2 用配方法求解一元二次方程
《用配方法求解一元二次方程》教案

教学过程:
解下列一元二次方程
解方程
解: ,(常数项移到右边)
(这里的二次项系数必须为1)
(整理)
(运用两边开平方)
因此方程 有两个根
(不合题意应舍去)
做一做
“读一读”由学生阅读理解.
课堂小结:
本节课重点学习了配方法解一元二次方程.当方程形如 时,可直接用开平方法求解比较简单,但两边同时开平方时,要注意取正负号,不要与求算术平方根混淆.用配方法解一元二次方程首先要注意将方程化成一般形式,如果二次项系数不为1,要先化二次项系数为1再开始配方,配方时应注意两边同时同上一次项系数配方法求解一元二次方程》教案
教学目标:
1.会用配方法解简单的数字系数的一元二次方程.
2.了解用配方法解一元二次方程的基本步骤.
3.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.
教学重点:
运用配方法解简单的数字系数的一元二次方程.
教学难点:
2.2.2用配方法求解一元二次方程(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用配方法求解一个具体的一元二次方程,从而直观地看到结果。
3.培养学生的数学运算能力,熟练运用配方法解一元二次方程,提高解题效率;
4.培养学生的数据分析能力,让学生在解决一元二次方程问题时,能够分析问题、提炼关键信息,并进行合理判断;
5.培养学生的创新意识,鼓励学生在掌握配方法的基础上,探索和尝试新的解题方法,提高解决问题的灵活性。
三、教学难点与重点
1.教学重点
-实际问题的数学建模:培养学生将现实问题抽象成一元二次方程,并运用配方法求解的能力。
-重点细节:
-识别问题中的已知量和未知量,建立方程模型;
-将实际问题中的条件转化为方程的约束条件;
-运用配方法求解方程,得出问题的解答。
2.教学难点
-配方法的推导过程理解:学生需要理解配方法背后的数学原理,这对于逻辑思维能力有一定的要求。
-难点举例:
-学生可能会对为什么要添加和减去同一个数感到困惑;
-对于如何将方程转化为完全平方公式感到不熟悉。
-配方法在实际问题中的应用:将配方法应用于解决实际问题,需要学生具备一定的分析能力和创造性思维。
-难点举例:
-在实际问题中,学生可能难以找到合适的方程模型;
-在应用配方法时,可能会出现计算错误,导致最终答案错误。
-配方法的步骤及应用:配方法是一元二次方程求解的重要方法,本节课的核心是让学生掌握配方法的步骤,并能将其应用于求解实际问题。
2.2.1用配方法求解一元二次方程(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,演示配方法的基本原理。
反思这次教学,我认为在以下几个方面需要改进:
1.对于配方法的理解,可以设计更多生动有趣的实例,帮助学生更好地理解其原理和步骤。
2.在小组讨论环节,注重引导学生发现问题、分析问题,培养他们的逻辑思维能力。
3.在实践活动环节,加强对学生操作过程的指导,及时纠正他们在运算和分解因式等方面的错误。
4.针对不同学生的学习情况,提供个性化的辅导和指导,帮助他们弥补知识漏洞。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了用配方法求解一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节《用配方法求解一元二次方程》的课程后,我对整个教学过程进行了深入的思考。首先,我发现学生们在理解配方法的原理和步骤上存在一定的困难。尽管我在课堂上通过详细的讲解和案例演示,但仍有部分学生难以跟上节奏。这让我意识到,对于这部分学生,可能需要设计更具针对性的辅导,例如在课后提供额外的练习题和辅导时间。
三、教学难点与重点
1.教学重点
《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1
x
=
.
4
16
3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )
1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。
2用配方法求解一元二次方程

4.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2配方正 确的是 ( )
A.(x-p)2=5
B.(x-p)2=9
C.(x-p+2)2=9 D.(x-p+2)2=5
答案 B ∵x2-6x+q=0可配方为(x-p)2=7,即(x-p)2-7=0,则x2-6x+q=2可配 方为(x-p)2-7=2,即(x-p)2=9.故选B.
的长为
cm.
答案 6
解析 设小矩形的长为x cm,则小矩形的宽为(8-x)cm, 根据题意得x[x-(8-x)]=24. 解得x=6或x=-2(舍去). 故小矩形的长为6 cm.
3.某养牛场的一边靠墙,墙长25 m,另三边用栅栏围成,现有材料可制作 栅栏40 m. (1)养牛场的面积能达到200 m2吗?若能,请求出养牛场的长和宽,若不能, 请说明理由; (2)能围成面积为250 m2的养牛场吗?请说明理由.
一移
通过配成完全平方式来解一元二次方程的方法,叫做配方法 将常数项移到方程等号的右边
步骤
二除 三配 四开
如果二次项系数不是1,将方程两边同时除以二次项系数,将其化为1
方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式 如果方程的右边是一个非负数,就可以直接开平方解方程;如果是一个负数,则原方程
2
程无解,∴不能围成面积为250 m2的养牛场.
一、选择题 1.(2017天津河北汇森中学模拟,8,★★☆)用配方法解下列方程,配方正 确的是 ( ) A.2y2-4y-4=0可化为(y-1)2=4 B.x2-2x-9=0可化为(x-1)2=8 C.x2+8x-9可化为(x+4)2=16 D.x2-4x=0可化为(x-2)2=4 答案 D A.2y2-4y-4=0可化为(y-1)2=3,故错误; B.x2-2x-9=0可化为(x-1)2=10,故错误; C.x2+8x-9=0可化为(x+4)2=25,故错误; D.x2-4x=0可化为(x-2)2=4,故正确.故选D.
2 用配方法求解一元二次方程 第1课时 用配方法解二次项系数为1的一元二次方程 导学案
2用配方法求解一元二次方程第1课时 用配方法解二次项系数为1的一元二次方程 导学案学习目标1、会用配方法解二次项系数为1的一元二次方程,探究配方法的意义。
2、通过以前所学的开平方方法,初步了解配方法;3、牢记配方法的一般步骤.学习过程一.复习回顾:1.利用直接开平方法解下列方程(1)9x 2=1 (2)(x+3)2=52.能利用直接开平方法求解的一元二次方程具有什么特征?3.下列方程能用直接开平方法来解吗?(1)x 2+12x+36=9(2)x 2+6x-15=0二.新课学习:1.例题练习交流探讨并回答问题:(1)你会如何解此方程:x 2-6x-40=0 呢?移项,得 x 2-6x= 40方程两边都加上32(一次项系数一半的平方),得x 2-6x+32=40+32即 (x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x 1=10,x 2=-4(2)做一做,填一填(1)x 2+2x+ =(x+ )2(2)x 2-8x+ =(x- )2(3)y 2+5y+ =(y+ )2(4)y 2-21y+ =(y- )2问题:你能从中总结出什么规律吗?2、例题学习并思考下列问题:例1: 用配方法解方程:x 2+12x-15=0解:移项得x 2+12x=15,两边同时加上62得,x 2+12x+62=15+36,即(x+6)2=51两边开平方,得x 1=651-;x 2=-651-(1)配方法的特点?(2)配方法的步骤?三.尝试应用:1、用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -= 2、用配方法把方程210x x +-=化为21()2x m +=,则m= .3、用配方法解方程:x 2-23x+118=0;四.自主总结:1、配方法:通过配成 的方法得到了一元二次方程的根,这种解一元二次方程的方法称为 .2、用配方法解一元二次方程的步骤::把常数项移到方程的右边;:方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式:根据平方根意义,方程两边开平方;:解一元一次方程;:写出原方程的解.五.达标测试一、选择题1.用配方法解方程x 2+4x+1=0,配方后的方程是( )A .(x+2)2=3B .(x-2)2=3C .(x-2)2=5D .(x+2)2=52.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=23.用配方法将代数式a 2+4a-5变形,结果正确的是( )A. (a+2)2-1B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9 二、填空题4.填上适当的数,使下面各等式成立:(1)x 2+3x+_______=(x+________)2;(2)_______-3x+14=(3x_______)2; (3)4x 2+_____+9=(2x________)2; (4)x 2-px+_______=(x-_______)2;(5)x 2+b a x+_______=(x+_______)2.5.x 2x+_____=(x-______)2.6.在横线上填上适当的数或式,使下列等式成立:(1)x 2+px+________=(x+_______)2;(2)x 2+b ax+_________=(x+_______)2 三、解答题7.用配方法解方程:(1)x 2+4x-3=0(2)x 2﹣4x+1=0.达标测试答案:一、选择题1.A .【解析】试题分析:移项得,x 2+4x=-1,配方得,x 2+4x+22=-1+4,(x+2)2=3,故选A .2.B 【解析】原方程化为22441,(2)1,x x x -+=-=故选B3.D 【解析】a 2+4a-5=a 2+4a+4-4-5=(a+2)2-9,故选D .二、填空题 4.(1)93,42;(2)9x 2,12-;(3)12x ,+3;(4)2,42p p ;(5)22,42b b a a5.12;2 【解析】试题分析:根据常数项等于一次项系数一半的平方,即可得到结果。
用配方法求解一元二次方程(第二课时)
7..当x为何值时,代数式5x2+7x+1和代数式 9x+15的值相等?
8.试证:不论k取何实数,关于x的方程 必是一元二次方程
9.在一块长16m,宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒空中积的一半,你能求出以下图中的x吗?
※典型范例※
例1:
用配方法解方程x +2x-1=0时
①移项得__________________
②配方得__________________
即〔x+__________〕2=__________
③x+Leabharlann _________=__________或x+__________=__________
④ =__________, =__________
(1)x +5x-1=0 (2)2x -4x-1=0
(3)4x2+8x-3=0;(4)(3x+2)(x+3)=x+14.
2.用配方法解方程3x2-9x- =0,先把方程化为x2+bx+c=0的方式,那么以下变形正确的选项是( )
A.x2-9x- =0 B.x2-3x- =0C.x2-9x- =0D.x2-3x- =0
1.x +6x+8=0 2.3x +18x+24=0
〔1〕这两个方程有什么联络?
〔2〕用配方法求解这两个方程
【新知归结1】
★规律方法★假设方程的系数不是1,我们可以在方程的两边同时除以二次项系数,这样转化为系数是1的方程就可以应用学过的知识解方程了!
【协作交流】
1.2x +8x+6=0 转化成: x +4x+3=0
用配方法求解一元二次方程ppt课件
考
点 适用直接开平方法的形式,利用直接开平方法求解.
清
[答案]解:(1)2x2=6,x2=3,
单
解
∴x=± ,∴x1= ,x2=- ;
读
(2)(x+1)2-8=0,移项,得(x+1)2=8,开平方,得
x+1=±2
,解得 x1=-1+2 ,x2=-1-2 ;
清
单 方程,一元二次方程的解有两个,特别注意开方后不要丢掉
解
读 负值.
2.2 用配方法求解一元二次方程
考
点
清
单
解
读
对点典例剖析
典例1 用直接开平方法解下列方程:
(1)2x2=6;
(2)(x+1)2-8=0;
(3)4x2+1=-4x;
(4)9(x-1)2=16(x+2)2.
2.2 用配方法求解一元二次方程
难
2-16=0;
例
解方程:(1)4(x-1)
题
型
(2)2x2+4x-1=0.
突
破
2.2 用配方法求解一元二次方程
重
[答案] 解:(1)整理,得(x-1)2=4,开方,得
难
题 x-1=2 或 x-1=-2,解得 x1=3,x2=-1;
型
2
2
突
(2)整理,得 x +2x= ,配方,得 x +2x+1= +1,
2.2 用配方法求解一元二次方程
考
点
清
单
解
读
■考点一
原理
一般
新北师大版九年级数学上册《2.2用配方法求解一元二次方程》课件(共3课时)
解方程 (2) x2=4.
解方程 (3) (x+2)2=5. 解方程 (4) x2+12x+36=5. 解方程 (5) x2+12x= -31.
做一做
☞
配方法
1.移项:把常数项移到方程的右边;
2.配方:方程两边都加上一次项系数绝对值一 半的平方; 3.变形:方程左边配方,右边合并同类项;
独立 作业
1. 解下列方程:
知识的升华
(1).x2 +12x+ 25 = 0; (2).x2 +4x =1 0; (3).x 2 –6x =11; (4). x2 –2x-4 = 0.
独立 作业
知识的升华
2.如图,在一块长35m,宽26m的矩形地面上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一边平行),剩余部分栽种 花草,要使剩余部分的面积为850m2,道路的宽应是多少? 35m 解:设道路的宽为 x m,根据题意得
你能行吗
用配方法解下列方程. 2 +8x –3=0 ; 5.3x 2 1.x – 2 = 0; 这个方程与前4个方程不 一样的是二次项系数不是 1,而是3. 2.x2 -3x- 1 =0 ; 4 基本思想是: 如果能转化为前4个方程 3.x2+4x=2; 的形式,则问题即可解决.
2.用配方法求解一元 二次方程(1)
回顾与复习 1
如何求一元二次方程 的精确解
我们利用“先确定大致范围;再取值计算,逐步逼近
”的方法求得了一元二次方程的近似解. 如方程2x2-13x+11=0的解为x=1;即花边宽为1m. 如方程x2+12x-15=0的解约为1.2;即梯子底端滑动 的距离约为1.2m. 如方程x2-8x-20=0的解为x=10或x=-2;即五个连续 整数为-2,-1,0,1,2;或10,11,12,13,14.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)-3x2+5x+1的最大值.
1.学以致用,当堂检测,及时获知学生对所学知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,实现教学目标.
2.知识的综合与拓展,提高应考能力.
(续表)
活动
四:
课堂
总结
反思
【当堂训练】
1.课本P39中的随堂练习
【拓展提升】
例1[安徽中考]解方程:x2-2x=2x+1.
例2解方程:(x+1)(x-1)+2(x+3)=8.
1.对本节知识进行巩固练习,可让学生进一步熟悉用配方法解二次项系数为1的一元二次方程的基本步骤.
2.知识的综合与拓展,提高应考能力.
活动
四:
课堂
总结
反思
【当堂训练】
1.课本P37中的随堂练习
④[习题反思]
好题题号________________________________________
错题题号_______________________________________
反思,更进一步提升.
第
课题
第2课时 用配方法解较复杂的一元二次方程
授课人
教
学
目
标
知识技能
会用配方法解简单的数字系数的一元二次方程.通过经历配方法解一元二次方程的过程,获得解一元二次方程的基本技能.
④x2+10x+________=(x+________)2.
(2)请同学们比较下列两个一元二次方程的联系与区别.
①x2+6x+8=0;
②3x2+18x+24=0.
探讨:方程②应如何去解呢?
2.复习提问:用配方法解一元二次方程(二次项系数为1)的步骤是什么?
1.让学生回顾配方法的过程,能熟练将二次项系数为1的二次三项式配成完全平方式.
2.课本P40习题2.4中的T1、T2、T3
当堂检测,及时反馈学习效果.
【板书设计】
第2课时用配方法解较复杂的一元二次方程
1.二次项系数是1的一元二次方程的配方法解题步骤:(学生完善)
2.二次项系数不是1的一元二次方程的配方法解题步骤:(教师指导学生完善)
投影区
提纲挈领,重点突出.
【教学反思】
①[授课流程反思]
2.让学生梳理用配方法解一元二次方程(二次项系数为1)的步骤,主要是夯实基础,为完善用配方法求解一元二次方程(二次项系数不为1)的步骤做准备.
活动
二:
实践
探究
交流新知
【探究1】(多媒体出示)
观察方程3x2+8x-3=0,它与上面我们所解的方程有什么不同?你有什么想法?
先让学生回答这个方程与上面我们所解的方程有什么不同,再动员学生思考如何把这个方程转化为上面我们所解的方程类型,教师提醒后,找一位同学尝试板书,然后教师投影演示.
【探究2】用配方法解一元二次方程的步骤.
师:下面请大家仔细观察教材例2的解题过程,你能说一说用配方法解一元二次方程的步骤吗?请同学们总结一下.
交流归纳:用配方法解一元二次方程的一般步骤大致概括如下:
(1)化二次项系数为1;
(2)移项,使方程的左边为二次项和一次项,右边为常数项;
(3)配方,方程两边同时加上一次项系数一半的平方,使原方程变为(x+m)2=n(n≥0)的形式;
第
课题
第1课时 用配方法解简单的一元二次方程
授课人
教
学ቤተ መጻሕፍቲ ባይዱ
目
标
知识技能
会用直接开平方法解形如(x+m)2=n(n≥0)的一元二次方程.
数学思考
理解配方法的思想,掌握用配方法解形如x2+px+q=0(p为偶数)的一元二次方程.
问题解决
经历用配方法解一元二次方程的过程,体会用配方法解方程的首要任务是正确配出完全平方式,体会转化的数学思想方法,增强学生的数学应用意识和能力.
本节课一开始通过复习,让学生用配方法解二次项系数为1的一元二次方程,然后给出方程3x2+8x―3=0,对比与前面所学的方程有何不同,引出本课课题,从而点明本节课的主要内容是如何解二次项系数不为1的一元二次方程,学生接受起来很自然.
②[讲授效果反思]
在授课过程中通过对比,层层递进,不仅抓住了学生的兴趣,而且步步引导学生自主探究,通过学生的自主探究与合作交流,探讨方程3x2+8x―3=0的解法,并归纳﹑总结出用配方法解一元二次方程的一般步骤,使学生在探究、合作的过程中掌握知识,顺利地突破重点、难点.
(4)开平方;
(5)解——方程的解为x=―m± .
1.让学生在实践中逐步体会配方法求解一元二次方程的一般步骤,在学生有了初步认识的基础上,教师再展示步骤,目的是引导学生掌握这种思想,而不是让学生死记硬背这些步骤.使他们在自主探索的过程中真正理解和掌握基本的数学知识、思想和方法,同时获得广泛的数学活动经验.
3.上节课,我们研究梯子底端滑动的距离x(m)满足方程x2+12x-15=0,你能仿照上面几个方程的解题过程,求出距离x(m)的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)
利用实际问题,让学生初步体会开平方法在解一元二次方程中的应用,为后面学习配方法做好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识.
1.在利用添项来使等式左边配成一个完全平方式时,等式的右边忘了作同样的变化.
2.在开平方这一步骤中,学生常只考虑正、负中的一种情况或右边忘了开方.
③[师生互动反思]
_________________________________________________
_________________________________________________
情感态度
能利用方程解决实际问题,并增强学生的数学应用意识和能力.
教学重点
会用开平方法解形如(x+m)2=n(n≥0)的方程,会用配方法解二次项系数为1的一元二次方程.
教学难点
探索用配方法解二次项系数为1的一元二次方程的过程.
授课类型
新授课
课时
教具
多媒体
教学活动
教学步骤
师生活动
设计意图
回顾
1.若一个数的平方等于9,则这个数是__±3__;若一个数的平方等于7,则这个数是__± __.一个正数有几个平方根?它们具有怎样的关系?
2.课本P37习题2.3中的T1、T2、T3
当堂检测,及时反馈学习效果.
【板书设计】
第1课时用配方法解简单的一元二次方程
配方法的定义
配方法步骤:加上一次项系数一半的平法再减去即可
解方程:x2+8x-9=0.
解:(教师书写)
x2+12x-15=0
解:(学生书写,教师纠正)
投影区
学生活动区
提纲挈领,重点突出
教学重点
用配方法求解二次项系数不为1的一元二次方程.
教学难点
理解配方法.
授课类型
新授课
课时
教具
多媒体
教学活动
教学步骤
师生活动
设计意图
回顾
1.定义:我们通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法称为配方法.
2.配方根据:
(1)平方根的意义:如果x2=a,那么x=± ;
(2)完全平方公式:a2±2ab+b2=(a±b)2.
2.应用一元二次方程解决实际问题
例2如图2-2-6,在Rt△ACB中,∠C=90°,AC=8cm,BC=6cm,点P,点Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动(到点C为止),它们的速度都是1cm/s,几秒后△PCQ的面积为Rt△ACB面积的一半?
3.应用配方法求最值
例3用配方法求:
A.(x-1)2=4B.(x+1)2=4
C.(x-1)2=16D.(x+1)2=16
[变式题2]用配方法解方程:x2-2x=5.
此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解二次项系数为1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解.
④[习题反思]
好题题号______________________________________
错题题号_______________________________________
反思,更进一步提升.
2.规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及如何将方程转化成一般形式,由于此问题在情境引入时出现过,因此也达到前后呼应的目的.
活动
三:
开放
训练
体现
应用
【应用举例】
例解方程:x2+8x-9=0.
[变式题1]用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()
活动
二:
实践
探究
交流新知
【探究1】课件出示做一做:
填上适当的数,使下列等式成立.(选4个学生口答)
x2+12x+________=(x+6)2;
x2-6x+________=(x-3)2;
x2+8x+________=(x+________)2;
x2-4x+________=(x-________)2.
.
【教学反思】
①[授课流程反思]
通过正方形的拼图让学生回忆起完全平方公式的一般形式及用图形证明的过程,把学生的思路引导到完全平方式上来.不会使得问题的提出过于突然,并对这节课后续的学习做了铺垫.
②[讲授效果反思]
本节课在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实比较困难,因此在教学过程中及课后批改中发现学生常出现以下两个问题: