浙教版九年级下册数学全册教案

合集下载

浙教版初中数学教案九年级下

浙教版初中数学教案九年级下

1.1锐角三角函数(1)教学目标:1.探索直角三角形中锐角三角函数值与三边之间的关系。

2.掌握三角函数定义式:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,重点和难点重点:三角函数定义的理解。

难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。

【教学过程】一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB 和A ′B ′相等而∠α和∠β大小不同,那么它们的高度AC 和A ′C ′相等吗?AB 、AC 、BC 与∠α,A ′B ′、A ′C ′、B ′C ′与∠β之间有什么关系呢? ------导出新课 二、新课教学 1、合作探究 (1)作2、三角函数的定义在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=斜边的邻边A ∠∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即C′B′A′C BA 213米3米2米4米βatanA=∠A的对边∠A的邻边tanA=∠A的对边∠A的邻边锐角A 的正弦、余弦和正切统称∠A 的三角函数.注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的 “sin ”没有意义,其中A 前面的“∠”一般省略不写。

师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗? 师:(点拨)直角三角形中,斜边大于直角边. 生:独立思考,尝试回答,交流结果. 明确:0<sina <1,0<cosa <1.巩固练习:课本第6页课内练习T1、作业题T1、2 3、例题教学:课本第5页中例1. 例1如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切.分析:由勾股定理求出AC 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

浙教版初中数学教案九年级下第一章

浙教版初中数学教案九年级下第一章

锐角三角函数(1)教学目标:1.探索直角三角形中锐角三角函数值与三边之间的关系。

2.掌握三角函数定义式:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,重点和难点重点:三角函数定义的理解。

难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。

【教学过程】一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB 和A ′B ′相等而∠α和∠β大小不同,那么它们的高度AC 和A ′C ′相等吗?AB 、AC 、BC 与∠α,A ′B ′、A ′C ′、B ′C ′与∠β之间有什么关系呢? ------导出新课 二、新课教学 1、合作探究 (1)作2、三角函数的定义在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=斜边的邻边A ∠∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即C′B′A′C BA 213米3米2米4米βatanA=∠A的对边∠A的邻边tanA=∠A的对边∠A的邻边锐角A 的正弦、余弦和正切统称∠A 的三角函数.注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的 “sin ”没有意义,其中A 前面的“∠”一般省略不写。

师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗? 师:(点拨)直角三角形中,斜边大于直角边. 生:独立思考,尝试回答,交流结果. 明确:0<sina <1,0<cosa <1.巩固练习:课本第6页课内练习T1、作业题T1、2 3、例题教学:课本第5页中例1. 例1如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切.分析:由勾股定理求出AC 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案一. 教材分析浙教版数学九年级下册1.1《锐角三角函数》是本册教材的第一课时,主要介绍锐角三角函数的定义及概念。

本节课内容是学生对初中数学中三角函数知识的初步接触,对于培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。

但是,对于锐角三角函数的定义和应用,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的认知水平,通过实例讲解,让学生更好地理解和掌握锐角三角函数的知识。

三. 教学目标1.了解锐角三角函数的定义和概念;2.能够运用锐角三角函数解决实际问题;3.培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力。

四. 教学重难点1.教学重点:锐角三角函数的定义和概念;2.教学难点:如何运用锐角三角函数解决实际问题。

五. 教学方法采用问题驱动法、实例讲解法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学素养。

六. 教学准备1.准备相关的生活实例和图片;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如测量身高、角度等,引导学生思考如何利用数学知识解决这些问题。

从而引出锐角三角函数的概念。

2.呈现(10分钟)讲解锐角三角函数的定义和概念,让学生了解锐角三角函数的基本性质。

通过示例,让学生掌握如何运用锐角三角函数解决实际问题。

3.操练(10分钟)让学生分组讨论,选取一个生活实例,运用锐角三角函数进行解决。

教师巡回指导,为学生提供帮助。

4.巩固(5分钟)选取一些练习题,让学生独立完成,巩固所学知识。

教师及时批改,给予反馈。

5.拓展(5分钟)引导学生思考:除了生活中的实例,还有哪些领域会用到锐角三角函数?让学生了解锐角三角函数在实际应用中的广泛性。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重难点。

最新数学浙教版九下-投影与三视图+全章教案名师优秀教案

最新数学浙教版九下-投影与三视图+全章教案名师优秀教案

数学浙教版九下-投影与三视图全章教案课题:4.1投影与盲区教学目标:1、经历实践、探索的过程,了解视点、视线、视角与盲区的概念;2、体会视点、视线、视角、盲区在现实生活中的应用;3、了解视点、视线、视角、盲区与中心投影的关系,感受其在生活中的实用价值。

教学重点:应用盲区的意义解释简单的现实现象。

教学难点:在简单的平面图和立体图中表示视线、视角和盲区。

教学过程:一、创设情境,引入新课(出示投影)你知道为什么飞机超低空飞行时,雷达很难发现它, 下图是人观察事物时的直观图,在这个图上涉及了哪些数学知识,(视线,视角,视点) 你能试着给它们下定义吗,人在观察目标时,从眼睛到目标的射线叫做视线,眼睛所在的位置叫做视点,有公共视点的两条视线所成的角叫做视角。

做一做:课本:第70页强调:视角与仰角和俯角的区别。

二、盲区的概念如图4-2,小明在点O能看见站在幕布后面点C的小华吗,如果小明的位置不变,小华应怎样移动自己的位置,才能使小明看到自己,为什么,学生讨论后得出:不能;移到幕布前?AOB的范围内;因为小华在幕布后面的区域是小明视线不能到达的区域,要使小明看到自己,必须要移到小明视线能到达的区域。

教师追问:那么图中阴影部分的区域叫做什么,为什么,小结:我们把视线不能到达的区域叫做盲区,如图4-2中的阴影部分的区域就是盲区。

如图4-3,?AO1D,?BO2C,分别表示人的双目水平位置上的最大视角(约120?),在这个图上什么地方是盲区,什么地方是人眼看得最清晰的区域,盲区的意义还不局限于人观察景物,那么盲区的意义还有哪些应用呢,学生举例三、应用新知例如图4-4,A,B表示教室的门框位置。

小聪站在教室内的点P位置,小慧、小红、张杰三位同学分别站在教室外点C,D,E的位置。

这三位同学中,小聪能看见谁,看不见谁,请用盲区的意义给出解释。

解:如图4-5,作射线PA,PB.图中阴影部分表示小聪观察教室外时的盲区.小慧、小红、张杰三位同学中,只有张杰在盲区内,所以小聪能看见的是小慧、小红,看不见的是张杰.练习:课本第71页课内练习和作业题(由学生独立完成,后指名学生口答或板书)四、小结:通过这节课的学习你学会了什么,你有什收获与困惑,五、布置作业:见课课通第186页----第187页。

浙教版数学九年级下册《1.3 解直角三角形》教案3

浙教版数学九年级下册《1.3 解直角三角形》教案3

浙教版数学九年级下册《1.3 解直角三角形》教案3一. 教材分析《1.3 解直角三角形》是浙教版数学九年级下册的教学内容。

本节内容是在学生已经掌握了三角形的性质、勾股定理等知识的基础上进行教学的。

通过本节课的学习,使学生掌握解直角三角形的方法,能够运用三角函数解决实际问题,培养学生的空间想象能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识,对三角形的性质、勾股定理等概念有一定的了解。

但是,解直角三角形的方法和应用可能对学生来说较为抽象,需要通过实例和操作来帮助学生理解和掌握。

三. 教学目标1.知识与技能:使学生掌握解直角三角形的方法,能够运用三角函数解决实际问题。

2.过程与方法:通过实例和操作,培养学生的空间想象能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.重点:解直角三角形的方法。

2.难点:如何运用三角函数解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等,引导学生通过自主学习、合作交流,掌握解直角三角形的方法,并能够运用到实际问题中。

六. 教学准备1.教具准备:直角三角形模型、三角板、多媒体课件等。

2.学具准备:学生每人准备一个直角三角形模型。

七. 教学过程1.导入(5分钟)教师通过展示直角三角形的模型,引导学生回顾三角形的性质和勾股定理。

然后提出问题:“如何判断一个三角形是否为直角三角形?如何求解直角三角形的边长和角度?”激发学生的学习兴趣。

2.呈现(10分钟)教师通过多媒体课件展示直角三角形的定义和性质,引导学生掌握直角三角形的特征。

然后讲解勾股定理的推导过程,使学生理解勾股定理的意义。

3.操练(10分钟)教师提出一些有关直角三角形的问题,让学生分组讨论和操作。

例如:“已知直角三角形的两个直角边长分别为3cm和4cm,求斜边长和两个锐角的大小。

”学生通过实际操作和合作交流,解决问题。

浙教版九年级数学下册教学课件全册

浙教版九年级数学下册教学课件全册

案例分析
案例总结
总结案例中的数学知识点和解题方法 ,加深学生对数学知识的理解和掌握 。
通过案例分析,帮助学生理解数学概 念、定理和公式在实践中的应用。
教学方法2:启发式教学
01
02
03
问题导入
通过设置问题情境,引导 学生主动思考和探索数学 问题。
启发思考
引导学生逐步深入思考问 题,激发他们的思维能力 和创造力。
考试分析
对考试成绩进行分析,找出学 生在学习中存在的问题和薄弱 环节,以便进行有针对性的辅
导和加强。
学生反馈与评价
学生意见收集
通过问卷调查、座谈会等方式, 收集学生对教学的意见和建议,
了解学生的学习需求和期望。
学生作业分析
分析学生作业中的常见错误和问题 ,找出学生在学习中存在的困难和 不足,以便进行有针对性的指导和 帮助。
浙教版九年级数学下册教科书
包含了本学期需要学习的所有知识点和例题,是教学的主要依据。
浙教版九年级数学下册教学参考书
提供了详细的教学建议、课程内容的解析和例题的解答,有助于教师更好地备 课和教学。
网络资源
浙教版九年级数学下册课件
可以在网络上找到一些教师分享的课件,这些课件通常包含了详细的教学内容和 练习题,可以作为教学辅助材料。
05
教学评价与反馈
作业与考试
作业布置
根据教学内容和学生实际情况 ,布置有针对性的作业,以巩 固所学知识和提高解题能力。
作业批改
认真批改学生的作业,及时发 现和纠正学生在学习中存在的 问题,并给予必要的指导和帮 助。
考试安排
定期组织考试,检测学生对所 学知识的掌握程度和应用能力 ,及时调整教学策略。
学生发展的关注

浙教版数学九年级下册《2.1 直线与圆的位置关系》教案

浙教版数学九年级下册《2.1 直线与圆的位置关系》教案

浙教版数学九年级下册《2.1 直线与圆的位置关系》教案一. 教材分析浙教版数学九年级下册《2.1 直线与圆的位置关系》这一节主要介绍了直线与圆的位置关系,包括直线与圆相交、相切、相离三种情况。

通过这一节的学习,让学生能够理解和掌握直线与圆的位置关系的判定方法,并能够运用到实际问题中。

二. 学情分析学生在学习这一节之前,已经学习了直线、圆的基本概念和性质,对于图形的直观理解能力已经有了一定的基础。

但是,对于直线与圆的位置关系的判定方法,以及如何运用这些知识解决实际问题,可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、操作、思考、交流等活动,理解和掌握直线与圆的位置关系。

三. 教学目标1.理解直线与圆的位置关系的概念,掌握直线与圆相交、相切、相离的判定方法。

2.能够运用直线与圆的位置关系解决实际问题。

3.培养学生的观察能力、操作能力、思考能力和交流能力。

四. 教学重难点1.直线与圆的位置关系的判定方法。

2.如何运用直线与圆的位置关系解决实际问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生观察、操作、思考、交流等活动,让学生主动探索直线与圆的位置关系,从而达到理解和掌握的目的。

同时,运用实例分析法,让学生能够将所学知识运用到实际问题中。

六. 教学准备准备相关的教学材料,如PPT、实例分析等。

七. 教学过程1.导入(5分钟)通过PPT展示一些直线与圆的图形,引导学生观察直线与圆的位置关系,并提出问题:直线与圆有哪些位置关系?学生通过观察和思考,可以得出直线与圆有相交、相切、相离三种位置关系。

2.呈现(10分钟)通过PPT呈现直线与圆的位置关系的判定方法,包括:(1)直线与圆相交:直线与圆有两个交点。

(2)直线与圆相切:直线与圆有一个交点,且直线与圆的切点到圆心的距离等于圆的半径。

(3)直线与圆相离:直线与圆没有交点。

同时,引导学生思考如何运用这些判定方法解决实际问题。

3.操练(10分钟)学生分组进行讨论,每组选择一个实际问题,运用直线与圆的位置关系进行解决。

浙教版九年级数学下册电子课本课件【全册】

浙教版九年级数学下册电子课本课件【全册】
浙教版九年级数学下册电子课本课 件【全册】
1.1锐角三角函数
浙教版九年级数Biblioteka 下册电子课本课 件【全册】1.2锐角三角函数的计算
浙教版九年级数学下册电子课本课 件【全册】
1.3解直角三角形
浙教版九年级数学下册电子课本课 件【全册】
第2章 直线与圆的位置关系
浙教版九年级数学下册电子课本课 件【全册】
浙教版九年级数学下册电子课本 课件【全册】目录
0002页 0042页 0118页 0137页 0213页 0258页 0324页
第1章 解直角三角形 1.2锐角三角函数的计算 第2章 直线与圆的位置关系 2.2切线长定理 第3章 投影与三视图 3.2简单几何体的三视图 3.4简单几何体的表面展开图
第1章 解直角三角形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19周第3课时上课时间1月4日(星期四)累计教案83个
课题:4.1投影与盲区
教学目标:
1、经历实践、探索的过程,了解视点、视线、视角与盲区的概念;
2、体会视点、视线、视角、盲区在现实生活中的应用;
3、了解视点、视线、视角、盲区与中心投影的关系,感受其在生活中的实用价值。

教学重点:应用盲区的意义解释简单的现实现象。

教学难点:在简单的平面图和立体图中表示视线、视角和盲区。

教学过程:
一、创设情境,引入新课
(出示投影)你知道为什么飞机超低空飞行时,雷达很难发现它?
下图是人观察事物时的直观图,在这个图上涉及了哪些数学知识?(视线,视角,视点)你能试着给它们下定义吗?
人在观察目标时,从眼睛到目标的射线叫做视线,眼睛所在的位置叫做视点,有公共视点的两条视线所成的角叫做视角。

做一做:课本:第70页
强调:视角与仰角和俯角的区别。

二、盲区的概念
如图4-2,小明在点O能看见站在幕布后面点C的小华吗?如果小明的位置不变,小华应怎样移动自己的位置,才能使小明看到自己?为什么?
学生讨论后得出:不能;移到幕布前∠AOB的范围内;因为小华在幕布后面的区域是小明视线不能到达的区域,要使小明看到自己,必须要移到小明视线能到达的区域。

教师追问:那么图中阴影部分的区域叫做什么?为什么?
小结:我们把视线不能到达的区域叫做盲区,如图4-2中的阴影部分的区域就是盲区。

如图4-3,∠AO1D,∠BO2C,分别表示人的双目水平位置上的最大视角(约120°),在这个图上什么地方是盲区,什么地方是人眼看得最清晰的区域?
盲区的意义还不局限于人观察景物,那么盲区的意义还有哪些应用呢?学生举例
三、应用新知
例如图4-4,A,B表示教室的门框位置。

小聪站在教室内的点P位置,小慧、小红、张杰三位同学分别站在教室外点C,D,E的位置。

这三位同学中,小聪能看见谁?看不见谁?请用盲区的意义给出解释。

解:如图4-5,作射线PA,PB.图中阴影部分表示小聪观察教室外时的盲区.小慧、小红、张杰三位同学中,只有张杰在盲区内,所以小聪能看见的是小慧、小红,看不见的是张杰.。

相关文档
最新文档