离子型稀土矿中铝铁杂质的浸出与抑制规律
离子吸附型稀土矿绿色提取技术研究进展

100绿色矿山G reen mines离子吸附型稀土矿绿色提取技术研究进展钟云辉江西省地质局有色地质大队,江西 赣州 341000摘 要:近年来,随着科技的不断发展和环保意识的不断提高,绿色提取技术逐渐成为了离子吸附型稀土矿提取过程中的热点和难点。
其中,吸附剂的选择和优化、萃取工艺的优化以及回收技术的开发等方面都取得了一定的进展。
本文将对离子吸附型稀土矿绿色提取技术的研究进展进行总结和分析,以期为离子吸附型稀土矿绿色提取技术的开发提供参考。
关键词:赣南地区;离子吸附型稀土;提取技术中图分类号:TD955 文献标识码:A 文章编号:1002-5065(2024)01-0100-3Research progress on green extraction technology of ion adsorption rare earth mineralsZHONG Yun-huiJiangxi Bureau of Geology Non-ferrous Geological Brigade, Ganzhou, 341000, ChinaAbstract: In recent years, with the continuous development of technology and the continuous improvement of environmental awareness, green extraction technology has gradually become a hot and difficult point in the extraction process of ion adsorption rare earth minerals. Among them, progress has been made in the selection and optimization of adsorbents, optimization of extraction processes, and development of recovery technologies. This article will summarize and analyze the research progress of green extraction technology for ion adsorption rare earth minerals, in order to provide reference for the development of green extraction technology for ion adsorption rare earth minerals.Keywords: gannan region; ion adsorption rare earth; extraction technology收稿日期:2023-11作者简介:钟云辉,男,生于1993年,汉族,江西赣州人,本科,助理工程师,研究方向:地质实验测试。
离子型稀土矿浸出过程主要物质浸出规律研究

离子型稀土矿浸出过程主要物质浸出规律研究杨幼明;王莉;肖敏;黄金;蓝桥发;杜朝军【摘要】The leaching behaviors of water, RE, ammonium sulfate and other foreign ions were investigated by using the column leaching method with the leaching agent of ammonium sulfate. The results show that ionic rare earth ore has relatively strong adsorption for water which made the contents of water increased from 17.74 %to 33.7%. The leaching rate of RE is 99.98%. For impurities ,the leaching amounts of the Al3+is relatively large, the SiO32- is smaller, but the Fe3+is almost no leaching and the leaching order of the ions is followed as SiO32-, RE3+, Al3+, Fe3+. When the concentration of Al3+and Fe3+reach to the peak, the lowest pH value of the leachate is obtained. However, with the addition of the leaching agent and water, the pH value are raised up, until run up to the pH value of the ammonium sulfate solution and the water.%采用柱浸法研究硫酸铵浸取离子型稀土矿过程中水、稀土、硫酸铵及其他杂质离子的浸出规律.研究表明,离子型稀土矿矿土对水有较强的吸附能力,浸矿后,矿土的含水率由17.74%增加到33.7%.浸出过程中,稀土浸出率可达99.98%,杂质中Al3+浸出量比较大,SiO32-浸出量较小,而Fe3+几乎不浸出,各离子的浸出先后顺序为:SiO32-、RE3+、Al3+、Fe3+,杂质Al3+的浸出略滞后于稀土的浸出. Al3+、Fe3+浓度达到峰值时,pH值最低,随着浸矿剂和顶水的加入,浸出液的pH值开始上升,直至达到硫酸铵溶液的pH值和顶水的pH值.【期刊名称】《有色金属科学与工程》【年(卷),期】2016(007)003【总页数】6页(P125-130)【关键词】离子型稀土矿;硫酸铵;浸出规律【作者】杨幼明;王莉;肖敏;黄金;蓝桥发;杜朝军【作者单位】江西理工大学工程研究院,江西赣州 341000; 国家离子型稀土资源高效开发利用工程技术研究中心,江西赣州 341000;江西理工大学工程研究院,江西赣州 341000;江西理工大学工程研究院,江西赣州 341000;江西理工大学工程研究院,江西赣州 341000;国家离子型稀土资源高效开发利用工程技术研究中心,江西赣州 341000;南阳理工学院生物与化学工程学院,河南南阳 473000【正文语种】中文【中图分类】TD865;TF111.3离子型稀土矿于1969年在我国首次被发现并命名,含有15种稀土元素,特别是富含国防军工及其他高科技产业领域中不可或缺的铕、铽、镝、镱、镥、钇等中重稀土元素[1],具有配分齐全,中重稀土元素含量高、放射性低、高科技应用元素多、综合利用价值大“五大”突出优点[2].离子型稀土矿物不是以独立的矿物相形式存在,而是呈离子状态吸附于黏土类矿物中[3-4].离子型稀土的开采工艺经历了20世纪80年代从氯化钠浸矿到硫酸铵浸矿工艺、90年代从池浸到原地浸矿工艺的两大飞跃,“硫酸铵浸取-碳铵沉淀工艺”已在离子型稀土矿的提取中得到广泛应用[5].原地浸矿工艺的显著优点在于工艺基本对地表植被不予破坏,保持原始生态.也有研究采用硫酸镁[6-9]或其他浸取剂[10]代替硫酸铵作为浸矿剂,以改善铵根对环境的影响,丰富了原地浸矿工艺内容.硫酸铵浸出离子型稀土矿浸出过程的化学反应可表示为:其中:[Clay]表示黏土矿物,s表示固相,aq表示液相.在离子型稀土的开采过程中,铵根离子将稀土离子交换下来而留在黏土矿物中,未交换的铵根离子残留在矿区土壤、地下水和地表水中.工业上常用1%~ 2%的硫酸铵浸矿剂按体积比为0.33(浸矿液体积∶矿土体积)的比例注入矿体中[11].但在实际生产过程中,由于操作工人对硫酸铵浸矿工艺的理论不了解,对浸矿剂与矿体中各元素的浸出规律不明确,为提高稀土的浸出率,就盲目提高硫酸铵浸矿剂的浓度和用量,导致过量的浸矿剂和浸出液渗入矿体下部污染地下水系[12],浸矿液流失严重,流域溪流水中氨氮含量较高,浓度可达0.1 g/L.据统计,生产1 t氧化稀土,需消耗8 t硫酸铵浸矿剂,产生1 000~1 200 t废水.同时,矿体灌入过量的浸矿剂,易引发滑坡、崩塌和泥石流等次生地质灾害,给矿区人民的生命财产安全带来严重威胁[13].在浸矿过程中,过量的浸矿剂也会导致铁、铝等非稀土杂质随着稀土一起浸出,对后续沉淀及萃取工序产生影响,同时也影响产品质量.欧阳克氙等[14]研究了在硫酸铵浸矿剂中添加硫化物、柠檬酸、酒石酸等抑制杂质铝的浸出.邱廷省等[15]研究了硫酸铵中添加LG-01抑制杂质铝、铁的浸出,LG-01抑杂剂可与铝铁杂质离子形成络合物或难溶沉淀物从而有效抑制稀土矿中的铝铁杂质的浸出.但抑制剂同时也会与稀土结合影响稀土的浸出效果.在硫酸铵浸矿理论方面,科技工作者多研究了硫酸铵浸矿的动力学和热力学研究[16],而对浸出过程中水、稀土、硫酸铵、铝铁杂质等的浸出平衡关系报道较少.何正艳等[17]研究了在不同浸矿剂浓度、pH 值、浸取温度条件下稀土和铝及铵的浸出行为,但未对浸出过程中其他的主要物质如水、杂质铁、硅等进行研究.本文从硫酸铵的浸矿理论出发,研究了硫酸铵浸矿过程中水、稀土、硫酸根、铵根及其他杂质离子的浸出平衡关系,对硫酸铵浸矿规律进行系统性研究,完善硫酸铵浸矿工艺技术基础理论,探索减少浸矿剂用量、控制杂质浸出的条件,进而对硫酸铵浸矿工艺进行优化,为实际应用提供理论依据,实现离子型稀土矿的高效、绿色开采.1.1 实验药品及仪器实验所用的药品和仪器:硫酸铵(工业级)、草酸(分析纯)、有机玻璃管Φ 145 mm×1 500 mm等.离子型稀土原矿为广东平远县仁居稀土矿样品,样品含(吸附)水率W1=17.74%,稀土品位(REO)ω= 0.478%.浸取液为2%的硫酸铵溶液,其中含氨氮5.325 g/L,含硫酸根14.20 g/L.1.2 实验方法在玻璃柱中(Φ 145 mm×1 500 mm)均匀装入10 kg稀土原矿,以一定的流速向玻璃柱中加注2%的硫酸铵溶液,用饱和的草酸溶液定性检测浸出液中的稀土含量,以此判断是否浸出完全,发现浸出完全后,停止加注硫酸铵溶液,开始加注顶水.记录出液时间,以250 mL为单位收集浸出液,按出液顺序依次编号,把收集到的浸出液样品送样检测稀土、铝、硅、铁、铵根、硫酸根离子浓度.1.3 分析方法本实验所有样品均委托赣州艾科锐化工金属材料检测有限公司分析检测,其中稀土的检测按GB/T18882.1-2008(方法2)方法检测,铁、铝的检测按GB/T12 690.5-2003方法检测,镁的检测按国标 GB/T12 690.11-2003方法检测,硅的检测按JB/T 4394-1999方法检测,硫酸根的检测按ACRC-28-2/0-2010方法检测.部分稀土浓度的检测采用EDTA络合滴定法测定,采用pH试纸测定浸出液的pH 值.浸出10 kg的离子型稀土矿,共加入硫酸铵(浸矿剂)V1=12 353 mL,顶水V2=10 000 mL;收集的浸出液取样体积V3=9 660 mL,顶水液取样体积V4=10 065 mL;浸出取样时间t1=2 585 min;顶水液取样时间t2=2 596 min;实验共取样79个,19号样为稀土峰值时所取样,38号为加入顶水时的取样.10kg稀土矿浸出液中含各主要成分如表1所列.2.1 浸出过程水的流出规律柱浸实验水的平衡见表2,计算得出每公斤稀土矿可吸收水V5=2 400 mL,矿土吸水后的含水率为:其中:m矿为稀土矿质量,g.计算得吸水后稀土矿土总含水率由之前的17.74%增加到33.70%,说明离子型稀土矿土对水有较大的吸附能力.只有在矿土吸水达到饱和时,才会开始流出浸出液,根据这一特点,可以计算出离子型稀土浸矿过程开始出液的所需时间:T1=采区矿体体积×矿土密度×(矿饱和吸水率-矿含水率)÷注液速度根据图1中稀土及各离子的流出曲线规律,浸出过程前1 781 mL的浸出液,只含少量的,而RE3+、、Al3+、Fe3+的浓度几乎为零,根据矿土原含水率为17.74%计算得出10 kg矿土中含水1 774 mL,与浸出液的体积相近,说明是浸矿剂直接将矿土中的水顶出.2.2 浸出过程稀土与硫酸铵的流出规律浸出液中稀土及硫酸铵的流出曲线如图1所示.2.2.1 稀土的浸出规律根据图1可知,硫酸铵浸出稀土矿,流出液中稀土浓度呈正态分布,根据分布,可以将浸矿过程分为以下4阶段.第1阶段:前期液.前期液是指浸矿过程中浸出液开始流出,但是浸出液基本不含稀土,或者稀土含量极低的阶段,对应图1中0~1 781 mL区域;此阶段不流出稀土及硫酸铵,由此可计算出生产中不含稀土的浸出液的出液天数为:T2=采区矿体体积×矿土密度×原矿含水率÷注液速度.第2阶段:峰前液.峰前液是指随着2%硫酸铵的继续加入,流出液开始出现高浓度稀土浸出液,然后稀土浓度急剧增加,直至稀土浓度达到峰值的阶段,对应图1中1 781~4 790 mL区域.峰前液中共含稀土量32.44 g,占总稀土浸出量的67.87%,所以大部分的稀土在峰前液中.第3阶段:峰后液.峰后液是指随着2%硫酸铵的进一步加入,流出液的稀土浓度从峰值开始急剧降低,直至稀土浓度降低到一个极低的数值,对应图1中4 790~10 000 mL区域.峰后液中含稀土量14.971 g,占总稀土量的31.33%.第4阶段:后期液.后期液是指浸矿过程的尾期,其特点是稀土浓度很低,但是浸出液体积占的比例却很大,呈现一个很长的“拖尾”现象,对应图1中10 000~20 000 mL区域.由图1累加计算出稀土的浸出总量为:由此计算出稀土的浸出率为:采用柱浸法浸出离子型稀土矿的稀土浸出率较高,接近于100%.2.2.2 硫酸铵的流出规律铵根离子在浸出过程中的平衡关系如表3所列,计算可知离子型稀土矿交换吸附的铵根离子的质量为32.61 g,平均每公斤矿土交换吸附的铵根离子的质量为3.26 g,折算成每吨REO被交换吸附的硫酸铵为2.5 t.浸取液中的稀土总量为47.79 g,将所有稀土交换下来所需铵量为16.41 g,稀土矿中杂质铝交换需要的铵量为6.54 g,则主要阳离子交换需要的铵总量为22.95 g,那么矿土吸附的铵量为32.61 g-22.95 g=9.66 g,占总铵量的14.70%,平均每公斤矿土吸附铵量为0.966 g.从图1分析,浸出液中NH+4的流出曲线呈正态分布,在0~4 790 mL范围内,NH+4的浓度基本为零,说明这阶段加入的NH+4基本全部被稀土矿吸附或交换,这阶段加入的铵量为25.51 g,占总吸附及交换量的78.21%.稀土交换完毕后,NH+4浓度急剧升高,当NH+4浓度升高到3.5 g/L时,NH+4基本保持浸出平衡状态.开始加顶水后,顶水逐渐将NH+4不断顶出,在浸出液体积为14 000 mL 时,NH+4浓度迅速降低,但出现较长的拖尾现象,说明NH+4较容易残留于矿土中,会对矿山和地下水的生态环境产生一定的影响.在0~1 781 mL时,浸矿前期液将矿土中的水顶出,在1 781 mL至3 041 mL 时,浸出液中SO24-浓度快速上升,跟随稀土离子一同流出,在3 041 mL后,SO2-处于流出平衡状态,随着顶水的加入,与NH+一44同流出(过量的浸矿剂),也出现了较长的拖尾现象. 2.2.3 稀土浸出过程分区情况根据图2稀土与硫酸铵的浸出关系可看出,流出的浸出液前1 781 mL,浸矿剂将矿土中的水顶出,此部分浸出液只含少量的SiO23-离子,加入硫酸铵浸矿剂后,含水率由17.74%上升至33.7%,因此可将Ⅰ区域称之为矿土水交换区.在Ⅱ区域中,NH+4与稀土离子发生交换反应,浸出液稀土离子浓度和SO24-浓度不断上升,NH+4浓度几乎为零;当稀土离子交换完毕后,即稀土浓度达到峰值后,矿土中可交换的稀土离子减少,NH+4开始流出,SO24-浓度保持流出平衡状态,浓度约为11 g/L.Ⅱ区域主要为NH+4与稀土、Al3+等离子的交换反应,因此此区域称为铵交换区.随着硫酸铵浸矿剂的不断加入,NH+4浓度开始上升,然后处于流出平衡状态,浓度约为4 g/L.这时候所加入的硫酸铵未发生交换反应,硫酸铵浸矿剂过量,因此可将Ⅲ区域称之为铵过量区.计算NH+4处于流出平衡状态时的流出体积为7 140 mL,铵过量了57.81%.在浸出液离子浓度降低至800 mg/L浓度时(收液累加体积为7 297 mL),加入顶水,待顶水加入体积为6 853 mL后,NH+4与SO24-浓度才逐渐降低,因此可将Ⅳ区域称之为顶水作用区.对比NH+4及稀土离子的浸出曲线,当浸出液中NH+4的浓度开始上升时,即浸出液中稀土浓度开始下降时,浸取柱中残留的硫酸铵足以将剩余稀土浸出,此时可以停注硫酸铵溶液,改为注顶水,以减少硫酸铵的消耗和作业时间.随着顶水的加入量越大,矿土中残余的硫酸铵浸矿剂越低,因此可通过加注顶水的方式对矿体进行淋洗修复,以减少铵根离子对矿区的影响.2.3 浸出液pH值与主要物质的浸出规律离子型稀土矿不但含有稀土离子,而且还含有其他金属杂质离子,在浸矿过程中杂质离子会随着稀土离子一同被浸出,其浸出可用下式表示:其中,M表示杂质离子,包括Fe3+、Al3+、Ca2+等离子;n表示杂质离子的电荷数;同时,硅酸根离子也可能与交换.本实验过程中只测定Al3+、Fe3+、杂质离子的浓度变化,同时测定了取样液的pH值,由此得出浸出液中各离子的浓度变化与浸出液pH值变化关系图,如图3所示.由图3分析,浸出液的pH值与浸出液中的各离子浓度有密切关系,稀土、Al3+、Fe3+、SiO23-离子浓度均呈先上升后下降的趋势,而浸出液pH值是先下降后上升.无稀土和硫酸铵浸出的前1 781 mL浸出液的pH值与2%的硫酸铵溶液的pH值一致,开始有稀土离子浸出时,浸出液的pH值下降为4,稀土浓度达峰值时,料液pH值达到最低点pH=3,这可能是矿土中含有的吸附态羟基铝与浸矿剂交换后,释放出H+,导致浸出液的pH值降低[18];也有可能是矿土中的稀土或铁离子被浸矿剂交换后,水解形成氢氧化稀土或氢氧化铁,产生H+,使pH值降低.从图3也可看出,pH值为3时浸出液中RE3+、Al3+和Fe3+的浓度均达到峰值.随着浸矿剂和顶水的加入,浸出液的pH值开始上升,直至达到硫酸铵溶液的pH值和顶水的pH值.无稀土浸出前液中也无 Al3+、Fe3+浸出,此时pH=5;随着浸矿剂的加入,铝离子的浓度迅速上升至544 mg/L,随后出现了一个小平台,Fe3+也达到浸出平衡状态,吸附态羟基铝交换下的H+或氢氧化铁水解产生的H+导致浸出液pH值降低,而pH值的降低又促进RE3+、Al3+、Fe3+的浸出.浸出液中RE3+、Al3+、Fe3+浓度降低后,浸出过程逐渐完毕,此时浸出液pH值也逐渐回升.对比Al3+、Fe3+的浸出曲线,整个浸矿过程中,浸出液中Al3+的浓度(按Al2O3计)可以高达1.23 g/L,很容易被浸出,而Fe3+的浓度最高只有0.24 mg/L,几乎不浸出. 浸出液前期不浸出稀土、Al3+、Fe3+时,SiO23-会随着矿体中水的流出而流出,可能是矿土表面或矿土中的部分游离SiO23-被水带出,因此SiO23-的浸出优先于其他离子.当pH=4时,SiO23-迅速上升,形成峰值;随着pH值的降低,SiO23-易与H+形成硅酸,抑制了SiO23-的浸出,浸出液中SiO23-浓度逐渐降低,而后出现较长的拖尾现象.2.4 浸出过程稀土与杂质离子的浸出关系根据图3稀土、Al3+、Fe3+、SiO23-浓度的浸出曲线可知,随着浸出时间的增加,溶液中的稀土、Al3+、Fe3+、SiO23-的浓度变化都呈先增加后减少的趋势,各离子的浸出顺序为:SiO23-、RE3+、Al3+、Fe3+,浸出达到峰值的先后顺序为:SiO23-、RE3+、Al3+、Fe3+,SiO23-最高浓度为76.23 mg/L,稀土离子最高浓度为14.48 g/L,Al3+最高浓度为1.2 g/L,Fe3+最高浓度为0.24 mg/L. 铝在离子型稀土矿中呈现多种不同的赋存状态,如水溶态铝、交换态铝、吸附态羟基铝、非晶态铝硅酸盐状态、矿物态铝、全相铝等,矿物中含有的离子相态铝可随离子相稀土浸出共同被浸出,因此在浸出液中Al3+的浓度较高.对比稀土与铝的浸出曲线,当稀土浓度达到峰值时,Al3+浓度刚好出现了一个小平台,此时继续加浸矿剂,浸出液中稀土浓度开始急剧下降,Al3+浓度反而急剧上升,Al3+的浸出略滞后于稀土的浸出,如果此时不加硫酸铵浸矿剂,矿土中残余的硫酸铵可将剩余的稀土浸出,只要加顶水将这部分稀土从矿土中顶出即可.因此,在稀土出高峰液后,停止加入硫酸铵,改加顶水,这可能实现在浸出过程中减少杂质铝的浸出,减少后续除杂成本.1)离子型稀土矿土对水有较强的吸附能力,浸矿后,矿土的含水率由17.74%增加到33.7%,根据矿体体积、矿土密度和注液流速可计算出浸矿过程的出液时间T1=采区矿体体积×矿土密度×(矿饱和吸水率-矿含水率)÷注液速度.2)整个浸矿过程可分为矿土水交换区、铵交换区、铵过量区及顶水作用区,各浸出离子浓度呈现先上升后下降的趋势,浸出液稀土、Al3+、Fe3+、SiO23-峰值浓度分别为14.48 g/L、1.2 g/L、0.24 mg/L、76.23 mg/L,稀土的浸出率为99.98%,杂质中Al3+浸出量比较大,SiO23-浸出量较小,而Fe3+几乎不浸出,各离子的浸出顺序为:SiO23-、RE3+、Al3+、Fe3+,稀土先达到峰值,Al3+后达到峰值,这为抑制杂质铝的浸出提供可能.3)浸出过程中Al3+、Fe3+浓度达到峰值时,pH值最低,随着浸矿剂和顶水的加入,浸出液的pH值开始上升,直至达到硫酸铵溶液的pH值和顶水的pH值.【相关文献】[1]池汝安,田君.风化壳淋积型稀土矿评述[J].中国稀土学报,2007, 25(6):641-650.[2]CHI R A,LI Z J,PENG C,et al.Partitioning properties of rare earth ores in China[J].Rare Metals,2005,24(3):205-209.[3]张恋,吴开兴,陈陵康,等.赣南离子吸附型稀土矿床成矿特征概述[J].中国稀土学报,2015,33(1):10-17.[4]李永绣.离子吸附型稀土资源与绿色提取[M].北京:化学工业出版社,2014.[5]罗仙平,钱有军,梁长利.从离子型稀土矿浸取液中提取稀土的技术现状与展望[J].有色金属科学与工程,2012,3(5):50-59.[6]杨幼明,黄振华,邓声华,等.P507-N235体系复合有机相的再生与循环[J].稀有金属,2014,38(2):300-305.[7]黄金.离子型稀土矿抑杂浸出工艺及机理研究[D].赣州:江西理工大学,2015.[8]王瑞祥,杨幼明,杨斌,等.一种离子吸附型稀土提取方法[P].中国专利:CN103266224A,2013-08-28.[9]王瑞祥,谢博毅,杨幼明,等.一种从离子型稀土矿硫酸镁浸出液中沉淀稀土的方法[P].中国专利:201410338630,2014-07-16.[10]黄万抚,张宏廷,王金敏,等.半风化离子吸附型稀土的浸取实验[J].有色金属科学与工程,2015,6(6):121-124.[11]袁长林.中国南岭淋积型稀土溶浸采矿正压系统的地质分类与开采技术[J].稀土,2010,31(2):75-79.[12]陈斌,祝怡斌,翟文龙.某离子型稀土矿采矿活动对地下水的影响分析[J].有色金属(矿山部分),2015,67(2):63-66.[13]罗嗣海,袁磊,王观石,等.浸矿对离子型稀土矿强度影响的试验研究[J].有色金属科学与工程,2013,4(3):58-61.[14]殴阳克氙,饶国华,姚慧琴,等.南方稀土矿抑铝浸出研究[J].稀有金属与硬质合金,2003,31(4):1-3.[15]QIU T S,FANG X H,WU H Q,et al.Leaching behaviors of iron and aluminum elements of ion-absorbed-rare-earth ore with a new impurity depressant[J].Transactions of Nonferrous Metals Society of China,2014,3(3):2986-2990.[16]贺伦燕,王似男.离子吸附型稀土矿淋洗交换稀土动力学问题的研究[J].稀有金属与硬质合金,1989,99:2-8.[17]何正艳,张臻悦,余军霞,等.风化壳淋积型稀土矿浸取过程中稀土和铝及铵的行为研究[J].2015,36(6):18-24.[18]田君.风化壳淋积型稀土矿浸取动力学与传质研究[D].长沙:中南大学,2010.。
江西理工大学论文硕士格式模板

分类号:密级:U D C:学号:硕士学位论文年月日xx大学硕士学位论文独创性声明本人声明所呈交的论文是本人在导师指导下进行的研究工作及取得的研究成果。
据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含已获得xx大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示谢意。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
研究生签名:时间:年月日学位论文版权使用授权书本人完全了解xx大学关于收集、保存、使用学位论文的规定:即学校有权保存按要求提交的学位论文印刷本和电子版本,学校有权将将学文论文的全部或者部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版。
本人允许本学位论文被查阅和借阅,同意学校向国家有关部门或机构送交论文的复印件和电子版,并通过网络向社会公众提供信息服务。
保密的学位论文在解密后适用本授权书学位论文作者签名(手写):导师签名(手写):签字日期:年月日签字日期:年月日xx大学硕士学位论文摘要摘xx大学硕士研究生撰写学位论文应当符合写作规范和排版格式的要求,以下格式为研究生院依据国家标准和行业规范所编制的硕士学位论文模板,供硕士研究生参照使用。
摘要部分说明:“摘要”是摘要部分的标题,不可省略。
标题“摘要”选用模板中的样式所定义的“摘要”;或者手动设置成字体:黑体,居中;字号:小三;1.5倍行距,段前为0行,段后1行。
论文摘要是学位论文的缩影,文字要简练、明确。
内容要包括目的、方法、结果和结论。
单位制一律换算成国际标准计量单位制,除特殊情况外,数字一律用阿拉伯数码。
文中不允许出现插图,重要的表格可以写入。
摘要正文选用模板中的样式所定义的“正文”,每段落首行缩进2个汉字;或者手动设置成每段落首行缩进2个汉字,字体:宋体12磅,行距20磅:前段、后段均为0行,取消网格对齐选项。
离子型稀土矿开采工艺对环境的影响及综合治理

离子型稀土矿开采工艺对环境的影响及综合治理摘要:稀土资源是不可再生的宝贵资源和战略资源。
我国离子型稀土资源相比其他类型的稀土资源具有无法比拟的优势,主要体现在稀土元素配分齐全,放射性元素含量低,且重稀土成分含量高。
自20世纪70年代中期开始,稀土开采进入极为迅猛的发展阶段,经过几十年池浸、堆浸工艺开采,离子型稀土矿区及周边环境显著恶化,随着人们对环境质量的越来越重视,离子型稀土开采造成的环境问题变得越来越突出。
关键词:离子型稀土;环境问题1、我国稀土资源现状与开采工艺发展我国稀土资源极丰富,储量、产量均为世界第一,主要稀土资源类型为氟碳铈矿、独居石矿及其混合型、磷钇矿和离子吸附型。
白云鄂博地区是稀土与铁、铌、钍等元素共生的综合矿床,其中稀土矿主要是氟镧铈矿-独居石轻稀土混合型矿,其储量相当于世界稀土资源总储量的一半;四川牦牛坪和山东微山地区是氟碳铈镧型轻稀土矿;广东和台湾沿海等地区是独居石型稀土矿;赣南地区是离子型稀土矿,因离子型稀土矿中重稀土元素含量高,储量有限,同时是国家“高、精、尖”材料领域不可或缺的元素,国家已将离子型稀土资源纳入保护性开采矿种之列。
离子型稀土矿经过几十年的开采,其工艺历经了池浸、堆浸、原地浸矿等3种工艺的革新。
池浸工艺需清除地表植被,开挖山体,剥离表土和矿石,采掘出的矿石移入浸矿池内,通过淋入浸矿剂,与矿石中稀土进行离子交换,最后导出母液,经沉淀产出混合稀土精矿。
随着机械化程度的提高,堆浸工艺逐渐取代池浸工艺,但脱不开池浸工艺“搬山运动”的基本事实,严格地说是机械化的池浸工艺,因不受固定池体的限制,稀土的产量远高于池浸工艺。
原地浸矿工艺摒弃了堆浸工艺的缺点,只是在山体上利用“洛阳铲”建立注液孔网,将浸矿药剂注入山体,通过离子交换将稀土带入母液,经沉淀产生混合稀土精矿,该工艺被认为是最环保的工艺。
2、离子型稀土矿开采对生态环境的影响环境影响一般从水体环境、生态环境、大气环境和噪声环境等方面来进行考虑。
离子型稀土矿除杂的方法

离子型稀土矿除杂的方法一、方法概述本文离子型稀土矿除杂的方法,是研究湿法冶金稀土技术中浸出液除杂的新方法,特别是一种离子型稀土矿除杂的方法。
本方法包括以下步骤:A、浸出液的配制:将稀土浸出剂、抑杂剂酒石酸溶于水,充分混合搅拌溶解得到浸出液,浸出液中稀土浸出剂质量百分浓度为1—6%,酒石酸的质量百分浓度为0.01—1.0%,稀土浸出剂与酒石酸的质量比为2—100;B、浸出过程的控制:用配制好的浸出液对离子型稀土矿进行抑杂浸出,浸出液的流速为0.5—10ml/min,原矿含水质量百分比:0—20%,液固比为:0.6:1—1.4:1。
经过抑杂浸出后获得的浸出液中杂质离子的含量降低了90%以上,还具有能耗低、成本低、操作安全简单等优点。
二、方法原理目前离子型稀土矿在浸出过程中,浸出液中会含有大量的杂质离子。
如果直接用草酸或碳酸氢铵对浸出液进行沉淀稀土,则沉淀获得的稀土产品中的杂质含量较高;要想降低稀土产品中杂质的含量则必须在沉淀稀土之前进行除杂,否则就无法获得合格的稀土产品,但是除杂过程不但增加了作业工序,而且会损失部分稀土,增加生产成本、降低资源综合回收利用率和经济效益。
有研究报道离子型稀土矿浸矿除杂沉淀新工艺,它虽然在一定程度上降低了浸出液中杂质的含量,但是它所采用的部分除杂剂具有一定的毒性,因此其在应用过程中容易发生安全事故,也会对环境造成严重污染。
离子型稀土矿浸矿除杂沉淀的新方法,它虽然在一定程度上也达到了降低稀土氧化物中杂质的含量,但是其需要增加除杂这道工序。
另外的研究是提取风化壳淋积型稀土矿的除杂方法,但其采用的是物理方法来改变矿石的浸出,从而实现除杂目的,其实用性值得商榷,真正在矿山实际应用还有一定的困难。
三、技术方案本离子型稀土矿除杂的方法目的是针对离子型稀土矿浸出过程中获得的浸出液中杂质含量大,导致需经过复杂的后续除杂工作才能获得合格稀土产品的问题,提出了一种经济、适用、简单、清洁、环保、抑杂效果好的离子型稀土矿除杂的方法。
酒石酸对离子型稀土矿杂质浸出行为的影响

酒石酸对离子型稀土矿杂质浸出行为的影响方夕辉;夏艳圆;邱廷省;朱冬梅【摘要】为提高稀土浸出过程的选择性,以酒石酸为抑杂剂考察其对硫酸铵浸出稀土时浸出行为的影响.结果表明,以硫酸铵为浸出剂、酒石酸为抑杂剂浸出不同种类稀土矿时,与单独以硫酸铵作浸出剂相比,浸出液中铝、铁去除率可达90%以上,且不影响稀土浸出率.对酒石酸与Al3+、Fe3+的溶液化学计算和分析结果表明,3<pH<6时,酒石酸可解离出与金属离子稳定络合的配位离子C4H5O6-、C4H4O62-,与离子型稀土矿浸出时矿石表面解离出的Al3+、Fe3+生成难溶络合物而提高稀土浸出的选择性,浸出过程酒石酸络合铁离子与铝离子的适宜pH范围为4~5.【期刊名称】《金属矿山》【年(卷),期】2018(000)006【总页数】5页(P94-98)【关键词】离子型稀土矿;酒石酸;抑杂剂【作者】方夕辉;夏艳圆;邱廷省;朱冬梅【作者单位】江西理工大学资源与环境工程学院,江西赣州341000;江西省矿业工程重点试验室,江西赣州341000;江西理工大学资源与环境工程学院,江西赣州341000;江西理工大学资源与环境工程学院,江西赣州341000;江西理工大学资源与环境工程学院,江西赣州341000【正文语种】中文【中图分类】TF845;TF803.21离子型稀土矿的浸出过程属于离子交换反应,浸出时吸附在黏土矿物表面的离子相稀土与NH4+等化学性质活泼的阳离子进行离子交换进入浸出液中,此时吸附在黏土矿物表面的铝、铁、钙等离子相金属杂质也一起浸出[1-3],使得稀土浸出母液中铝、铁、钙等杂质含量较高。
为获得较高质量的稀土产品,用碳酸氢铵调节浸出母液溶液pH值至5~6,此时,铝、铁等杂质水解形成氢氧化物沉淀除去。
但这种除杂工艺不但增加了稀土提取的工艺步骤,而且使稀土损失2%~5%,同时工艺过程使用大量的碳酸氢铵,造成稀土矿山废水氨氮超标而污染环境[4-5]。
离子型稀土浸出工艺
离子型稀土浸出工艺离子型稀土浸出工艺是一种重要的稀土提取技术,广泛应用于稀土矿石的加工和稀土元素的分离纯化过程中。
本文将对离子型稀土浸出工艺进行详细介绍,包括工艺流程、工艺参数和应用前景等方面内容。
一、离子型稀土浸出工艺的工艺流程离子型稀土浸出工艺主要包括浸出、分离、纯化和回收四个阶段。
首先是浸出阶段,即将稀土矿石与浸出剂进行反应,使稀土元素从矿石中转移到溶液中。
常用的浸出剂有酸性溶液、碱性溶液和盐酸等。
在浸出过程中,需要控制浸出剂的浓度、温度和浸出时间等参数,以确保稀土元素的高效浸出。
接下来是分离阶段,即通过化学方法或物理方法将稀土元素与其他杂质进行分离。
常用的分离方法有溶剂萃取、离子交换和膜分离等。
这些方法可以根据稀土元素的不同性质和电荷来选择合适的分离方式。
然后是纯化阶段,即对分离得到的稀土元素进行进一步纯化。
在纯化过程中,需要采取一系列的化学反应和分离技术,去除残留的杂质和有害物质,提高稀土元素的纯度。
最后是回收阶段,即将纯化得到的稀土元素进行收集和回收利用。
在回收过程中,可以采用结晶、沉淀和电解等方法,将稀土元素从溶液中沉淀出来,并进行进一步的处理和利用。
二、离子型稀土浸出工艺的工艺参数离子型稀土浸出工艺的工艺参数对于提高稀土元素的浸出率和纯度至关重要。
常见的工艺参数包括浸出剂浓度、温度、浸出时间、溶液pH值和浸出剂与矿石质量比等。
浸出剂浓度是指浸出剂中稀土元素的含量,一般控制在一定范围内,过高或过低都会影响浸出效果。
温度对于反应速率和浸出率有很大影响,通常需要在适宜的温度范围内进行控制。
浸出时间是指矿石与浸出剂进行反应的时间,需要根据具体情况来确定。
溶液pH值是指溶液的酸碱性,不同的稀土元素对酸碱条件有不同的适应性,需要根据稀土元素的性质来选择合适的pH值。
浸出剂与矿石质量比是指浸出剂与矿石的质量比例,也是一个重要的工艺参数。
三、离子型稀土浸出工艺的应用前景离子型稀土浸出工艺在稀土元素的提取和分离纯化过程中具有重要的应用价值。
浅析离子吸附型稀土矿资源的利用
的 连续 性较 差 , 对 稀 土 矿 藏 风 化壳 的形 成 不 利 。 1 . 2气 候 条 件
2 . 3稀 土矿 的品 位 特 征
在稀 土矿藏 中矿 石稀土 的品位平均 为 0 .0 8 %一 O.2 0 %, 作为稀土矿床 的重要条件之一 , 气候条件在某种程度上可 以 部分矿藏品位会高于 0 . 2 0 %,例如福建省万安矿区最 高值 为 O. 决定矿藏的形成 。福建省龙岩市处 在典 型的亚热 带湿润气候区 , 4 7 8 % 。在风化作用下 , 稀土元素密集在风化壳 中, 稀土矿石的品 该地区的气温较高 , 降水 充足 , 对含原矿岩 的风化作用 十分 有利 , 位 与所在 的矿体 的位置息息相关 , 处在矿体的山顶或者中心位 置 降水和气温可以促进矿物 的分解和稀土元素的淋滤。 这种特殊 的 的稀 土矿 石的品位较高 , 在矿体的 山坡或者 山麓地带 中的稀土矿
1 5 m的 , 土层 的 p h值在 4 . 8 — 5 . 5 9的土层 。该 土层 多为灰黄 、 黄褐 . 1稀土的含量特征 或略带砖红色 。主要是在化学风化作用 下由粘土 、 花 岗岩和石英 3 在龙岩市 的矿藏 的样本分析 中可得 , 在稀土中氧化物的含 量 砂等组成 , 土层 的结构疏松多孔 , 基本没有保留原岩的结 构。土层 主要在 1 2 9 m g / k g 到 2 9 4 m g / k g 之 间。 背景平均值 2 9 1 . 3 m g / k g , 标准 中的稀 土含量较低 。 2 ) 全风化层 , 全风化层的厚度在 5 - 2 0 m之间 ,
强制性国家标准离子型稀土矿原地浸出开采技术规范.doc
强制性国家标准《离子型稀土矿原地浸出开采技术规范》(报批稿)编制说明一、工作简况1.1立项的目的和意义我国是世界上稀土资源最丰富的国家,储量和产量占世界第一位,尤其离子吸附型稀土是我国宝贵的、有限而不可再生的战略资源,它具有中重稀土元素含量高、提取工艺简单和放射性低等特点,是高新技术领域的重要支撑材料。
鉴于其储量十分有限和对高新技术产业发展的重要支撑作用,国务院已将离子型稀土资源列为保护性开采的特殊矿种。
与此同时,以离子型稀土资源开发为基础,已经快速发展形成了我国离子型稀土分离、稀土金属冶炼和稀土发光材料、稀土永磁材料等深加工与应用产品的新兴生产工业体系,取得了举世瞩目的成就,填补了稀土元素和稀土产品的多项空白,在国际稀土产业界占有了不可替代的重要地位。
离子型稀土于1969年在赣州龙南首次被发现,并由赣州有色冶金研究所命名为离子吸附型稀土矿,其后在我国南方诸省探出了较为丰富的离子型稀土资源。
通过赣州有色冶金研究所为首的科研团队的不懈努力,先后发明了离子型稀土矿池浸、堆浸及原地浸矿工艺。
离子型稀土原地浸矿工艺为上世纪90年代发明的稀土矿浸采工艺,但原地浸矿工艺技术含量较高,初期投入相对较大,部分小型开采企业在采用原地浸矿工艺开采稀土资源过程中往往还是单凭经验进行开采,缺乏专业技术人员指导,矿山开采过程中,不根据矿区本身的地质特征、水文、工程地质、环境等特征进行有针对性的开采工程布设,只知照抄照搬,使矿山注、收液工程布设不合理,矿山工程质量不到位,生产过程中各生产环节操作失误等,导致矿山资源综合回收率低下,原材料极大的浪费,矿区安全得不到保障,矿区环境也受到较大破坏,从而在一定程度上阻碍了离子型稀土原地浸矿工艺技术的推广。
由于离子型稀土资源储量有限,且对高新技术产业发展起着重要支撑作用,国务院已将其列为保护性开采的特殊矿种。
但现有离子型稀土矿山的开采因缺少相应规范的约束和指导,稀土矿山缺乏相关工程技术人员,各矿山管理者都是凭自己的经验在进行开采,矿山的资源收率、安全、环保、水保、土地复垦等存在着较多问题,矿山开采过程及相关操作极不规范。
离子型稀土矿开采环境保护对策措施
采矿工程M ining engineering 离子型稀土矿开采环境保护对策措施赵学付1,朱健玲2,邹志强2(1.中国南方稀土集团有限公司,江西 赣州 341000;2.赣州稀土矿业有限公司,江西 赣州 341000)摘 要:根据南方离子型稀土地质条件和水文地质条件,探讨从其设计阶段、施工阶段、生产阶段、闭矿阶段提出全过程环境保护对策措施,以求更有效的控制离子型矿开采对环境的影响,为离子型稀土矿可持续发展提供助力。
关键词:离子型稀土矿;环境保护;全过程中图分类号:X171.4 文献标识码:A 文章编号:1002-5065(2021)05-0043-2Countermeasures and measures for Environmental Protection in the Mining of Ionic rare Earth OreZHAO Xue-fu1, ZHU Jian-ling2, ZOU Zhi-qiang2(1.China Southern rare earth group Co., Ltd,Ganzhou 341000,China; 2.Ganzhou rare earth Mining Co., Ltd,Ganzhou 341000,China)Abstract: According to the geological and hydrogeological conditions of ionic rare earth in South China, the countermeasures and measures of environmental protection in the whole process are put forward from its design stage, construction stage, production stage and ore closing stage. in order to more effectively control the impact of ionic mining on the environment and provide assistance for the sustainable development of ionic rare earth mines.Keywords: Ionic rare earth ore; environmental protection; whole process稀土是元素周期表中17种元素的总称,因元素本身优良的光、电、磁等物理特性,一直是高精尖设备制造的工业原料,广泛应用于电子、激光、核工业、超导等产业,被称为“工业味精”,是我国重要的战略性资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Trans. Nonferrous Met. Soc. China 24(2014) 2986−2990Leaching behaviors of iron and aluminum elements ofion-absorbed-rare-earth ore with a new impurity depressantTing-sheng QIU1, Xi-hui FANG1, Hong-qiang WU2, Qing-hua ZENG1,3, Dong-mei ZHU11. Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology,Ganzhou 341000, China;2. Ma’anshan Institute of Mining Research, Sino-Steel Group, Ma’anshan 243000, China;3. School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, NSW 2751, AustraliaReceived 8 July 2013; accepted 3 December 2013Abstract: Ion-absorbed rare-earth ore is an important mineral resource which is widely extracted by in-situ leaching process. And such process generates a significant amount of impurities such as aluminum and iron ions in leaching solution simultaneously. The surface characteristics and interactions by infrared spectroscopy and X-ray diffraction were studied to optimize the leaching conditions. It is found that the environment-friendly depressant LG-01 can react with the impurity ions through the formation of a new complex on the surface of leaching residues. Thus, it reduces significantly the concentration of impurity ions in leaching solution and improves the leaching rate of rare-earth ore. Moreover, a leaching rate of 95.6% and an impurity removal rate of 92% have been achieved under the optimized conditions.Key words: ion-absorbed-type rare-earth ore; leaching; depression mechanism; aluminum and iron impurity1 IntroductionIon-absorbed-type rare-earth ore is a unique mineralresource which was first discovered in Jiangxi Province,China. With further exploration, such rare-earth ore hasalso been found in other provinces mainly located inSoutheast of China, including Fujian, Guangdong, Hunan,Guangxi and Zhejiang. Most of such rare-earth oredeposits are associated with granite, mixed rocks, andother igneous rocks [1−3]. Ion-absorbed-type rare-earthore is formed through a series of geological processes.Initially, granite and igneous rocks containing rare-earthminerals are subjected to biological and chemicalreactions under humid conditions and changed into clayminerals. Meanwhile, rare-earth minerals (e.g., fluoro-carbonate, gadolinite) associated with the rocks areweathered and form rare-earth hydroxyl aqueous ions.Then, such rare-earth ions are absorbed onto clayminerals during the infiltration process, and formion-absorbed-type rare-earth ores [4−6].At present, electrolyte leaching is widely used toleach ion-absorbed-type rare-earth ore, which leads tothe leaching of impurity ions (e.g., aluminum and iron)into leaching solution [7−9]. Such impurity ions caninfluence the quality of rare-earth precipitation andincrease the cost toward impurity elimination. Moreimportantly, the crystal form of carbonated rare-earthmay not be able to form due to the presence of suchimpurities [10,11]. The main impurities in leachingsolution of ion-absorbed-type rare-earth ore are related tothe nature of rare-earth ore, leaching process, operatingconditions, and kinds of leaching agents. The mainchemical composition in leaching solution is shown inTable 1 [12], which indicates that the main impurities arealuminum and iron ions. Thus, such impurities must beremoved before the precipitation of leaching solution,which would further increase the production cost. In thepast, some studies have been done to inhibit theimpurities and leach ion-absorbed-type rare-earth ore[13−15]. Yet, the depressants used have adverse impactson environment and human being. Moreover, a furtherunderstanding and exploration should be done about themechanisms of the reaction between the impurities (e.g.,Foundation item: Project (51164010) supported by the National Natural Science Foundation of China; Project (2010GZC0048) supported by the Natural Science Foundation of Jiangxi Province, ChinaCorresponding author: Ting-sheng QIU; Tel: +86-79-78312008; E-mail: qiutingsheng@DOI:10.1016/S1003-6326(14)63435-XTing-sheng QIU, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2986−2990 2987Table 1Main chemical composition in leaching solution oftypical ion-absorbed-type rare-earth ore [12]Composition Mass concentration/(mg∙L−1)Molar concentration/(mmol∙L−1)K2O1560.8−1.5Mg16.800.2−0.4Ca83.30.3−0.6Al9.14−7Fe 1.730.01−0.03Mn 5.950.03−0.05Pb 5.850.03Zn0.480. 01Si11.50.8−1.2(NH4)2SO4 4.950. 04REO21504−6REO is rare-earth oxidealuminum and ferric ions) and impurity depressant.In this study, infrared (IR) spectrometry and X-ray diffraction (XRD) are used to analyze the behaviors of exchange between rare-earth ion and leaching agent as well as the exchange between impurity ions (i.e., aluminum, iron) and leaching agent during the leaching process of ion-absorbed-type rare-earth ore. Then, leaching experiments are conducted using an impurity depressant called LG-01 and the effects of LG-01 on aluminum and iron ions are examined.2 Experimental2.1 Ore samples and chemicalsRare-earth ore samples were obtained from a rare-earth mine in Xunwu of Jiangxi Province, China. The samples contained 0.22% ion-phase rare-earth, 71% SiO2, 12% Al2O3, and 2% Fe2O3. In our experiments, tap water was used in leaching experiments and deionized water was used in chemical analysis. The agents in experiment such as (NH4)2SO4, environment-friendly depressant LG-01 (the agents were organic agents containing hydroxyl and carboxyl groups), NH4F, NH4·H2O and Na2S were analytically pure.2.2 MethodsLeaching experiments were conducted in a leaching system which consists of a d10 cm leaching column, volumetric flasks, beakers, and dosing device. In the process, depressant and leaching agents were dissolved into the water together and then the leaching experiments were carried out. Leach liquor was collected by specialized device. Leaching residue should be dried naturally and used in follow-up study after the end of leaching experiment. IR and XRD techniques were usedto analyze the surface properties of ion-absorbed-type rare-earth ore and the interaction mechanisms between leaching agents and minerals as well as depressant and impurity ions.3 Results and discussion3.1 IR spectrum analysisIR analysis has been done on the rare-earth ore and leaching residues in the absence and presence of impurity depressant. Prior to IR test, the samples were dried naturally and placed in a mortar to crush them. Figure 1(a) shows the IR spectrum of rare-earth metal ore in which the characteristic peaks include 3000−4000 cm−1 from hydroxyl single bond or stretching vibration in water molecules, 1600−1660 cm−1 from bending vibration of water molecules, 960−1140 cm−1 from stretching vibration of phosphate polyhedron, and 830−1000 cm−1 from stretching vibration of silicon−oxygen single bond. The rare-earth leaching residue in the absence of depressant (Fig. 1(b)) has similar IR spectrum as that of rare-earth ore, which further confirms that there is no new substance formed and no significant change on the mineral surface.Fig. 1IR spectra of rare-earth ore (a), rare-earth ore after leaching in the absence of impurity depressant (b), rare-earth ore after leaching in the presence of impurity depressant (c)However, the IR spectrum of leaching residue obtained in the presence of depressant (Fig. 1(c)) has some new characteristic absorption peaks, including 3901.4 cm−1from stretching vibration of hydrogen−oxygen single bond, 1699.1 cm−1 form stretching vibration of carbon−oxygen double bonds, and 1402.0 cm−1from bending vibration of carbon−hydrogen−oxygen single bond. Depressants contain hydrogen−oxygen single bond, the carbon−oxygen double bonds and carbon−hydrogen−oxygen single bond groups. The results indicate that the presence of depressant may leadTing-sheng QIU, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2986−2990 2988to certain surface reaction and the formation of new organic complex on the surface of leaching residues [16].3.2 XRD analysisXRD has been used to examine the mineral composition of rare-earth ore and leaching residues obtained in the absence and presence of impurity depressant. Figure 2(a) indicates that there are quartz and minerals with aluminum and/or iron in rare-earth ore. In the absence of impurity depressant, the leaching residue (Fig. 2(b)) mainly contains quartz, without obvious evidence of minerals with aluminum and iron. This indicates that the surface aluminum- and iron-containing minerals have been dissolved during leaching process and both aluminum and iron have been released into the leaching solution.Fig. 2XRD patterns of rare-earth metal ore (a), rare-earth leaching residue in the absence of depressant (b), and rare-earth leaching residue in the presence of impurity depressant (c)In the presence of impurity depressant, in addition to the main mineral quartz, leaching residue also contains some aluminum- and iron-bearing compounds (Fig. 2(c)), which may be generated due to the reaction between impurity depressant and dissolved aluminum and iron ions. The formation of such new compounds would reduce the concentration of aluminum and iron ions in leaching solution.3.3 Leaching of ion-absorbed-type rare-earth ore inthe presence of impurity depressantBased on the above analyses and findings, leaching experiments in the presence of impurity depressant were conducted to optimize the leaching conditions for such ion absorbed-type rare earth ore. In particular, optimization has been made to the depressant dosage, liquid-to-solid ratio, and leaching agent.3. 4 Effect of impurity depressant dosageThe optimization of depressant dosage has been done under the following conditions: rare-earth ore of200 g, trickle leaching, (NH4)2SO4as leaching agentwith a content of 5%, a flow rate of 2 mL/min, and a liquid-to-solid ratio of 1.2:1. Figure 3 shows that whenthe impurity depressant dosage is 0.2% (about 0.013mol/L), the removal rates of aluminum ion and iron ionare the highest, yet rare-earth extraction rate is reduced slightly. Thus, a content of 0.2% impurity depressant is used for the following experiments. Analysis shows that leaching liquid is mainly composed of RE3+, H+, NH4+,Fe3+, Al3+, Mg2+, Ca2+ and OH−, and leaching solution is made up of these ions under other conditions.Fig. 3Effect of impurity depressant dosage on rare-earth extraction rate and removal rate of impurity ions3.5 Effect of liquid-to-solid ratioLiquid-to-solid ratio can affect rare-earth extractionrate and the concentration of impurities in leaching solution. Thus, the best rare-earth extraction rate is determined based on the following conditions: rawrare-earth ore of 200 g, trickle leaching, (NH4)2SO4as leaching agent with a content of 5%, a flow rate of 2 mL/min, and a content of 0.1% impurity depressant.The result (Fig. 4) indicates that when the liquid-to- solid ratio is 1.2:1, rare-earth extraction rate is higher than that under other conditions, while the removal rateof impurities drops a lot. Thus, the liquid-to-solid ratio of1:1 is selected.3.6 Effect of leaching agent concentrationConcentration of leaching agent is an important factor in rare-earth leaching process. A low concentration would not be enough to exchange rare-earth metals completely, while a high concentration may lead to re-adsorption. The experiments on leaching agent concentration were conducted under the following conditions: rare-earth ore of 200 g, trickle leaching, (NH4)2SO4as leaching agent with a flow rate of2 mL/min, and a content of 0.1% impurity depressant.Ting-sheng QIU, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2986−2990 2989Fig. 4Effect of liquid-to-solid ratio on rare-earth extraction rate and removal rate of impurity ionsOur results (Fig. 5) indicate that when the content of leaching agent increases, rare-earth extraction rate increases to a certain value. Further increase in leaching agent would lead to the drop of extraction rate and the removal rate of iron impurity. Under a content of 4% leaching agent, rare-earth extraction rate achieves the largest and the removal rates of impurities are high as well. Thus, leaching agent content of 4% is selected.Fig. 5Effect of leaching agent concentration on rare-earth extraction rate and removal rate of impurity ions3.7 Effect of flow rate of leaching agentThe flow rate of leaching agent is another important factor that would affect the leaching process, extraction rate, and removal rate of impurity ions. The experiments were done under the following conditions: rare-earth ore of 200 g, trickle leaching, (NH4)2SO4 as leaching agent with a content of 5%, liquid-to-solid ratio of 1.2:1, and a content of 0.1% impurity depressant. Our results (Fig. 6) show that rare-earth extraction rate reaches the highest when the flow rate of leaching agent is 2.4 mL/min. Moreover, the removal rate of impurities is also the highest. Thus, a flow rate of 2.4 mL/min is selected.Fig. 6 Effect of agent flow rate on rare-earth extraction rate4 Conclusions1) To improve the leaching ratio of ion-absorbed- type rare-earth ore, the surface characteristics of such rare-earth ore and leaching residues in the absence and presence of impurity depressant were studied by IR and XRD. In addition, the exchange process and interactions between agent and ore surface as well as agent and impurity ions were examined. It is found that impurity depressant can react with aluminum and iron ions in leaching solution and form new substance on ore surface, which reduces the impurities in leaching solution but does not affect the leaching process of rare-earth ore. The present study would facilitate the design and selection of effective impurity depressants.2) A depressant called LG01 was selected as an effective depressant for aluminum and iron impurities. Moreover, the leaching conditions were optimized through a series of experiments, which indicated the depressant content of 0.1%, leaching liquid-to-solid ratio of 1:1, leaching content of 4%, and leaching agent flow rate of 2.4 mL/min. Under such conditions, the extraction rate of ion-absorbed-type rare-earth ore reaches 95.6% and the removal rate of impurities is 92%. The present work would provide a valuable guidance toward the removal of impurities in leaching solution and the optimization of in-situ leaching process of ion-absorbed- type rare-earth ores.References[1]CHI Ru-an, TIAN Jun. Chemical metallurgy of weathered crustelution-deposited rare earth ore [M]. Beijing: Science Press, 2006:172−175. (in Chinese)[2]HUANG Li-huang. Rare earth extraction technology [M]. Beijing:Metallurgical Industry Press, 2006: 68−98. (in Chinese)[3]YAO Hui-qin, OUYANG Ke-xian, RAO Guo-hua. A study onleaching rare earth from the weathered elution-deposited rare earthTing-sheng QIU, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2986−2990 2990ore with compound leaching reagent [J]. Jiangxi Science, 2005, 23(6): 721−723. (in Chinese)[4]TIAN Jun, YIN Jun-qun, OUYANG Ke-xian. Rare earth chlorinatedsolvent extraction from weathering drench multiplicative Gaozhueffect of rare earth mineral leaching solution [J]. Metallurgy of China, 1998(2): 45−49. (in Chinese)[5]HE Lun-yan, WANG Si-nan. The rare earth mineral ion adsorptiontype in the south [J]. Rare Earth, l989, 10(1): 39−44. (in Chinese) [6]CHI Ru-an, WANG Dian-zhuo. Rare earth extraction technology [M].Beijing: Science Press, 1995: 221−274. (in Chinese)[7]LI Xiu-fen, CHI Ru-an. Study on removing impurities in theexchanged liquor of rare earth ores [J]. Multipurpose Utilization of Mineral Resources, 1997(2): 10−13. (in Chinese)[8]TIAN Jun, YIN Jing-qun, OUYANG Ke-xian, CHI Ru-an.Development progress and research connotation of green chemistry of extraction process of rare earth from weathering crust elution-deposited rare earth ores in China [J]. Chinese Rare Earths, 2006.27(1): 70−73. (in Chinese)[9]XU Guang-xian. Rare earth [M]. Beijing: Metallurgical IndustryPress, 1995: 133−214. (in Chinese)[10]TIAN Jun, YIN Jing-qun. Resarch on heavy rare earth ore leachingliquid oxalic acid precipitation [J]. Hydrometallurgy of China, 1996(2): 16−19. (in Chinese)[11]TIAN Jun, LU Sheng-liang, YIN Jing-qun. Kinetic study on leachinga south China rare earth ore [J]. Engineering Chemistry andMetallurgy, 1995, 16(3): 354−357. (in Chinese)[12]CHI Ru-an, WANG Dian-zuo. Beneficiation of rare earth ore andextraction technology [M]. Beijing: Science Press, 2006: 185−187.(in Chinese)[13]OUYANG Ke-xian, RAO Guo-hua, YAO Hui-qin, MAO Yan-hong.Study of southern RE ore leaching by aluminum inhibition [J]. RareMetals and Cemented Carbides, 2003, 31(4): 1−3. (in Chinese) [14]LI Si-jia, YU Qing-hua, CHEN Yi-bo, ZHU Hui-ying, LEI Hao.Impurities inhibited leaching of southern rare earth mineral [J].Chinese Rare Earths, 1996, 17(2): 29−34. (in Chinese)[15]MAO Yan-hong, ZHANG Chang-gen, WU Nan-ping, ZENGLing-jian. Study on the elimination of aluminum in ion adsorptiontype rare earth [J]. Shanghai Metals: Non-Ferrous V olume, 1993,14(2): 16−19. (in Chinese)[16]LIAO Li-bing, WANG Li-juan, YIN Jing-wu. The modern testingtechnology of mineral material [M]. Beijing: Chemical Industrial Press, 2010: 125−180. (in Chinese)离子型稀土矿中铝铁杂质的浸出与抑制规律邱廷省1,方夕辉1,伍红强2,曾清华1,3,朱冬梅11. 江西理工大学资源与环境工程学院,赣州341000;2.中钢集团马鞍山矿山研究院,马鞍山243000;3. School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, NSW 2751, Australia摘 要:通过红外光光谱测定、XRD检测等测试方法分析了稀土矿浸出过程中各种矿物表面性质的变化,稀土离子及铝、铁杂质离子与浸出剂和抑制剂的浸出交换过程及规律。