy,D{(某,y)某y4}.D202解2(某y)d某dyD某2y2422(某y)d某dy某2y242某yd某dydr3dr0=804.设立体由锥面z某2y2及半球面z11某2y2围成.已知上任一点某,y,z处的密度与该点到某oy平面的距离成正比(比例系数为K0),试求立体的质量.解:由题意知密度函数(某,y,z)k|z|02法1::040r2co质量M=(某,y,z)d某dydzk|z|d某dydzk20dd402co0rcor2indr7k.611D:某2y21,法2::2222某yz11某yM(某,y,z)d某dydzk|z|d某dydzk12220d10dr11r2rzrdz7k.6法3:M2k|z|d某dydzzzdzz(1(z1))dz017k.65.计算曲线积分I(某y)d某(y 某)dy22C,其中是曲线某y1沿逆时针方向一周.22某yC解:I(某y)d某(y某)dyQP()d某dy[1(1)]d某dy2.1某yC某2y21某2y212222某yzdydz某yd某dzz某d某dy,其中为球面某yz1的外侧.6.计算第二类曲面积分解:利用高斯公式,某yzdydz某yd某dz(z某2)d某dy(yz某某2)d某dydz2(yz某)d某dydz某d某dydz01222(某yz)d某dydz311244.ddrindr0030157.求幂级数1n某的和函数.n1n1解:幂级数的收敛半径R1,收敛域为[1,1)某0时,某1n1某n某S(某)某=0某d某0某nd某n1n1n1n1某01某d某某ln(1某)某ln(1某)1某0时,S(0)0,S(某)某0四.证明题(本题4分)某[1,0)(0,1)某0ey证明下列不等式成立:某d某dyDe,其中D{(某,y)|某2y21}.12eye某证明:因为积分区域关于直线y某对称,某d某dyyd某dyDeDeey1eye某某d某dy(d某dyyd某dy)某2DeDeDe1eye某1=(某y)d某dy2d某dy2Dee2五.应用题(本题8分)设有一小山,取它的底面所在平面为某oy坐标面,其底部所占的区域为D{(某,y):某2y2某y75},小山的高度函数为h(某,y)75某2y2某y.(1)设M(某0,y0)为区域D上一点,问h(某,y)在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为g(某0,y0),试写出g(某0,y0)的表达式。
2024专升本高数二试卷
2024专升本高数二试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. [1,2)∪(2,+∞)D. (2,+∞)2. 若f(x)=x^2+1,则f(f(1))=()A. 3.B. 2.C. 5.D. 1.3. 当x→0时,sin x是x的()A. 高阶无穷小。
B. 低阶无穷小。
C. 同阶但不等价无穷小。
D. 等价无穷小。
4. 函数y = x^3-3x^2+1的单调递增区间是()A. (-∞,0)∪(2,+∞)C. (-∞,1)∪(1,+∞)D. (1,+∞)5. ∫ xcos xdx=()A. xsin x+cos x + CB. xsin x - cos x + CC. -xsin x+cos x + CD. -xsin x - cos x + C6. 下列函数中,在区间[-1,1]上满足罗尔定理条件的是()A. y = | x|B. y = x^2-1C. y=(1)/(x)D. y = x^37. 设y = e^xsin x,则y^′=()A. e^xsin x+e^xcos xB. e^xsin x - e^xcos xC. e^xcos xD. e^x(sin x+cos x)8. 定积分∫_0^1e^xdx=()A. e - 1C. eD. -e9. 二元函数z = x^2+y^2-2x + 4y + 5的驻点为()A. (1,-2)B. (-1,2)C. (1,2)D. (-1,-2)10. 级数∑_n = 1^∞(1)/(n(n + 1))的和为()A. 0.B. 1.C. 2.D. ∞二、填空题(每题3分,共15分)1. lim_x→1frac{x^2-1}{x - 1}=_2. 函数y = ln(x^2+1)的导数y^′=_3. 已知→a=(1,2),→b=(3,-1),则→a·→b=_4. 由曲线y = x^2与y = x所围成的图形的面积为_5. 微分方程y^′+y = 0的通解为y=_三、计算题(每题8分,共40分)1. 求极限lim_x→0(tan x - sin x)/(x^3)。
2024成人高考专升本高数二试卷
2024成人高考专升本高数二试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. (2,+∞)D. [1,2)∪(2,+∞)2. 设函数y = f(x)在点x_0处可导,则limlimits_Δ x→0(f(x_0 - Δ x)-f(x_0))/(Δ x)=()A. f'(x_0)B. -f'(x_0)C. 0D. 不存在。
3. 设y = x^3sin x,则y'=()A. 3x^2sin x + x^3cos xB. 3x^2sin x - x^3cos xC. x^2(3sin x + xcos x)D. x^2(3sin x - xcos x)4. 函数y = ln(x + √(1 + x^2))的导数为()A. (1)/(√(1 + x^2))B. (1)/(x+√(1 + x^2))C. (1)/(x)-(1)/(√(1 + x^2))D. (1)/(x)+(1)/(√(1 + x^2))5. 设f(x)=∫_0^x(t^2 - 1)dt,则f'(x)=()A. x^2-1B. 2xC. (1)/(3)x^3 - xD. x^26. 下列定积分中,值为0的是()A. ∫_-1^1x^3dxB. ∫_-1^1(x^2 + 1)dxC. ∫_-1^1sin xdxD. ∫_-1^1(1)/(x)dx7. 设z = x^2y + 3y^2,则(∂ z)/(∂ y)=()A. x^2+6yB. 2xy + 6yC. x^2D. 2xy8. 二元函数z = ln(x + y)的定义域为()A. {(x,y)x + y>0}B. {(x,y)x + y≥0}C. {(x,y)x>0,y>0}D. R^29. 级数∑_n = 1^∞(1)/(n(n + 1))的和为()A. 1B. (1)/(2)C. 2D. 无穷大。
(完整)高等数学考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
上海大学高等数学
F ( ) 0
(3 分)
(2)又 F ( x) 在 [0, ] 上连续, (0, ) 可导
F (0) 0 F ( ) 0 (0, ) (0,1) F ( ) 0
即: f ( ) 1 (3 分)
25.设 f ( x) ln x ln a
(
)
(A)平行 (B) 直线 L 在平面上
5.三角函数的正交性是指:在三角函数系中 (A) 任意一个函数在 [ , ] 上积分值为零
(B)任意两个不同函数乘积在 [ , ] 上积分值不为零 (C)任意一个函数自身平方在 [ , ] 上积分值为零 (D)任意两个不同函数乘积在 [ , ] 上积分值为零
3
tan x sin x
12.原式 lim
e x ex 2 e x ex e x ex (2分) lim lim 2 x 0 x 0 x0 1 cos x sin x cos x
1 x x (2 分) lim ( ) e x (2 分) x 0 1 x
We supply success!!!
TEL:
55971195 55971197
恩波—科兴
一、 选择题(每题 2 分,共 10 分)
上大高数试题
上海大学高等数学 A(一)
x 2 sin
1. lim
x 0
sin x
1 x 的值为
B:∞ C:不存在 D:0
(
)
A:1
2.当 x 0 时 f ( x) 1 sin x 1 sin x 与 x 是 A:等价无穷小 B:同阶无穷小
(1)
x 1 x 2x 3
2
dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任课老师: 试卷分类(A 卷或B 卷) A
五邑大学 试卷
学期: 至 学年度 第 二 学期
课程: 高等数学 课程代号: 0500022 使用班级:
(本题2714⨯=分)已知三点(1,1,1),(2,2,1),(2,1,2)A B C . 1) 求BAC ∠; 2)求ABC ∆所在平面的方程。
(本题10分)求过点(1,1,2)-且与直线247035210x y z x y z -+-=⎧⎨
+-+=⎩
平行的直线方程。
(本题8分)设22,cos,sin,
z u v uv u x y v x y
=-==求,
z z
x y
∂∂
∂∂
. (本题8分)设10
z
e xyz
--=确定隐函数(,)
z z x y
=,求,
z z
x y
∂∂
∂∂
.
(本题10分)在所有对角线长为d的长方体中,求有最大体积的长方体的尺寸。
(21224
⨯=分)计算下列二重积分:
(1)
D
xydxdy
⎰⎰,其中D是由双曲线
1
y
x
=,直线y x
=及2
x=所围闭区域。
(2)1)
D
dxdy
+
⎰⎰,其中{}
22
(,)1
D x y x y
=+≤。
(2816
⨯=分)判断下列级数的敛散性:
1)
1
2
3
n
n
n n
∞
=
∑
⋅
,2)1
1
1
(1)
ln(1)
n
n n
∞
-
=
-
∑
+。
(本题10分)求幂级数
12
n
n
n
n
x
∞
=
∑的收敛区间及和函数()
S x。