音频客观测量指标概念(全)

音频客观测量指标概念(全)
音频客观测量指标概念(全)

音频客观测量指标概念

音频指标简介及测试原理方法

音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。两者差别越小那么性能越好,而且在一般情况下声音经过某一个通道或某一系统后,一般都有对原信号的放大和衰减。

信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷

1、信噪比SNR(Signal to Noise Ratio):(1)简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB 以上。音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号强度的比值

(2)计算方法:信噪比的计量单位是dB,其计算方法是10LG(PS/PN),其中Ps和Pn

分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。

(3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了. 或者是10LG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率

计权:这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到. 这样就引入了权的概念。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。

2 、频响范围:(1)频率响应是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应。

(2)测试方法:要求输入信号幅值为一个固定值(要在动态范围之内,音响设备我们可以取100mv)。当输入信号为正常频率时(不能有失真,可以定位1KZ),记录这个时候的输出电压的大小V1。然后开始逐渐降低输入信号的频率,当降低到一定程度时,输出信号的幅值会开始减小。继续降低频率,直到输出电压为0.707V1时,记下此时的频率F1,那么该频率就是此通道的最低响应频率。

然后就可以调高频率,直至输出电压为0.707V1时,记下此时的频率F2,那么此频率就是

该通道的最高响应频率。

那么就可以得出频率响应范围为:F1~F2。也可以表示为:20log(F2/F1)(3)相频特性,不同频率经过系统后,相移滞后的现象称为相频特性。(1),(2)的测试方法是针对幅频特性来说的。

3、失真度(DISTN):

指信号在传输过程中与原有信号或标准相比所发生的偏差。在理想的放大器中,输出波形除放大外,应与输入波形完全相同,但实际上,不能做到输出与输入的波形完全一样,这种现象叫失真。

3.1类型:

A、按波形失真的不同情况有:

幅度失真:对幅度不同的信号放大量不同。频率失真:对频率不同的信号放大量不同。相位失真(或时延失真):频率不同的信号,经放大后产生的时间延迟不同。 B、按性质分:

线性失真:是指信号频率分量间幅度和相位关系的变化,仅出现波形的幅度及相位失真,这种失真的特点是不产生新的频率分量。

非线性失真:是指信号波形发生了畸变,并产生了新的频率分量的失真。

3.2 声音失真的要点 3.2.1谐波失真

这种失真是由电路中的非线性元件引起的,信号通过这些元件后,产生了新的频率分量(谐波),这些新的频率分量对原信号形成干扰,这种失真的特点是输入信号的波形与输出信号波形形状不一致,即波形发生了畸变 3.2.2互调失真

两种或多种不同频率的信号通过放大器或扬声器后产生差拍与构成新的频率分量,这种失真通常都是由电路中的有源器件(如晶体管、电子管)产生的。失真的大小与输出功率有关,由于新产生的这些频率分量与原信号没有相似性,因此较少的互调失真也很容易被人耳觉察到。

3.2.3交流接口失真

交流接口失真是由扬声器的反电动势(扬声器发音振动时,切割磁力线所产生的电势)反馈到电路而引起的 3.2.4瞬态失真

瞬态失真是现代声学的一个重要指标,它反映了功放电路对瞬态跃变信号的保持跟踪能力,故又称瞬态反应。这种失真使音乐缺少层次或透明度。这里又分为瞬态互调失真和转换速率过低引起的失真。

另外还有:

1、信纳比:SINAD

SINAD=(S+N+D)/(N+D).S是信号功率 N是噪声功率 D是失真功率。

2、动态范围:动态范围是指音响系统重放时最大不失真输出功率与静态时系统噪声输出功率之比的对数值。

1、音频性能测试:

测试仪器:

音频分析仪HP8903B 信号发生器(可不用)

4.1动态范围测试

要求测试设备通道放大倍数在测试的时候为一定值K,输入电压的频率为一定固定值(可以定位1Khz)

(1)测试输入通道为0时,记下这个时候的输出电压V1。(2)逐渐增大输入电压,使得输出电压不能出现失真,且电压的放大倍数为定值K。逐渐增大输入电压,直到输出的放大倍数K(可以大概估算输出电压与输入电压的比值)据输出电压比减小比较多,或者波形出现失真(用示波器看),或者失真度(8903B可以看到)大于某一值(一般可以是1~5%)。

那么这个输入电压和输出电压V2就称为最大电压。这就可以算出动态范围为:20log (V2/V1)。

4.2频率范围测试

要求通道放大倍数不变,输入信号幅值为一个固定值(要在动态范围之内,音响设备我们可以取100mv)。当输入信号为正常频率时(不能有失真,可以定位1KZ),记录这

个时候的输出电压的大小V1。然后开始逐渐降低输入信号的频率,当降低到一定程度时,输出信号的幅值会开始减小。继续降低频率,直到输出电压为0.707V1时,记下此时的频率F1,那么该频率就是此通道的最低响应频率。

然后就可以调高频率,直至输出电压为0.707V1时,记下此时的频率F2,那么此频率就是该通道的最高响应频率。

那么就可以得出频率响应范围为:F1~F2。也可以表示为:20log(F2/F1) 4.3信噪比和失真测试

要求被测试设备通道的放大倍数固定,输入1khz的为通过0809b就能够直接读出信噪比和失真度。

不能测试的失真:互调失真、交流接口失真、瞬态失真。智能测试。这里的幅频失真和相频失真一般就不进行测试。在音箱系统中,我们最为关注的是信噪比,就是噪声电压。其次是频率范围和动态范围。对于频响特性,在不同频率下的各种失真的测试完全没有必要。

如果能够给出:频率响应曲线(包过幅度和相位)所有性能个就一目了然。

HP8903B

音频接口

视频系统术语--音频接口

除了高清视频带来的视觉上的冲击,音频方面质量也有很大提高,能给大家带来更逼真的现场效果。对于目前经常提到的音频接口做一个说明。 1 RCA模拟音频

RCA接头就是常说的莲花头,利用RCA线缆传输模拟信号是目前最普遍的音频连接方式。每一根RCA线缆负责传输一个声道的音频信号,所以立体声信号,需要使用一对线缆。对于多声道系统,就要根据实际的声道数量配以相同数量的线缆。立体声RCA音频接口,一般将右声道用红色标注,左声道则用蓝色或者白色标注。

2 平衡模拟音频

大三芯插头

XLR接口

与RCA模拟音频线缆直接传输声音的方式完全不同,平衡模拟音频

(Balanced Analog Audio)接口使用两个通道分别传送信号相同而相位相反的信号。接收端设备将这两组信号相减,干扰信号就被抵消掉,从而获得高质量的模拟信号。平衡模拟音频通常采用XLR接口和大三芯接口。XLR俗称卡侬头,有三针插头和锁定装置组成。由于采用了锁定装置,XLR连接相当牢靠。大三芯接口则采用直径为6.35毫米的插头,其优点是耐磨损,适合反复插拔。平衡模拟音频连接主要出现在高级模拟音响器材或专业音频设备上。

3 S/PDIF S/PDIF(Sony/Philips Digital Interface,索尼和飞利浦数字接口)是由SONY公司与PHILIPS公司联合制定的一种数字音频输出接口。该接口广泛应用在CD播放机、声卡及家用电器等设备上,能改善CD的音质,给我们更纯正的听觉效果。该接口传输的是数字信号,所以不会像模拟信号那样受到干扰而降低音频质量。需要注意的是,S/PDIF 接口是一种标准,同轴数字接口和光线接口都属于S/PDIF接口的范畴。

4 数字同轴

数字同轴(Digital Coaxial)是利用S/PDIF接口输出数字音频的接口。同轴线缆有两个同心导体,导体和屏蔽层共用同一轴心。同轴线缆是由绝缘材料隔离的铜线导体,阻抗为75欧

姆,在里层绝缘材料的外部是另一层环形导体及其绝缘体,整个电缆由聚氯乙烯或特氟纶材料的护套包住。同轴电缆的优点是阻抗稳定,传输带宽高,保证了音频的质量。虽然同轴数字线缆的标准接头为BNC接头,但市面上的同轴数字线材多采用RCA接头。

5 光纤

光纤(Optical)以光脉冲的形式来传输数字信号,其材质以玻璃或有机玻璃为主。光纤同样采用S/PDIF接口输出,其是带宽高,信号衰减小,常常用于连接DVD播放器和AV 功放,支持PCM数字音频信号、Dolby以及DTS音频信号。

6 凤凰头

凤凰头也经常被用来作为音频的输入和输出端口。

音频编解码 2-1 PCM编码

PCM 脉冲编码调制是Pulse Code Modulation的缩写。前面的文字我们提到了PCM大致的工作流程,我们不需要关心PCM最终编码采用的是什么计算方式,我们只需要知道PCM编码的音频流的优点和缺点就可以了。PCM编码的最大的优点就是音质好,最

大的缺点就是体积大。我们常见的Audio CD就采用了PCM编码,一张光盘的容量只能容纳72分钟的音乐信息。

2-2 WAVE

这是一种古老的音频文件格式,由微软开发。WAV是一种文件格式,符

合 PIFF Resource Interchange File Format规范。所有的WAV都有一个文件头,这个文件头音频流的编码参数。WAV对音频流的编码没有硬性规定,除了PCM之外,还有几乎所有支持ACM规范的编码都可以为WAV的音频流进行编码。很多朋友没有这个概念,我们拿AVI做个示范,因为AVI和WAV在文件结构上是非常相似的,不过AVI多了一个视频流而已。我们接触到的AVI有很多种,因此我们经常需要安装一些Decode才能观看一些AVI,我们接触到比较多的DivX就是一种视频编码,AVI可以采用DivX编码来压缩视频流,当然也可以使用其他的编码压缩。同样,WAV也可以使用多种音频编码来压缩其音频流,不过我们常见的都是音频流被PCM编码处理的WAV,但这不表示WAV 只能使用PCM编码,MP3编码同样也可以运用在WAV中,和AVI一样,只要安装好了相应的Decode,就可以欣赏这些WAV了。

在Windows平台下,基于PCM编码的WAV是被支持得最好的音频格式,所有音频软件都能完美支持,由于本身可以达到较高的音质的要求,因此,WAV也是音乐编辑创作的首选格式,适合保存音乐素材。因此,基于PCM编码的WAV被作为了一种中介的格式,常常使用在其他编码的相互转换之中,例如MP3转换成WMA。

2-3 MP3编码

MP3作为目前最为普及的音频压缩格式,为大家所大量接受,各种与MP3相关的软件产品层出不穷,而且更多的硬件产品也开始支持MP3,我们能够买到的VCD/DVD播放机都很多都能够支持MP3,还有更多的便携的MP3播放器等等,虽然几大音乐商极其反感这种开放的格式,但也无法阻止这种音频压缩的格式的生存与流传。MP3发展已经有10个年头了,他是MPEG(MPEG:Moving Picture EXPerts Group) Audio Layer-3的简称,是MPEG1的衍生编码方案,1993年由德国Fraunhofer IIS研究院和汤姆生公司合作

发展成功。MP3可以做到12:1的惊人压缩比并保持基本可听的音质,在当年硬盘天价的日子里,MP3迅速被用户接受,随着网络的普及,MP3被数以亿计的用户接受。MP3编码技术的发布之初其实是非常不完善的,由于缺乏对声音和人耳听觉的研究,早期的mp3编码器几乎全是以粗暴方式来编码,音质破坏严重。随着新技术的不断导入,mp3编码技术一次一次的被改良,其中有2次重大技术上的改进。

VBR:MP3格式的文件有一个有意思的特征,就是可以边读边放,这也符合流媒体的最基本特征。也就是说播放器可以不用预读文件的全部内容就可以播放,读到哪里播放到哪里,即使是文件有部分损坏。虽然mp3可以有文件头,但对于mp3格式的文件却不是很重要,正因为这种特性,决定了MP3文件的每一段每一帧都可以单独的平均数据速率,而无需特别的解码方案。于是出现了一种叫VBR(Variable bitrate,动态数据速率)的技术,可以让MP3文件的每一段甚至每一帧都可以有单独的bitrate,这样做的好处就是在保证音质的前提下最大程度的限制了文件的大小。这种技术的优越性是显而易见的,但要运用确实是一件难事,因为这要求编码器知道如何为每一段分配bitrate,这对没有波形分析的编码器而言,这种技术如同虚设。正是如此,VBR技术并没有一出现就显得光彩夺目。

专家们通过长期的声学研究,发现人耳存在遮蔽效应。声音信号实际是一种能量波,在空气或其他媒介中传播,人耳对声音能量的多少即响度或声压最直接的反应就是听到这个声音的大小,我们称它为响度,表示响度这种能量的单位为分贝(dB)。即使是同样响度的声音,人们也会因为它们频率不同而感觉到声音大小不同。人耳最容易听到的就是4000Hz的频率,不管频率是否增高或降低,即使是响度在相同的情况下,大家都会觉得声音在变小。但响度降到一定程度时,人耳就听不到了,每一个频率都有着不同的值。

可以看到这条曲线基本成一个V字型,当频率超过15000Hz时,人耳的会感觉到声音很小,很多听觉不是很好的人,根本就听不到20000Hz的频率,不管响度有多大。当人耳同时听到两个不同频率、不同响度的声音时,响度较小的那个也会被忽略,例如:在白天我们很难听到电脑中散热风扇的声音,晚上却成了噪声源,根据这种原理,编码器可以过滤掉很多听不到的声音,以简化信息复杂度,增加压缩比,而不明显的降低音质。这种遮蔽被称为同时遮蔽效应。但声音A被声音B遮蔽,如果A处于B为中心的遮蔽范围内,遮蔽会更明显,这个范围叫临界带宽。每一种频率的临界带宽都不一样,频率越高的临界带宽越宽。

频率(Hz) 临界带宽(Hz) 频率(Hz) 临界带宽

(Hz) 50 80 1850 280 150 100 2150 320 350 100 2500 380 450 110 3400 550 570 120 4000 700 700 140 4800 900

2-6 mp3PRO 编码

2001年6月14日,美国汤姆森多媒体公司(Thomson Multimedia SA)与佛朗赫弗协会(Fraunhofer Institute)于6月14日发布了一种新的音乐格式版本,名称为mp3PRO,这是一种基于mp3编码技术的改良方案,从官方公布的特征看来确实相当吸引人。从各方面的资料显示,mp3PRO并不是一种全新的格式,完全是基于传统mp3编码技术的一种改良,本身最大的技术亮点就在于SBR(Spectral Band Replication 频段复制),这是一种新的音频编码增强算法。它提供了改善低位率情况下音频和语音编码的性能的可能。这种方法可在指定的位率下增加音频的带宽或改善编码效率。SBR最大的优势就是在低数据速率下实现非常高效的编码,与传统的编码技术不同的是,SBR更像是一种后处理技术,因此解码器的算法的优劣直接影响到音质的好坏。高频实际上是由解码器(播放器)产生的,SBR编码的数据更像是一种产生高频的命令集,或者称为指导性的信号源,这有点駇idi的工作方式。我们可以看到,mp3PRO其实是一种mp3信号流和SBR信号流的混合数据流编码。有关资料显示,SBR技术可以改善低数据流量下的高频音质,改善程度约为30%,我们不管这个30%是如何得来的,但可以事先预知这种改善可以让64kbps的mp3达到128kbps的mp3的音质水平(注:在相同的编码条件下,数据速率的提升和音质的提升不是成正比的,至少人耳听觉上是这样的),这和官方声称的64kbps 的mp3PRO可以媲美128kbps的mp3的宣传基本是吻合的。

2-7 WMA

WMA就是Windows Media Audio编码后的文件格式,由微软开发,WMA针对的不是单机市场,是网络!竞争对手就是网络媒体市场中著名的Real Networks。微软声称,在只有64kbps的码率情况下,WMA可以达到接近CD的音质。和以往的编码不同,WMA

支持防复制功能,她支持通过Windows Media Rights Manager 加入保护,可以限制播放时间和播放次数甚至于播放的机器等等。WMA支持流技术,即一边读一边播放,因此WMA可以很轻松的实现在线广播,由于是微软的杰作,因此,微软在Windows中加入了对WMA的支持,WMA有着优秀的技术特征,在微软的大力推广下,这种格式被越来越多的人所接受。

2-8 RA

RA就是RealAudio格式,这是各位网虫接触得非常多的一种格式,大部分音乐网站的在线试听都是采用了RealAudio,这种格式完全针对的就是网络上的媒体市场,支持非常丰富的功能。最大的闪烁点就是这种格式可以根据听众的带宽来控制自己的码率,在保证流畅的前提下尽可能提高音质。RA可以支持多种音频编码,包括ATRAC3。和WMA

一样,RA不但都支持边读边放,也同样支持使用特殊协议来隐匿文件的真实网络地址,从而实现只在线播放而不提供下载的欣赏方式。这对唱片公司和唱片销售公司很重要,在各方的大力推广下,RA和WMA是目前互联网上,用于在线试听最多的音频媒体格式。

2-9 APE

APE是Monkey's Audio提供的一种无损压缩格式。Monkey's Audio提供了Winamp的插件支持,因此这就意味着压缩后的文件不再是单纯的压缩格式,而是和MP3一样可以播放的音频文件格式。这种格式的压缩比远低于其他格式,但能够做到真正无损,因此获得了不少发

烧用户的青睐。在现有不少无损压缩方案种,APE是一种有着突出性能的格式,令人满意的压缩比以及飞快的压缩速度,成为了不少朋友私下交流发烧音乐的唯一选择。

主流音频格式的特点及其适应性

各种各样的音频编码都有其技术特征及不同场合的适用性,我们大致讲解一下如何去灵活应用这些音频编码。

4-1 PCM编码的WAV

前面就提到过,PCM编码的WAV文件是音质最好的格式,Windows平台下,所有音频软件都能够提供对她的支持。Windows提供的WinAPI中有不少函数可以直接播放wav,因此,在开发多媒体软件时,往往大量采用wav,用作事件声效和背景音乐。PCM编码的wav可以达到相同采样率和采样大小条件下的最好音质,因此,也被大量用于音频编辑、非线性编辑等领域。

特点:音质非常好,被大量软件所支持。

适用于:多媒体开发、保存音乐和音效素材。

4-2 MP3

MP3具有不错的压缩比,使用LAME编码的中高码率的mp3,听感上已经非常接近源WAV文件。使用合适的参数,LAME编码的MP3很适合于音乐欣赏。由于MP3推出年代已久,加之还算不错的音质及压缩比,不少游戏也使用mp3做事件音效和背景音乐。几乎所有著名的音频编辑软件也提供了对MP3的支持,可以将mp3象wav一样使用,但由于mp3编码是有损的,因此多次编辑后,音质会急剧下降,mp3并不适合保存素材,但作为作品的demo确实相当优秀的。mp3长远的历史和不错的音质,使之成为应用最广的有损编码之一,网络上可以找到大量的mp3资源,mp3player日渐成为一种时尚。不少VCDPlayer、DVDPlayer甚至手机都可以播放mp3,mp3是被支持的最好的编码之一。MP3也并非完美,在较低码率下表现不好。MP3也具有流媒体的基本特征,可以做到在线播放。

特点:音质好,压缩比比较高,被大量软件和硬件支持,应用广泛。

适用于:适合用于比较高要求的音乐欣赏。

4-3 OGG

Ogg是一种非常有潜力的编码,在各种码率下都有比较惊人的表现,尤其中低码率下。Ogg除了音质好之外,她还是一个完全免费的编码,这对ogg被更多支持打好了基础。Ogg有着非常出色的算法,可以用更小的码率达到更好的音质,128kbps的Ogg比192kbps 甚至更高码率的mp3还要出色。Ogg的高音具有一定的金属味道,因此在编码一些高频要求很高的乐器独奏时,Ogg的这个缺陷会暴露出来。OGG具有流媒体的基本特征,但现在还没有媒体服务软件支持,因此基于ogg的数字广播还无法实现。Ogg目前的被支持的情况还不够好,

无论是软件的还是硬件的,都无法和mp3相提并论。

特点:可以用比mp3更小的码率实现比mp3更好的音质,高中低码率下均具有良好的表现。

适用于:用更小的存储空间获得更好的音质(相对MP3)

4-4 MPC

和OGG一样,MPC的竞争对手也是mp3,在中高码率下,MPC可以做到比竞争对手更好音质,在中等码率下,MPC的表现不逊色于Ogg,在高码率下,MPC的表现更是独孤求败,MPC的音质优势主要表现在高频部分,MPC的高频要比MP3细腻不少,也没有Ogg那种金属味道,是目前最适合用于音乐欣赏的有损编码。由于都是新生的编码,和Ogg际遇相似,也缺乏广泛的软件和硬件支持。MPC有不错的编码效率,编码时间要比OGG和LAME短不少。

特点:中高码率下,具有有损编码中最佳的音质表现,高码率下,高频表现极佳

适用于:在节省大量空间的前提下获得最佳音质的音乐欣赏。

4-6 WMA

微软开发的WMA同样也是不少朋友所喜爱的,在低码率下,有着好过mp3很多的音质表现,WMA的出现,立刻淘汰了曾经风靡一时的VQF编码。有微软背景的WMA获得了很好的软件及硬件支持,Windows Media Player就能够播放WMA,也能够收听基于WMA编码技术的数字电台。因为播放器几乎存在于每一台PC上,越来越多的音乐网站都乐意使用WMA作为在线试听的首选了。除了支持环境好之外,WMA在64-128kbps 码率下也具有相当出色的表现,虽然不少要求较高的朋友并不够满意,但更多要求不高的朋友接受了这种编码,WMA很快的普及开了。

特点:低码率下的音质表现难有对手

适用于:数字电台架设、在线试听、低要求下的音乐欣赏

4-7 mp3PRO

作为mp3的改良版本的mp3PRO表现出了相当不错的素质,高音丰满,虽然mp3PRO 是通过SBR技术在播放过程中插入的,但实际听感相当不错,虽然显得有点单薄,但在64kbps的世界里已经没有对手了,甚至超过了128kbps的mp3,但很遗憾的是,mp3PRO 的低频表现也象mp3一样的破,所幸的是,SBR的高频插值可以或多或少的掩盖掉这个缺陷,因此mp3PRO的低频弱势反而不如WMA那么明显。大家可以在使用

RCA mp3PRO Audio Player的PRO开关来切换PRO模式和普通模式时深深的感觉到。整体而言,64kbps的mp3PRO达到了128kbps的mp3的音质水平,在高频部分还略有胜出。

特点:低码率下的音质之王

适用于:低要求下的音乐欣赏

4-8 APE

一种新兴的无损音频编码,可以提供50-70%的压缩比,虽然比起有损编码来太不值得一提了,但对于追求完美注意的朋友简直是天大的福音。APE可以做到真正的无损,而不是听起来无损,压缩比也要比类似的无损格式要好。

特点:音质非常好。

适用于:最高品质的音乐欣赏及收藏

MPEG提供三种音频压缩编码的等级,分别为I,II和III级(Level I、Level II、Level III)。I级最简单,其目标是压缩后每声道位数据率为192Kb/s。II级比I级精度高一些,压缩后每声道位数据率为128Kb/s。III级增加了不定长编码、霍夫曼编码等一些先进的算法,可获得非常低的数据率和较高的保真度,压缩后每声道的位数据率为64Kb/s。如果要获得每声道64Kb/s的数据率,采用III级编码比采样II级编码的保真度好;要获得每声道128Kb/s的数据率,采用III级和II级编码的效果类似,但III级和II级都比I级的效果好。每声道128Kb/s的数据率或双声道256Kb/s的数据率可以提供优质的保真度,因此采用II级压缩编码对高保真、立体声音频足矣。声音响度的基本概念

人耳感觉到的声音的强弱是声音的特征之一。振幅越大,响度越大,振幅越小,响度越小。一)声音的强弱称为「响度」,通常以「分贝」(dB)来表示响度的大小。

(二)声波振幅愈大则响度愈大。用力敲打音叉,音叉两股振动幅度愈大,便可产生较大振幅的声波。反之小力敲打则声波振幅小。

(三)响度大小可用「噪音计」测得分贝值。振幅大小之比较可由「示波器」之萤幕直接观察

声音的强弱叫做响度。响度是感觉判断的声音强弱,即声音响亮的程度,根据它可以把声音排成由轻到响的序列。

响度的大小主要依赖于声强,也与声音的频率有关。声波所到达的空间某一点的声强,是指该点垂直于声波传播方向的单位面积上,在单位时间内通过的声能。声强的单位是瓦/米2。对于2000赫兹的声音,其声强为2×10-12瓦/米2就可以听到,但对于50赫兹的声音,需5×10-6瓦/米2才能听到,感觉这两个声音的响度相同,但它们的声强差2.5×106倍。对于同一频率的声音,响度随声强的增加不是呈线性关系,声强增大到

10倍,响度才增大为2倍,声强增大到100倍,响度才增大为3倍。响度 - 响度与人

的感觉

响度由气压迅速变化的振幅(声压)大小决定。但人耳对强度的主观感觉与客观的实际强

度并不一致,人们把对于强弱的主观感觉称为响度,其计量单位也为分贝(Db),它是根据1000Hz的声音在不同强度下的声压比值,取其常用对数值的l/10而定的。取对数

值的原因是由于强度与响度的增加不是成正比关系,而是真数与对数的关系!例如声音强度大到10倍时,听起来才响了一级(10dB),强度大到100倍时听起来才响了两级(20dB)。对于1000Hz的声音信号,人耳能感觉到的最低声压为2x 10E-5Pa,把这一声压级定为0dB,当声压超过

130dB时人耳将无法忍受,故人耳听觉的动态范围为0~130dB。人对强度相等、频率不同声音感觉是不同的;声压级越高,人的听觉频率特性越平直;声压级越低,人的听觉频率范围越小;频率f<16~20Hz以及f>18~20KHz的声音,不论声级多高,人耳都是听不到的。故人耳的听觉频率为20Hz~20KHz,这个频带叫音频或声频;不论声压高低,人耳对3KHz~5KHz频率的声音最为敏感。

大多数人对信号声级突变3dB以下时是感觉不出来的,因此对音响系统常以3dB作为允许的频率响应曲线变化范围。

人耳对声音的感觉,不仅和声压有关,还和频率有关。声压级相同,频率不同的声音,听起来响亮程度也不同。如空压机与电锯,同是 100分贝声压级的噪声.听起来电锯声要响得多。按人耳对声音的感觉特性,依据声压和频率定出人对声音的主观音响感觉量,称为响度级,单位为方。

以频率为1000赫兹的纯音作为基准音,其他频率的声音听起来与基准音一样响,该声

音的响度级就等于基准音的声压级。例如,某噪声的频率为100赫兹,强度为50分贝,其响度与频率为1000赫兹,强度为20分贝的声音响度相同,则该噪声的响度级为20方。人耳对于高频噪声是 1000~5000赫兹的声音敏感,对低频声音不敏感。例如,同

是是40方的响度级,对1000赫兹声音来说,声压级是40分贝;4000赫兹的声音,声

压级是37分贝;100赫兹的声音,声压级52分贝;30赫兹的声音,声压级是78分贝。也就是说,低频的80分贝的声音,听起来和高频的37分贝的声音感觉是一样的。但是声压级在80分贝以上时,各个频率的声压级与响度级的数值就比较接近了,这表明当声压级较高时,人耳对各个频率的声音的感觉基本是一样的。音频嵌入解嵌

入的音频最少2路,最多16路。嵌入到视频数据中的音频包有3种:音频控制包(Audio ControlPacket, ACP) 、音频数据包(Audio Data Packet, ADP) 和扩展数据包

( Extended DataPacket, EDP) 。它们应该尽量均匀地嵌入视频信号中,以减小系统中的buffer所占用的资源。

音频控制包格式如图4a所示。待嵌入的音频每4路为1个音频组,每个音频组都拥有自己独立的一个控制包。控制包在每场视频切换点(Video Switching Point)后面的视频行中传输一次,它包含了采样率、音频声道有效性指示、音频处理延时等信息。控制包在辅助数据空间中的位置必须先于其他任何音频包。

音频数据包(图4b)携带的是有效音频信号,每一个AES/EBU音频子帧中的20 bit音频取样码和V,U, C 3个位通过一定的格式,映射为数据包中连续的3 word。将来自2个音频对的4个子帧的音频数据按顺序排列,数据包就可以承载多达4路AES/EBU音频信号的1个或多个采样。

当音频采样字长超过20 bit时,音频子帧中的4 bit辅助数据被打包进扩展数据包(图4c) ,每2个子帧的共8位辅助数据拼成扩展包中的一个有效word。

音频数据包和扩展包必须放在每行视频中紧接在EAV之后的位置上。扩展包必须和相关的音频数据包放置在同一辅助数据区中,并且紧接在音频数据包后面

测量平差知识点

1、测量学的研究内容:测定和测设。 2、测定:将地面上客观存在的物体通过测量的手段将其测成数据或图形。 3、测设:就是将测量的手段标定在地面上。 4、水准面:静止的水面。 5、大地水准面:水准面与静止的平均海水面相重合的闭合水准面。 6、铅垂线:重力方向线,是测量工作的基准线。 7、地球椭球面是测量工作的基准面。 8、地物:地面上人造或天然固定的物体:地貌:地面高低起伏形态。 9、测量上常用坐标系:天文、大地、高斯平面直角、独立平面直角。 10、绝对高程:地面点沿铅垂线到大地水准面的距离。相对高程:某点到任意水准面的距离。 11、高差:地面上两点之间高程差。 12、半径为10km范围内面积为320km2之内可以用水平面代替水准面时距离产生的误差可忽略不计;测距范围的100km2时,用平面代替水准面时对角度的影响可忽略不计;在高程测量中即使很短的距离也不可忽略。 13、测量工作的原则:a由整体到局部、由控制到碎部;b步步检核。14、测量的基本工作:测角、量边、测高程。15、测绘的基本工作:确定地面点的基本位置。 16、施工测量包括:建筑物施工放样、建筑物变形监测、工程竣工测量。 17、高程测量:测量地面上各点高程的工作。18、水准测量的实质:测量地面上两点之间的高差,是利用水准仪所提供的一条水平视线来实现的。19、高差计算方法:高差法、仪高法。 20、水准仪按构造可分为:微倾式、自动安平、数字水准仪,及水准尺和尺垫。 21、DS3构造:望远镜、水准器,基座。22、水准仪轴线之间的几何条件:a圆水准器轴平行于竖轴b十字丝横丝垂直于竖丝c水准管轴平行于视准轴。23、尺垫的作用:减少水准尺下沉和标志转点。24、水准尺的使用:粗平、瞄准、精平、读数。 24、水准点的分类:永久性和临时性。25、测站的检核方法:双面尺法和双仪高法。 26、水准路线检核方法:闭合水准路线、附合水准路线、支水准路线、水准网。 27、误差:仪器误差,观测误差、外界条件的影响。 28、角度测量:水平角和竖直角测量。29、经纬仪:光学和电子经纬仪。 30、DJ6:基座、水平度盘、照准部(望远镜、竖直度盘、水准管、读数显微镜) 31、经纬仪的使用步骤:对中、整平、瞄准、读数。32、水平角测量方法:测回法,方向观测法。33、距离测量常用的方法:钢尺直接、视距法、电磁波、卫星测距。 34、钢尺量距的误差:定线、尺长、温度测定、钢尺倾斜、拉力不均、钢尺对准、读数。 35、视距测量:利用望远镜内的视距装置配合视距尺根据几何光学和三角测量原理,同时测定距离高差的方法。 36、全站仪功能:角度测量、距离测量、坐标及高程测量、特殊测量功能。 37、直线定向:选择一个标准方向再根据直线与标志方向之间的关系确定该直线方向。 38、测量常用的标准方向线:真子午线、磁子午线、坐标纵轴方向。 39、误差来源:测量仪器、观测者、外界环境条件。 40、测量误差的种类:粗差、系统误差、偶然误差。 41、系统误差:在相同条件下,在某量进行的一系列观测中,数值大小和正负符号固定不变,或按一定规律变化的误差。 42、偶然误差:在相同条件下,在某量进行的一系列观测中,单个误差的出现没有一定的规律性,其数值的大小和符号都不固定,表现出偶然性,但大量的误差却具有一定统计规律。 43、偶然误差的特性:a在一定观测条件下,偶然误差的绝对值不会超过一定限度,即偶然误差是有界的;b绝对值小的误差比绝对值大的误差出现的机会大;c绝对值相等的正负误差出现的个数大致相等;d偶然误差的算术平均值随着观测次数的无限增加趋与零。 44、控制测量:在一定区域内为地形测图和工程测量建立控制网,所进行的测量工作。

相关器的研究及其主要参数测量

实验9-3 相关器的研究及其主要参数测量 微弱信号检测是利用电子学、信息论、计算机、物理学的方法从噪声中提取出有用信号的一门技术学科。“微弱信号”并不是单纯的信号幅度很小,而主要是指信号被噪声淹没,“微弱”是相对于噪声而言的。因此,微弱信号检测是专门与噪声作斗争的技术,其主要任务是提高信噪比。为此,就需要研究噪声的来源和性质,分析噪声产生的原因和规律,噪声的传播路径,有针对性地采取有效措施抑制噪声。研究被测信号和噪声的特性及其差别,以寻找出从噪声中检测出有用信号的理论和方法。 微弱信号检测基本原理:频域的窄带化、时域信号的平均处理、离散量的计数统计、并行检测、自适应噪声抵消等。 微弱信号检测常见技术:相关检测、锁定放大、取样积分(多点平均)、光学多道分析仪、光子计数、自适应噪声抵消等。 【实验目的】 1、了解相关器的原理 2、测量相关器的输出特性 3、测量相关器的抑制干扰能力和抑制白噪声能力 【实验仪器】 1、ND-501C型微弱信号检测实验综合装置 包括:相关器实验盒、宽频带相移器实验盒、同步积分器实验盒、多点信号平均器实验盒、选频放大器实验盒、多功能信号源实验盒、有源高通-低通滤波器实验盒、低噪声前置放大器实验盒、交流-直流-噪声电压表实验盒、频率计实验盒、跟踪滤波器实验盒、相位计实验盒、双相相关器实验盒、PA级电流前置放大器实验盒、电压源-电流源实验盒、V X,V Y→V K,Vφ运算电路实验盒。 2、数字存储示波器 【实验原理】 相关器是锁定(相)放大器的核心部件。相关器就是实现求参考信号和被测信号两者互相关函数的电子线路。由相关函数的数学表达式可知,需要一个乘法器和积分器实现这一数学运算。从理论上讲用一个模拟乘法器和一个积分时间为无穷长的积分器,就可以把深埋在任意大噪声中的微弱信号检测出来。 通常在锁定放大器中不采用模拟乘法器,也不采用积分时间为无穷长的积分器。因为模拟乘法器要保证动态范围大,线性好将是困难的。由于被测信号是正弦波或方波,乘法器就可以采用动态范围大、线性好、电路简单的开关乘法器。国内外大部分的锁定放大器都是采用这种乘法器,本实验只讨论采用这种乘法器的相关器。 3.1 相关器的数学解 锁定放大器中常采用的相关器原理方框图如图1-1所示。被测信号V A和参考信号V B在乘法器中相乘,两者之积V1为乘法器的输出信号。同时也是低通滤波器的输入信号。低通滤波器是采用运算放大器的有源滤波器,电阻R1、R0、C0为图中所示,V o为低通滤波器的输出信号。图中的乘法器用开关来实现,可以等效成被测输入信号与单位幅度的方波相乘的乘法器。若参考信号为占空比1:1的对称方波,V B就能用单位幅度的对称方波函数表示(或称单位幅度开关函数记为X K)。因此有: V B=X k=4 π∑1 2n+1 sin(2n+1)ωR t n=0,1,2… ={ +1 正半周 ?1 负半周 (1-1)

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

测量平差概要

测量平差概要 一、基本概念 01、极条件的个数等于中点多边形、大地四边形和扇形的总数。 02、在间接平差中,独立未知量的个数等于必要观测数。 03、协方差与权互为倒数。 04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。 05、在间接平差中,误差方程的个数等于观测值的个数。 06、协因数阵与权阵互为逆阵。 07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。 08、圆周条件的个数等于中点多边形的个数。 09、偶然误差服从正态分布。 10、只有包含中点多边形的三角网才会产生圆周角条件。 11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。 12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。 13、同一个量多次不等精度观测值的最或是值等于其加权平均值。 14、应用权倒数传播律时观测值间应误差独立。 15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。 16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。 17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。 18、在测角中正倒镜观测是为了消除系统误差。 19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。 20、在水准测量中估读尾数不准确产生的误差是偶然误差。 21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。 22、定权时单位权中误差可任意给定,它仅起比例常数的作用。 23、测角精度与角度的大小无关。 24、观测值的权通常是没有量纲的。 25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。 26、测角网的必要观测个数等于待定点个数的2倍。

线路参数测试方法

SM501测试线路参数的方法高感应电压下用邓克炎邓辉湖南省送变电建设公司调试所 引言0, ,不能用仪器直接测试超高压输电线路工频参数测试时,经常遇到感应电压很高的情况否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 SM501的介绍:1 线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,SM501同步交流采样及数字信号处理技使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D 术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 SM501的主要功能与特点:1.1 可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电(1)冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。(2)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电(3) 流互感器。可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保(4) 持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。主要技术指标;1.2 0.5级级,功率(1)基本测量精度:电流、电压、阻抗0.2:AC 0-50A :AC 0-450V 电流测量范围(2)电压测量范围为什么要对输电线路进行参数测试:2输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保SM501。定市超人电子有限公司研制了一种比较智能的参数测试仪那就是几种典型的参数测试:3: 输电线路正序阻抗的测试3.1 接法测量。1将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图接法测量。2当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器, 按图在仪器测试项目菜单中应选择“正序阻抗”。 IUA a A I UB B b

相关器的研究及其主要参数测量(v1.2.1)

实验9-3相关器的研究及其主要参数测量 微弱信号检测是利用电子学、信息论、计算机、物理学的方法从噪声中提取出有用信号的一门技术学科。“微弱信号”并不是单纯的信号幅度很小,而主要是指信号被噪声淹没,“微弱”是相对于噪声而言的。因此,微弱信号检测是专门与噪声作斗争的技术,其主要任务是提高信噪比。为此,就需要研究噪声的来源和性质,分析噪声产生的原因和规律,噪声的传播路径,有针对性地采取有效措施抑制噪声。研究被测信号和噪声的特性及其差别,以寻找出从噪声中检测出有用信号的理论和方法。 微弱信号检测基本原理:频域的窄带化、时域信号的平均处理、离散量的计数统计、并行检测、自适应噪声抵消等。 微弱信号检测常见技术:相关检测、锁定放大、取样积分(多点平均)、光学多道分析仪、光子计数、自适应噪声抵消等。 【实验目的】 1、了解相关器的原理 2、测量相关器的输出特性 3、测量相关器的抑制干扰能力和抑制白噪声能力 【实验仪器】 1、ND-501C 型微弱信号检测实验综合装置 包括:相关器实验盒、宽频带相移器实验盒、同步积分器实验盒、多点信号平均器实验盒、选频放大器实验盒、多功能信号源实验盒、有源高通-低通滤波器实验盒、低噪声前置放大器实验盒、交流-直流-噪声电压表实验盒、频率计实验盒、跟踪滤波器实验盒、相位计实验盒、双相相关器实验盒、PA 级电流前置放大器实验盒、电压源-电流源实验盒、V X ,V Y →V K ,V φ运算电路实验盒。2、数字存储示波器 【实验原理】 相关器是锁定(相)放大器的核心部件。相关器就是实现求参考信号和被测信号两者互相关函数的电子线路。由相关函数的数学表达式可知,需要一个乘法器和积分器实现这一数学运算。从理论上讲用一个模拟乘法器和一个积分时间为无穷长的积分器,就可以把深埋在任意大噪声中的微弱信号检测出来。 通常在锁定放大器中不采用模拟乘法器,也不采用积分时间为无穷长的积分器。因为模拟乘法器要保证动态范围大,线性好将是困难的。由于被测信号是正弦波或方波,乘法器就可以采用动态范围大、线性好、电路简单的开关乘法器。国内外大部分的锁定放大器都是采用这种乘法器,本实验只讨论采用这种乘法器的相关器。 3.1相关器的数学解 锁定放大器中常采用的相关器原理方框图如图1-1所示。被测信号V A 和参考信号V B 在乘法器中相乘,两者之积V 1为乘法器的输出信号。同时也是低通滤波器的输入信号。低通滤波器是采用运算放大器的有源滤波器,电阻R 1、R 0、C 0为图中所示,V o 为低通滤波器的输出信号。图中的乘法器用开关来实现,可以等效成被测输入信号与单位幅度的方波相乘的乘法器。若参考信号为占空比1:1的对称方波,V B 就能用单位幅度的对称方波函数表示(或称单位幅度开关函数记为X K )。因此有:

第六章 测量误差的基本知识

工 程 测 量 理论教案 授课教师:谢艳 使用班级:13-1、13-2、 13-3、13-4、13-5

教师授课教案 课程名称:公路工程测量2013年至2014年第二学期第次课 班级:13-1、13-2、13-3、13-4、13-5 编制日期:20 14 年月日 教学单元(章节) 第六章测量误差的基本知识 目的要求 1、了解测量误差的概念。 2、掌握测量误差产生的原因 3、了解测量误差的分类及其相应的处理方式。 4、掌握评定观测精度的标准及其相应的计算方式。 知识要点 1、测量误差概念 2、测量误差产生的原因 3、测量误差的分类 4、评定观测精度的标准 技能要点 分析问题能力 教学步骤 介绍测量误差的概念,了解测量误差的产生的原因、测量误差的分类。介绍评定观测精度的标准。练习中误差、容许误差、相对误差的计算方法。 教具及教学手段 多媒体课件教学。 作业布置情况 3题 教学反思 授课教师:谢艳授课日期:2014年月日

教学内容 第六章测量误差的基本知识 一、情境导入 用PPT播放工程实例图片及其测量误差产生的原因,让学生对测量误差有一个微观上的了解。 讲解测量误差的来源:每一个物理量都是客观存在,在一定的条件下具有不以人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值是不可能测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差 二、新课教学 第一节概述 1、测量误差概念:真值与观测值之差 测量误差(△)=真值-观测值 如:测量工作中的大量实践表明,当对某一客官存在的量进行多次贯彻时,不论测量仪器多么的精密,贯彻进行的多么的细致,所得到的各观测值质检总是存在差异。同一量各观测值质检,以及观测值与其真实值(简称为真值)质检的差异,称为建筑测量误差。 2、误差产生的原因: 仪器设备、观测者、外界环境 测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把测量仪器、观测者的技术水平和外界环境三个方面综合起来,称为观测条件。观测条件不理想和不断变化,是产生测量误差的根本原因。通常把观测条件相同的各次观测,称为等精度观测;观测条件不同的各次观测,称为不等精度观测。 具体来说,测量误差主要来自以下四个方面: (1) 外界条件主要指观测环境中气温、气压、空气湿度和清晰度、风力以及大气折光等因素的不断变化,导致测量结果中带有误差。 (2) 仪器条件仪器在加工和装配等工艺过程中,不能保证仪器的结构能满足各种几何关系,这样的仪器必然会给测量带来误差。 (3) 方法理论公式的近似限制或测量方法的不完善。 (4) 观测者的自身条件由于观测者感官鉴别能力所限以及技术熟练程度不同,也会在仪器对中、整平和瞄准等方面产生误差。 3、测量误差分类 系统误差 在相同的观测条件下,对某量进行了n次观测,如果误差出现的大小和符号均相同或按一定的规律变化,这种误差称为系统误差。系统误差一般具有累积性。 系统误差产生的主要原因之一,是由于仪器设备制造不完善。例如,用一把名义长度为50m的钢尺去量距,经检定钢尺的实际长度为50.005 m,则每量尺,就带有+0.005 m的误差(“+”表示在所量距离值中应加上),丈量的尺段越多,所产生的误差越大。所以这种误差与所丈量的距离成正比。 再如,在水准测量时,当视准轴与水准管轴不平行而产生夹角时,对水准尺的读数所产生的误差为l*i″/ρ″(ρ″=206265″,是一弧度对应的秒值),它与水准仪至水准尺之间的距离l成正比,所以这种误差按某种规律变化。 系统误差具有明显的规律性和累积性,对测量结果的影响很大。但是由于系统误差的大小和符号有一定的规律,所以可以采取措施加以消除或减少其影响。

线路参数测试作业指导书

交流输电线路工频电气参数测量作业指导书 批准: 审核: 编制: 深圳市鹏能投资控股有限公司试验分公司

1.试验项目 测试要求 新建和改建的单回交流输电线路,在运行前应进行线路单位长度电阻、电感、电容等工频电气参数的测量; 新建和改建的同塔双回输电线路,在运行前应进行双回线路之间的工频单位长度的耦合电感、耦合电容测量。 线路电气参数测试前的试验项目 (a)感应电压; (b)感应电流; (c)绝缘电阻; (d)核对相别。 线路电气参数测量项目 (a)直流电阻 (b)直流电阻测量 (c)正序阻抗测量 (d)零序阻抗测量 (e)正序电容测量 (f)零序电容测量 (g)双回线路之间的工频单位长度的耦合电感和耦合电容测量(无特殊要求不用测试, 详细测试方法见附表1)。 架空线和电缆混合线路参数的测量 当一条输电线路由架空线路和电缆线路串联构成时,可测量混合线路的电气参数,必要时分别测量架空线段和电缆线段的电气参数。 测量用电源的频率选取 待测线路不存在工频感应电压和感应电流的条件下,可直接选用工频电源进行测量。 待测线路存在工频感应电压和感应电流的条件下,为保证参数测量结果的准确度,宜采

用异频法进行测量。一般情况下,选取f -f S ?和f f S ?+两个频率点进行测量。 f ?通常可取 Hz ,5 Hz , Hz ,10 Hz 。 2.适用范围 交接试验是能及时有效地发现电力设备因运输、安装等方面的问题造成的缺陷、防范电力设备事故、保证电力系统安全运行的有效手段,是保证电力设备安全投产工作中必不可少的一个重要环节。为了强化一次设备交接试验工作,规范交接试验现场作业,四川通源电力科技有限公司组织编制交接试验标准化作业指导书。作业指导书的编写参照国家标准、企业标准的技术规范、规定。 本作业指导书适用于110kV~500kV 电压等级新安装的、按照国家相关出厂试验标准试验合格的电气设备交接试验,本标准不适用于安装在煤矿井下或其他有爆炸危险场所的电气设备。 3.编写依据 表3-1 编 写 依 据

误差-基本概念.

误差的基本概念 测量值与真值之差异称为误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。 基本概述 【英文】: an error; inaccuracy deviation 【中文拼音】: wù chā 【基本解释】: 一个量的观测值或计算值与其真值之差;特指统计误差,即一个量在测量、计算或观察过程中由于某些错误或通常由于某些不可控制的因素的影响而造成的变化偏离标准值或规定值的数量 释义 误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。 设被测量的真值(真正的大小)为a,测得值为x,误差为ε,则:x-a=ε 误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。从实验的原理,实验所用的仪器及仪器的调整,到对物理量的每次测量,都不可避免地存在误差,并贯穿于整个实验始终。 测量值与真值之差异称为误差。 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下:

线路参数测试方案

220KV茅申I线、茅申II线线路 参数测试方案 编制: 审核: 批准: 年月日 线路参数测试方案

I 试验前的准备: 1、先组织参加试验人员学习该线路测量三措方案 2、由工作负责人向全体试验人员交待整个工作内容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两方通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人许可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理许可开工手续。 II 试验项目和步骤: 以下试验项目,每执行一项,即在序号左方打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定: 1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作内容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品) 4、用验电器验明线路确无电压后,将线路三相短路接地。 5、用电话通知对方,线路已接地,请对方做好安措,拆除线路

耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I线时,将茅申II线三相短路接地。 6、得到对方回答:引线已拆除,人员已离开。 7、通知对方:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用电话回答对方。 8、接到对方回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用电话通知对方(申城变侧,以下同):线路已接地,将对方侧线路三相用专用线夹短路并接地。 3、得到对方回答:“三相已短接完毕,可以试验”。 4、通知对方:“试验开始,将引下线分别接至电桥进行三相电阻测量,记录电桥读数和两端环境温度”。(为了防止空间感应电压干扰,根据情况可在线路测量端并上旁路电容)。

湿度测量的基本概念

湿度测量的基本概念 在工农业生产、气象、环保、国防、科研、航天等部门,经常需要对环境湿度进行测量及控制。对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一,但在常规的环境参数中,湿度是最难准确测量的一个参数。这是因为测量湿度要比测量温度复杂得多,温度是个独立的被测量,而湿度却受其他因素(大气压强、温度)的影响。此外,湿度的校准也是一个难题。国外生产的湿度标定设备价格十分昂贵。 一、湿度定义 在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸气量(水蒸气压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 湿度很久以前就与生活存在着密切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 ①双压法、双温法是基于热力学P、V、T帄衡原理,帄衡时间较长,分流法是基于绝对湿气和绝对干空气的精确混合。由于采用了现代测控手段,这些设备可以做得相当精密,却因设备复杂,昂贵,运作费时费工,主要作为标准计量之用,其测量精度可达±2%RH以上。 ②静态法中的饱和盐法,是湿度测量中最常见的方法,简单易行。但饱和盐法对液、气两相的帄衡要求很严,对环境温度的稳定要求较高。用起来要求等很长时间去帄衡,低湿点要求更长。特别在室内湿度和瓶内湿度差值较大时,每次开启都需要帄衡6~8小时。

线路参数测试方案

福清融侨经济技术开发区光电园二期项目220kV输变电工程(线路部分) 线路参数测试方案 编制: 审核: 批准: 福建省*****电力建设公司检测调试所

线路参数测试方案 1 测试依据 1.1《GB50150-2006 电气装置安装工程电气设备交接试验标准》第25.0.1.2 条 1.2《Q/FJG10029.2—2004 福建省电力设备试验规程》第17条 1.3《DL/T 782 -2001 110kV及以上送变电工程启动及竣工验收规程》第5条 1.4 国家电网公司发布的《架空输电线路管理规范》第十五条 1.5《DL/T559-2007 220kV-750kV电网继电保护装置运行整定规程》 1.6《DL/T584-2007 3kV-110kV电网继电保护装置运行整定规程》 2 试验目的 高压输电线路新架设、更改路径、更换导线地线、杆塔塔头改造升压都应进行线路工频参数的测试。 3 工作任务及测试参数 220kV东林Ⅰ路参数测试范围:500kV东台变220kV东林I路出线构架(253线路)~220kV林中变220kV东林I路出线构架(263线路); 220kV东林Ⅱ路参数测试范围:500kV东台变220kV东林II路出线构架(254线路)~220kV林中变220kV东林II路出线构架(264线路); 220kV东京线参数测试范围:500kV东台变220kV东京线出线构架(256线路)~220kV 京东方变220kV东京线出线构架(212线路); 220kV林京线参数测试范围:220kV林中变220kV林京线出线构架(266线路)~220kV 京东方变220kV林京线出线构架(211线路); 三相架空输电线路参数:正序阻抗、零序阻抗、正序电容、零序电容及核相等工作。 4 测试线路的信息 4.1、220kV东京线工程,起于已建500kV东台变220kV出线构架,终止于新建京东方变电站220kV进线构架。全线按单、双回路架空线路和单回路电缆线路混合设计,路径总长约11.0km,其中东台变出线约3.7km线路利用已建东林I路#1~#8双回路单边挂线重新架线,新建单回路架空线路长约6.5km,新建单回路电缆约0.8km(与林中~京东方220kV线路电缆沟平行敷设)。本工程架空线路导线分为两段:①东台变出线3.7km线路利用已建东台~林中I回线路双回路塔架线,考虑原东林I路导线使用情况,采用与其一致的导线截面,即2×300mm2截面,对应导线型号为JL/LB20A-300/25;②其余单回路段6.5km架空导线采用1×400mm2截面,对应导线型号为JL/LB20A-400/35。

高压输电线路测量方法

高压输电线路工频参数测量方法 根据GB50150-2006标准规定,新建及改建的35kV高压输电线路在投入运行前,除了检查线路绝缘情况,核对相位外,还应测量各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据,并可借以验证长线路的换相效果和无功补偿是否达到了设计的预期 目前,高压输电线路工频参数测量方法有2种:传统工频法和变频法测试 目前国内不少电业部门在现场进行线路工频参数测量时,有的还采用指针式表计组合,需人工多次不同步读取测量数据,人工工作量大;有的虽已使用了专用的数字测量仪表或线路参数测试仪,但当线路较长时,所需用的工频试验电源容量仍将会很大;而且采用工频电源进行测试需要用调压器,隔离变压器,高压电流互感器、电压互感器等众多设备, 使得试验设备重、大、多,试验接线非常繁杂。整套试验设备体积庞大,重量大,需要吊车等配合工作,十分不利于现场工作,而且由于测试电源是工频电源,容易与耦合的工频干扰信号混频,带来很大的测量误差,需要大幅度提高信噪比,对电源的容量和体积要求又进一步提高 随着国家电力建设的发展、供电线路的同杆架设和交叉跨越增多,导致输电线路相互间的感应电压不断提高,对测试人员和仪器仪表的安全造成严重的威胁;给线路工频参数的准确测量带来了强力的干扰。因此,采用传统的工频电源进行线路参数的测试难以保证工作的安全性及测试结果的准确性 变频法测试系统可采用非工频频率的电源进行线路的测试,以代替目前线路测试需用的众多设备,并规避了工频感应对测量准确性的干扰。为了进一步削弱工频感应电压、电流对于测量安全的威胁和对测量准确性的干扰,我公司在测试系统的核心部件-变频电源内部做了特殊处理,用于泄放工频感应电流和削除工频感应电压 测试系统主机可对设定的频率信号进行定频采样,并根据主机仪器中数据库内置的不同类型及线径的输电线路每公里的理论参考值用于对测试结果的非工频频率进行 校正得出工频下的线路参数测试值 用户可根据被测线路的工频感应电压、电流的大小确定试验频率为工频或变频,若采用定频测试,仪器可将线路测试参数自动归算到工频条件下的测试结果,并且生成标准规范的测试报告。这样一来,极大的简化了线路参数的传统测试,而且可不必再考虑 量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数 MS-110输电线路工频参数测试系统主要特点有 1、快速准确完成线路的正序电容,正序阻抗,零序电容,零序阻抗等参数的测量,还可以测量线路间互感和耦合电容(线路直阻采用线路直阻仪进行测量) 2、抗干扰能力强,能在异频信号与工频干扰信号之比为1:10的条件下准确测量; 3、外部接线简单,仅需一次接入被测线路的引下线就可以完成全部的线路参数测量

电机温度与温升的概念 理解及测量与计算

电机温度与温升的概念理解及测量与 计算 https://www.360docs.net/doc/715863946.html,/ 2011年06月13日08:36 中国电机网 生意社2011年06月13日讯 电机的发热避免不了的想到了发热程度,涉及到电机发热程度的理论认识是:温升,温升限度、绝缘材料、绝缘结构,耐热等级等。因此,要认识和理解上面几个名词的含义,才能更好地注意和修正电机的 发热程序。 1.温升电机温升温升限度 (1)某一点的温度与参考(或基准)温度之差称温升。也可以称某一点温度与参考温度之差。 (2)什么叫电机温升。电机某部件与周围介质温度之差,称电机该部件的温升。 (3)什么叫电机的温升限度。电机在额定负载下长期运行达到热稳定状态时,电机各部件温升的允许极 限,称温升限度。电机温升限度,在国家标准GB755-65中作了明确规定,如附表所示。 在电机中一般都采用温升作为衡量电机发热标志,因为电机的功率是与一定温升相对应的。因此,只有确定了温升限度才能使电机的额定功率获得确切的意义。 2.绝缘材料绝缘结构耐热等级 (1)什么叫绝缘材料。用来使器件在电气上绝缘的材料称绝缘材料。 (2)什么叫绝缘结构。一种或几种绝缘材料的组合称绝缘结构。 (3)什么叫耐热等级。表示绝缘结构的最高允许工作温度,并在这样的温度下它能在预定的使用期内维持其性能,在允许的范围内及其所分的等级耐热等级。耐热等级分为Y级90℃、A级10℃、E级120℃、B级130℃、F级155℃、H级180℃和H级以上共七个等级。 从上所述,电机中不同耐热等级的绝缘材料有着不同的最高允许工作温度。所谓最高允许工作温度是指:在此温度下长期使用时,绝缘材料的物理、机械、化学和电气性能不发生显著恶性变化,如超过此温度,则绝缘材料的性能发生质变,或引起快速老化。因此,绝缘材料最高允许工作温度是根据它经济使用寿命确定的。从附表中可以看到,温升限度基本上取决于绝缘材料的等级,但也和温度的测量方法、被测部的传热和散热条件有关,取决于绝缘材料的最高允许工作温度。当周围冷却介质(例如空气)的最高温度确定后,就可根据绝缘材料的最高允许工作温度规定电机部件的温升限度。根据统计我国各地的绝对最高温度一般在35~40℃之间,因此在标准中规定40℃作为冷却介质的最高标准。

精度检测基本概念

第五章精度检测基本概念 内容概要:主要论述几何量精度检测的基本理论,包括测量的基本概念、计量单位、测量器具、测量方法、测量误差和测量数据处理等。 教学要求:在掌握机械精度设计的基础上,对其检测技术方面的基础知识有一个最基本的了解,并能运用误差理论方面的知识对测量数据进行处理后,正确地表达测量结果。 学习重点:测量误差和测量数据的处理。 学习难点:测量误差的分析。 习题 一、判断题(正确的打√,错误的打×) 1、直接测量必为绝对测量。( ) 2、为减少测量误差,一般不采用间接测量。( ) 3、为提高测量的准确性,应尽量选用高等级量块作为基准进行测量。( ) 4、使用的量块数越多,组合出的尺寸越准确。( ) 5、0~25mm千分尺的示值范围和测量范围是一样的。( ) 6、用多次测量的算术平均值表示测量结果,可以减少示值误差数值。( ) 7、某仪器单项测量的标准偏差为σ=0.006mm,若以9次重复测量的平均值作为测量结果,其测量误差不应超过0.002mm。( ) 8、测量过程中产生随机误差的原因可以一一找出,而系统误差是测量过程中所不能避免的。( ) 9、选择较大的测量力,有利于提高测量的精确度和灵敏度。( ) 10、对一被测值进行大量重复测量时其产生的随机误差完全服从正态分布规律。( ) 二、选择题(将下面题目中所有正确的论述选择出来) 1、下列测量中属于间接测量的有_____________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。 D、用游标卡尺测量两孔中心距。 E、用高度尺及内径百分表测量孔的中心高度。 2、下列测量中属于相对测量的有__________ A、用千分尺测外径。 B、用光学比较仪测外径。 C、用内径百分表测内径。

线路参数测试方法

线路参数测试方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

220KV茅申I线、茅申II线线路 参数测试方案 编制: 审核: 批准: 年月日 线路参数测试方案 I试验前的准备: 1、先组织参加试验人员学习该线路测量三措方案 2、由工作负责人向全体试验人员交待整个工作内容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两方通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人许可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理许可开工手续。 II试验项目和步骤: 以下试验项目,每执行一项,即在序号左方打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定:

1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作内容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品) 4、用验电器验明线路确无电压后,将线路三相短路接地。 5、用电话通知对方,线路已接地,请对方做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I线时,将茅申II线三相短路接地。 6、得到对方回答:引线已拆除,人员已离开。 7、通知对方:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用电话回答对方。 8、接到对方回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用电话通知对方(申城变侧,以下同):线路已接地,将对方侧线路三相用专用线夹短路并接地。 3、得到对方回答:“三相已短接完毕,可以试验”。 4、通知对方:“试验开始,将引下线分别接至电桥进行三相电阻测量,记录电桥读数和两端环境温度”。(为了防止空间感应电压干扰,根据情况可在线路测量端并上旁路电容)。

温度测量的基本知识

一、温度和温标 1.温度 温度是表示物体冷热程度的物理量,自然界中的许多现象都与温度有关,在工农业生产和科学实验中,会遇到大量有关温度测量和控制的问题。 在火电厂中,温度测量对于保证生产过程的安全和经济性有着十分重要的意义。例如,锅炉过热器的温度非常接近过热器钢管的极限耐热温度,如果温度控制不好,会烧坏过热器;在机组启、停过程中,需要严格控制汽轮机汽缸和锅炉汽包壁的温度,如果温度变化太快,汽缸和汽包会由于热应力过大而损坏;又如,蒸汽温度、给水温度、锅炉排烟温度等过高或过低都会使生产效率降低,导致多消耗燃料,而这些都离不开对温度的测量。 温度概念的建立是以热平衡为基础的。例如;将两个冷热程度不同的物体相互接触,它们之间会产生热量交换,热量将从热的物体向冷的物体传递,直到两个物体的冷热程度一致,即达到热平衡为止。对处于热平衡状态的两个物体就称它们的温度相同,而称原来的冷物体温度低,热物体的温度高。从微观上看,温度标志着物质分子热运动的剧烈程度,温度越高,分子热运动越剧烈。 2.温标 用来衡量温度高低的标尺叫做温度标尺,简称温标。温标是用数值表示温度的一整套规则,它确定了温度的单位。 温标有其自身的演变和发展过程。早期的温标是依据某些物质的有关特性建立的。例如最早的摄氏温标是建立在利用水银的热胀冷缩性质制成的玻璃管水银温度计的基础上的温标,它规定在标准大气压下纯水的冰点温度为0℃,沸点为100℃,两点间按水银柱高度等分成100份,每份代表且记。类似这样的温标不止一个,它们的共同点是依赖于测温物质的具体性质,使温标具有随意性和局限性。当用同一种温标确定某一温度的数值时,随着测温物质性质的差别(例如成分稍有变动),则会得到不同的结果。采用不同的温标则结果会更加不一致。 人们需要建立一个不依赖任何物质的具体性质的、客观的温标,并把温标统一起来。热力学温标就是这样的理想温标,它又称为绝对温标。该温标是建立在热力学卡诺循环理论基础上的温标,其理论基础是:高温热源(T1)与低温热源(T2)的温度之比,等于在这两个热源之间运转的卡诺热机吸热量(Q1)与放热量(Q2)绝对值之比,即。可见温度与物质的任何性质均无关系,而只与热量有关。因此,以此为基础的温标就摆脱了对物质性质的依赖,克服了分度的任意性,是一种客观的温标。由热力学温标规定的温度称为热力学温度,并以符号“T” 表示。它定义标准条件下水的三相点(水蒸气、水、冰共存点)的温度值为273.16开尔文,开尔文(简称开)是温度的单位,符号为K,IK相当于水三相点温度的1/273.16。 热力学温标的出现对温标的统一具有十分重要的意义。但由于卡诺循环是理想循循环环,卡诺热机实际上并不存在,因此热力学温标是无法实现的。为此,人类一直在研究、寻求一种既准确、又易行的统一的温标。目前全世界普遍采用的国际温标就是人类经过长期研究、不断发展与修正而成的。国际温标要求具备以下条件: 数值上尽可能接近热力学温度,差值应在当前技术所能达到的准确度极限之内;②复现准确度高,各国均能以很高的准确度复现同样的温标,确保温度量值的统一;③用于复现温标的标准温度计使甩方便、性能稳定。由此可见,满足上述条件的国际温标将是热力学温标的再现,同时又易于实现,因此是性能理想的温标。最早的国际温标是在1927年第七届国际计量大会上决定采用的,以后随着科学技术的发展,先后又对国际温标作了几次重大修正。作修改的原因主要是温标的基本内容发生了变化,具体说是内插仪器(温度计)、固定点和内插公式有改变。1990年前世界各国(包括我国)均采用1968年国际实用温标(代号IPTS-1968),经多年实践,逐渐发现了它的一系列缺陷,根据第18届国际计量大会及第77届国

相关文档
最新文档