研究生数理统计试卷

研究生数理统计试卷
研究生数理统计试卷

数理统计试卷

附表:0.025(7,7) 4.99F =,0.025(14) 2.14t =,0.05(10)0.576r =,

0.01(10)0.708r =,0.025(7) 2.36t =

一.(15分)

(1)一复杂的系统由100个相互独立起作用的部件所组成。在整个运行期间每个部件损坏的概率为0.10。为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率。

(2)一复杂的系统由n 个相互独立起作用的部件所组成。每个部件的可靠性为0.90,且必须至少有80%的部件工作才能使整个系统正常工作,问n 至少为多大 才能使系统的可靠性不低于0.95?

二.(15分)设2(,)X N μσ ,抽取样本12,,,n X X X ,样本均值为X ,样本方差为2

S 。

如果再抽取一个样本1n X +(1)t n - 。

三.(15分)设12,,,n X X X 是来自总体X 的一个样本,设2(),()E X D X μσ==。 (1)确定常数c 使1

21

1

()n i i i c

X

X -+=-∑为2σ的无偏估计;

(2)确定常数c 使22()X cS -是2μ的无偏估计(2,X S 是样本均值和样本方差)。 四.(15分)设总体X 的概率密度为

1,01

(;)0,x x f x θθθ-?<<=??

其他

其中0θ>。如果取得样本观测值为12,,,n x x x ,求参数θ的矩估计值与最大似然估计值。 五.(15分)随机地从A 批导线中抽取4根,又从B 批导线中抽取5根,测得电阻(欧)

A 批导线:0.143 0.142 0.143 0.137

B 批导线:0.140 0.142 0.136 0.138 0.140 设测得数据分别来自分布2

2

12(,),(,)N N μσμσ,且两样本相互独立,又212,,μμσ均为未知,试求12μμ-的置信水平为0.95的置信区间。

六.(15分)为了提高振动板的硬度,热处理车间选择两种淬火温度1T 及2T 进行试验,测得振动板的硬度数据如下:

T:85.6 85.9 85.7 85.8 85.7 86.0 85.5 85.4

1

T:86.2 85.7 86.5 85.7 85.8 86.3 86.0 85.8

2

设两种淬火温度下振动板的硬度都服从正态分布,检验:

α=)。(1)两种淬火温度下振动板硬度的方差是否有显著差异;(取显著性水平0.05

α=)。

(2)淬火温度对振动板的硬度是否有显著影响。(取显著性水平0.05

Y N/mm与其拉伸倍数X有关,测得试验数据如下:七.(10分)合成纤维的强度()2

关于X的线性回归方程。

硕士生《数理统计》例题及答案

《数理统计》例题 1.设总体X 的概率密度函数为: 2 2 1)(ββ x e x f -= )0(>β 试用矩法和极大似然法估计其中的未知参数β。 解:(1)矩法 由于EX 为0, πβββββ βββββββ2 00 2 2 2 22 2 1][) ()2 (2) ()2(21 2)(2 2 2 2 2 2 2 2 2 2 = +-=- =- - ===???? ?∞ +-∞+- ∞ +- - ∞ +- ∞ ++∞ ∞ -dx e xe e d x x d xe dx e x dx x f x EX x x x x x πβ2 222 1= -=X E EX DX 令2S DX =得:S π β2 ?= (2)极大似然法 ∑= ==- =- ∏ n i i i x n n i x e e L 1 2 22 2 1 11 1 β ββ β ∑=- -=n i i x n L 1 22 1 ln ln ββ 2 31 ln 2n i i d L n x d βββ==-+∑ 令0ln =β d L d 得∑==n i i x n 1 2 2?β

2. 设总体X 的概率密度函数为: ?? ???<≥--=αα βαββαφx x x x ,0),/)(exp(1 ),;( 其中β>0,现从总体X 中抽取一组样本,其观测值为(2.21,2.23,2.25,2.16,2.14,2.25,2.22,2.12,2.05,2.13)。试分别用矩法和极大似然法估计其未知参数βα和。 解:(1)矩法 经统计得:063.0,176.2==S X β αβαβ φα β α α β ααβ α β α α β α α +=-=+-=-===∞ +-- ∞ +-- ∞ +-- -- ∞ +-- ∞ +∞ +∞-?? ? ?x x x x x e dx e xe e xd dx e x dx x x EX ][) (1 )( ) (222][) (1 222 22 2βαβαβαβ β α α αβ α β α α β α α ++=+=+-=-==--∞ +∞ +-- --∞ +-- ∞ +?? ?EX dx e x e x e d x dx e x EX x x x x 222)(β=-=EX EX DX 令???==2S DX X EX 即???==+2 2S X ββα 故063.0?,116.2?===-=S S X βα (2)极大似然法 ) (1 1 1),;(αβ β α β β βα---- == =∏X n n X n i e e x L i )(ln ln αβ β-- -=X n n L )(ln ,0ln 2αβ βββα-+-=??>=??X n n L n L 因为lnL 是L 的增函数,又12,,,n X X X α≥L 所以05.2?)1(==X α

(完整word版)西安交通大学数理统计研究生试题

2009(上)《数理统计》考试题(A 卷)及参考解答 一、填空题(每小题3分,共15分) 1,设总体X 和Y 相互独立,且都服从正态分布2 (0,3)N ,而12 9(,,)X X X 和 129(,,)Y Y Y 是分别来自X 和Y 的样本,则U = 服从的分布是_______ . 解:(9)t . 2,设1?θ与2?θ都是总体未知参数θ的估计,且1?θ比2?θ有效,则1?θ与2?θ的期望与方差满足_______ . 解:1212 ????()(), ()()E E D D θθθθ=<. 3,“两个总体相等性检验”的方法有_______ 与____ ___. 解:秩和检验、游程总数检验. 4,单因素试验方差分析的数学模型含有的三个基本假定是_______ . 解:正态性、方差齐性、独立性. 5,多元线性回归模型=+Y βX ε中,β的最小二乘估计是?β=_______ . 解:1?-''X Y β= ()X X . 二、单项选择题(每小题3分,共15分) 1,设12(,, ,)(2)n X X X n ≥为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为 样本方差,则____D___ . (A )(0,1)nX N ; (B )22()nS n χ; (C ) (1)()n X t n S -; (D ) 2 122 (1)(1,1)n i i n X F n X =--∑. 2,若总体2(,)X N μσ,其中2σ已知,当置信度1α-保持不变时,如果样本容量 n 增大,则μ的置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能. 3,在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是____C___ . (A )α减小时β也减小; (B )α增大时β也增大;

概率论与数理统计-朱开永--同济大学出版社习题一答案

习 题 一 1.下列随机试验各包含几个基本事件? (1)将有记号b a ,的两只球随机放入编号为Ⅰ,Ⅱ,Ⅲ 的盒子里(每个盒子可容纳两个球) 解:用乘法原理,三个盒子编号为Ⅰ,Ⅱ,Ⅲ看作不动物,。两个球看作是可动物,一个 一个地放入盒中;a 球可放入的任一个,其放法有 313=C 种,b 球也可放入三个盒子的 任一个,其放法有313=C 种,由乘法原理知:这件事共有的方法数为11339C C ?=种。 (2)观察三粒不同种子的发芽情况。 解:用乘法原理,三粒种子,每一粒种子按发芽与否是两种不同情况(方法)。三粒种子发芽共有81 21212=??C C C 种不同情况。 (3)从五人中任选两名参加某项活动。 解:从五人中任选两名参加某项活动,可不考虑任选的两人的次序, 所以此试验的基本事件个数 1025==C n 。 (4)某人参加一次考试,观察得分(按百分制定分)情况。 解:此随机试验是把从0到100 任一种分看作一个基本事件,101=∴n 。 (5)将c b a ,,三只球装入三只盒子中,使每只盒子各装一只球。 解:可用乘法原理:三只盒子视为不动物,可编号Ⅰ,Ⅱ,Ⅲ,三只球可视为可动物,一 个一个放入盒子内(按要求)。a 球可放入三个盒子中的任一个有313=C 种方法。b 球因 为试验要求每只盒子只装一个球,所以a 球放入的盒子不能再放入b 球,b 球只能放入其余(无a 球 的盒子)两个中任一个,其放法有21 2=C 个。c 只能放入剩下的空盒中,其放法只有一个。三个球任放入三个盒中保证每个盒只有一个球,完成这件事共有方法为 611213=??C C 种。 2. 事件A 表示“五件产品中至少有一件不合格品”,事件B 表示“五件产品都是合格品”,则,A B AB U 各表示什么事件?B A 、之间有什么关系? 解: 设k A =“五件中有k 件是不合格品” =B “五件都是合格品”。此随机试验E 的样 本空间可以写成:{}12345,,,,,S A A A A A B = 而 12345A A A A A A =U U U U ,A B S ∴=U φ=AB ,A 与B 是互为对立事件。 3. 随机抽验三件产品,设A 表示“三件中至少有一件是废品”,设B 表示“三件中至少有两件是废品”,C 表示“三件都是正品”,问 ,,,,A B C A B AC U 各表示什么事件?

数理统计试卷

广西大学研究生课程考试试卷 ( 2013 —2014 学年度第一学期) 课程名称: 数理统计 试卷类型:( B ) 命题教师签名: 教研室主任签名: 主管院长签名: 装订线(答题不得超过此线) 一、单项选择题(本大题共5小题,每小题2分,共10分) 1. 设随机变量2 1 ),1)((~X Y n n t X =>,则 【 】 ① )(~ 2n Y χ. ② )1(~2-n Y χ. ③ )1,(~n F Y . ④ ),1(~n F Y . 2. 假设母体X 正态分布),(2σμN ,对μ作区间估计,得95%的置信区间,其意 义是指这个区间 【 】 ① 平均含母体95%的值 ② 平均含子样95%的值 ③ 有95%的机会含μ的值 ④ 有95%的机会含子样值 3. 测定某种溶液中的水分,由它的9个测定值,计算出子样均值和子样方差%452.0=x , %037.0=s ,母体服从正态分布,在α=0.05下,正面提出的检验假设被接受的是 【 】 ① 0H :%05.0=μ ② 0H :%03.0=μ ③ 0H :%5.0=μ ④ 0H :%03.0=σ

4.在方差分析中,进行两两均值比较的前提是 【 】 ① 拒绝原假设 ② 不否定原假设 ③ 各样本均值相等 ④ 各样本均值无显著差异 5.一元线性回归分析,误差项ε的方差2 σ的矩估计是 【 】 ① ∑=-n i i i y y n 12 )?(1 ② ∑=--n i i i y y n 1 2)?(11 ③ ∑=--n i i i y y n 1 2)?(21 ④ ∑=-n i i i y y 1 2)?( 二、填空题 (本大题共5小题,每小题3分,共15分) 1.设母体X 服从正态分布)2,0(2N ,而1521,,,X X X 是来自母体X 的简单随机样本, 则随机变量) (22 152112 10 21X X X X Y +++=服从 分布,参数为 . 2.如果,?1θ2?θ都是母体未知参数θ的估计量,称1?θ比2 ?θ有效,则满足 。 3.设母体)2,(~2 μN X ,1621,,,X X X 来自X ,考虑假设0H :0=μ,则选择的检验 统计量为X 2,此统计量为)1,0(N 的条件是 。 4.单因素分析中,平方和∑∑==-= r i n j i ij E i x x Q 11 2)(描述了 。 5.在线性回归直线方程为x a y 4??+=,而3=x ,6=y ,则=a ? 。 三、计算题 (本大题共6小题,共55分) 1.设母体X 的设总体X 的概率密度为?? ???=--0),(1a x a e ax x f λλλ 00≤>x x , 其中λ>0是未知参数,a >0为已知常数,试根据来自母体X 的简单随机样本X X n 1, ,求λ的最大似然估计量λ^ .

考研概率论与数理统计课后答案习题

1 第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解 (1)}, 100,,1,0{n i n i ==Ω其中n 为班级 人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

2 (1)A 发生,B 与C 不发生。 (2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A , ( 6 ) C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, ( 8 ) BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作图说明。 (1)B B A B A = (2)AB B A = (3)AB B A B =?则若, (4)若 A B B A ??则, (5)C B A C B A = (6) 若Φ =AB

最新重庆大学研究生数理统计期末考试题

涉及到的有关分位数: ()()()()()()()()()()()()2 0.950.950.950.9750.9750.9752222220.9750.0250.0250.9750.950.97520.95 1.645,16 1.746,15 1.753,16 2.12,15 2.131,1628.851527.49,16 6.91,15 6.26,1 5.02,1 3.84,27.382 5.99 u t t t t χχχχχχχχ============= 一、设123,,X X X 是来自总体~(0,3)X N 的样本。记()2 332 i 11 11,32i i i X X S X X ====-∑∑, 试确定下列统计量的分布: (1)3113i i X =∑;(2)2 3119i i X =?? ???∑;(3)() 2 31 13i i X X =-∑;(4 X 解:(1)由抽样分布定理,3 1 1~(0,1)3i i X X N ==∑ (2)因311~(0,1)3i i X N =∑,故2 2 332 1111~(1)39i i i i X X χ==????= ? ????? ∑∑ (3)由抽样分布定理, ()() () 2 2 23 3 21 1 31211~(2)3 323i i i i S X X X X χ==-=?-=-∑∑ (4)因()222~(0,1), ~23 X N S χ,X 与2S ()~2X t 。 二、在某个电视节目的收视率调查中,随机调查了1000人,有633人收看了该节目,试根 据调查结果,解答下列问题: (1)用矩估计法给出该节目收视率的估计量; (2)求出该节目收视率的最大似然估计量,并求出估计值; (3)判断该节目收视率的最大似然估计是否是无偏估计; (4)判断该节目收视率的最大似然估计是否是有效估计。 解:总体X 为调查任一人时是否收看,记为~(1,)X B p ,其中p 为收视率 (1)因EX p =,而^ E X X =,故收视率的矩估计量为^ X p = (2)总体X 的概率分布为() 1()1,0,1x x f x p p x -=-= 11 11 ()(1)(1) (1)ln ()ln (1)ln(1)ln ()(1) 01n n i i i i i i n x n x x x n X n n X i L p p p p p p p L p nX p n X p d L p nX n X dp p p ==- --=∑∑=-=-=-=+---=-=-∏

北京交通大学硕士数理统计复习题

复习题: 1设12,,,n X X X 是正态总体2~(,)X N μσ的样本, 1.试问 2 2 1 1 ()n i i X μσ=-∑服从什么分布(指明自由度) )1,0(~N X i σ μ -且独立, )(~)( )(1 21 21 2 2 n X X n i i n i i χσ μ μσ∑∑==-=- 2.假定0μ=,求2 122 12()()X X X X +-的分布。 )2,0(~221σN X X +,)2,0(~221σN X X - )1,0(~22 1N X X σ +, )1,0(~22 1N X X σ -)1(~)2( 22 1χσ X X +,)1(~)2( 22 1χσ X X - 又22 1)2( σ X X +和22 1)2( σ X X -相互独立,故 2 122 12()()X X X X +-=)1,1(~1 /)2(1 /)2( 22122 1F X X X X σ σ++ { 2设总体X 服从(0,1)上的均匀分布,12,,,n X X X 是来自总体X 的一个样本,最大顺 序统计量),,,max (21)(n n X X X X =,求随机变量)(n X 的概率密度; 解:???<<=其它,010,1)(~x x f X ,其分布函数为?? ? ??≥<<≤=1 ,110,0 ,0)(x x x x x F 而),,,max (21)(n n X X X X =的分布函数为 } )),,,{max(}{)(21)()(z X X X P z X P z F n n X n ≤=≤= }),,,{21z X z X z X P n ≤≤≤= n z F )]([= ()()z F z f n n X X )()('=()[]()z f z F n n 1-=1-=n nz ,)10(<

数理统计考研复试题库及答案

2(1)未知函数u 的导数最高阶为2,u ``,u `,u 均为一次,所以它是二阶线性方程。 (2) 为y 最高阶导数为1,而y 2为二次,故它是一阶非线性常微分方程。 (3) 果y 是未知函数,它是一阶线性方程;如果将x 看着未知函数,它是一阶非线 性方程。 3. 提示:所满足的方程为y ``-2 y `+y=0 4. 直接代入方程,并计算Jacobi 行列式。 5.方程变形为dy=2xdx=d(x 2),故y= x 2+C 6. 微分方程求解时,都与一定的积分运算相联系。因此,把求解一个微分方程的过程称为一个微分方程。微分方程的解又称为(一个)积分。 7. 把微分方程的通解用初等函数或通过它们的积分来表达的方法。注意如果通解能归结为初等函数的积分表达,但这个积分如果不能用初等函数表示出来,我们也认为求解了这个微分方程,因为这个式子里没有未知函数的导数或微分。 8. y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中一个因式仅含有x,另一因式仅含y ,而方程p(x,y)dx+q(x,y)dy=0是可分离变量方程的主要特征,就像f(x,y)一样,p,q 分别都能分解成两个因式和乘积。 9 (1) 积分得x=-cosx+c (2) 将方程变形为x 2 y 2 dy=(y-1)dx 或1-y y 2=2x dx ,当xy ≠0,y ≠1时积分得 22x +y+ln 1-y +x 1=c (3)方程变形为 y dy +1=x x sin cos dx,当y ≠-1,sinx ≠0时积分得 y=Csinx-1 (4)方程变形为 exp(y)dy=exp(2x)dx,积分得 exp(y)= 2 1 exp(2x)+C (5)当y ≠±1时,求得通积分ln 1 1 +-y y =x+c (6)方程化为 x 2 ydx=(1- y 2 )(1+x 2 )dx 或2 2 1x x +dx=y y 21-dy,积分得 x -arctgx -ln y + 2 1y 2 =C

2017年广东财经大学807概率论与数理统计硕士学位研究生入学考试试卷

欢迎报考广东财经大学硕士研究生,祝你考试成功!(第 1 页 共 3 页) 1广东财经大学硕士研究生入学考试试卷 考试年度:2017年 考试科目代码及名称:807-概率论与数理统计(自命题) 适用专业:071400 统计学 [友情提醒:请在考点提供的专用答题纸上答题,答在本卷或草稿纸上无效!] 一、填空题(10题,每题2分,共20分) 1. 已知P (A )=a , P (B )=b , P (A +B )=c ,则P ()= 。AB 2. 设有10个零件,其中3个是次品,任取2个,2个中至少有1个是正品的概率为 。 3. 如果每次实验的成功率都是p ,并且已知在三次独立重复试验中至少成功一次的概率为26/27,则p = 。 4. 设连续型随机变量X 的分布函数为,则当时,X 的概率密度? ??≤>-=-0,00,1)(3x x e x F x 0>x 。 =)(x p 5. 设二维随机变量(X , Y )的概率密度函数为 ()()2 03,01,0 c x y x y p x y ?+<<<

研究生数理统计第三章习题答案

习 题 三 1.正常情况下,某炼铁炉的铁水含碳量() 24.55,0.108X N :.现在测试了5炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37.如果方差没有改变,问总体的均值有无显著变化?如果均值没有改变,问总体方差是否有显著变化()0.05α=? 解 由题意知,( ) 2 4.55,0.108X N :,5n =,5 1 1 4.3645i i x x ===∑,0.05α=, ()52 2 01 10.095265i i s x μ==-=∑. 1)当00.108σ=已知时, ①设统计假设0010: 4.55,: 4.55H H μμμμ==≠=. ②当0.05α=时,0.97512 1.96u u α- == ,临界值12 1.960.0947c α- = = =, 拒绝域为000{}{0.0947}K x c x μμ=->=->. ③004.364 4.550.186x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为当方差没有改变时,总体的均值有显著变化. 2)当0 4.55μ=已知时, ①设统计假设222222 0010:0.108,:0.108H H σσσσ==≠=. ②当0.05α=时,临界值 ()()()()222210.02520.975122 111150.1662,5 2.566655c n c n n n ααχχχχ-= =====, 拒绝域为2 2 2 2 0212 2 2 2 0000{ }{ 2.56660.1662}s s s s K c c σσσσ=><=><或 或 . ③ 2 02 2 00.09526 8.16700.108 s K σ= =∈,所以拒绝0H ,接受1H ,即均值没有改变时,总体方差有显著变化. 2.一种电子元件,要求其寿命不得低于1000h .现抽取25件,得其均值950x h =.已知该种元件寿命()2 ,100X N μ:,问这批元件是否合格()0.05α=?

昆明理工大学2007级硕士研究生数理统计考题

2007硕士研究生《数理统计》考题 题中可能涉及的值:645.105.0=z ,1824.3)3(025.0=t ,3534.2)3(05.0=t ,5706.2)5(025.0=t , 7459.1)16(05.0=t ,44.3)8,8(05.0=F ,)2(205.0χ=5.991,)3(205.0χ=7.815 一.填空题(每题3分,共36分) 1.向某一目标发射炮弹,设炮弹的弹着点到目标的距离为R 单位 , R 服从瑞利分布,其概率 密度为?? ???≤>=-0,00,252)(25/2r r e r r f r R ,若弹着点离目标不超过5个单位时,目标被摧毁。则(1) 发射一发炮弹能摧毁目标的概率为_______(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.95, 则最少需要发射的炮弹数为________枚。 2.已知3,2,1,=i X i ,相互独立,且i X D i /1)(=,若 ∑==311i i a , ∑==31i i i X a Y ,要使)(Y D 达到最大,则1a =_________;2a =__________. 3.设总体)1,0(~N X ,161,,X X 是其一简单随机样本,2 S 为样本方差))((22σ=S E , 则)(2S D =________; ~ (2162) 1X X ++________;~/1516221∑=i i X X ___________. 4.某批电子元件的寿命服从均值为θ的指数分布,现从中抽取n 个元件在0=t 时同时投入寿命实验,截止时刻为T ,且已知到T 为止共有r 个元件损坏。(1)若此r 个元件具体损坏时刻未知,则θ的最大似然估计为__________;(2)若此r 个元件具体损坏时刻分别为r t t t ≤≤≤ 21,则θ的最大似然估计为__________. 5.对于具有s 个水平的单因素A 实验方差分析(水平i A 对应的总体为),(2σμi N , (i=1,2,…,s ),现取样,设各水平下的样本容量之和为n,以T E A S S S ,,分别表示因素A 的效 应平方和、误差平方和、总偏差平方和,则(1)T E A S S S ,,之间的关系是___________; (2)在s μμ==...1成立的条下,~) /()1/(s n S s S E A --___________;(3)在显著性水平α下,假 设“s H μμ==...:10,s H μμ,...,:11不全相等”的拒绝域形式是_________ 二.(10分)已知甲乙两地新生婴儿身高都是服从正态分布的随机变量,分别以X ,Y 表示,假设),(~),,(~2 221σμσμN Y N X (参数均未知),且相互独立,现从两总体中分别取样,容量均为9,样本值分别为46,47,…,54和51,52,…,59.(1)求21μμ-的置信水平

2014级硕士研究生数理统计试卷A

昆明理工大学2014级硕士研究生 《数理统计》试卷A 满分100分 考试时间:2小时30分钟 学院:____专业:____学号:____姓名:____ 一、填空题(每空4分,共40分) 1. 设总体12,,,n X X X 是来自于正态总体2~(,)X N μσ的样本,2S 是样本方差,则2()D S = (2b^4)/(n-1) . 2. 11,,,m m m n X X X X ++ 为来自正态总体2~(0,)X N σ的样本,则统计量 m i X 服从 分布,自由度为 . 3. 设总体X 具有如下分布律, , 已知取得样本值为 1231,2,1x x x ===,则θ的矩估计值为 . 4. 设n X X X ,,,21 是来自正态总体2~(,)X N μσ的简单随机样本,2,μσ均未知,记 21 1 1, ()n n i i i i X X Q X X n ====-∑∑,则假设0:0H μ=的T 检验应使用的检验统计量 为 . 5. 设n X X X ,,,21 和12,,,m Y Y Y 是分别来自于正态总体(,1)N μ和2(,2)N μ的两个样本,μ的一个无偏估计具有形式1 1 n m i j i j T a X b Y ===+∑∑,则a 和b 应满足条 件 ;当a =_________,b =__________时,T 最有效. 6. 正交表)2(78L 中,其中数字“2” 表示 , 数字“7”表示 . 22123 2(1)(1) k X θθθθ--p

二、(10分)某电子元件寿命(以小时计)T 服从双参数的指数分布,其概率密 度函数为(c)/1()0 t e t c f t θ θ--?≥?=???其他,其中,c θ(0,0c θ>>)为未知参数,自一批 这种元件中随机的取n 件进行寿命试验,设它们的失效时间依次为12n x x x ≤≤ ,求参数,c θ的最大似然估计。 三、(10分)根据某市公路交通部门一年中前6个月的交通事故记录统计得一周 中周一至周日发生交通事故的次数如下,问交通事故的发生是否与周几无 关? (222 10.0510.050.050.05,(6)12.59,(7)14.07,(6) 1.64,αχχχ--====) 四、(15分)在钢线炭含量对电阻的效应的研究中,得到如下数据: (1) 求出回归方程y a bx =+ ;(2)求2σ的估计;(3)检验回归系数的显著; (4)若回归效果显著,求参数b 的水平为0.95的置信区间。 (05.0=α,0.975(5) 2.5706t =,0.95(1,5) 6.61F =)。解题过程中所用的中间数据: 7 1 3.8i i x ==∑,71 145.4i i y ==∑,72 1 2.595i i x ==∑,72 1 3104.2i i y ==∑,7 1 85.61i i i x y ==∑ 五、(10分)一药厂生产一种新的止痛药,厂方希望验证服用新药后至开始起作 用的时间间隔较原来的止痛药至少缩短一半,因此厂方提出如下假设检 验:012112:2, :2H H μμμμ≤>。其中12,μμ分别是服用原止痛药和服用新止痛 药后至起作用的时间间隔的总体均值,设两总体均为正态总体且方差已知,分别 为21σ和22σ,现分别从两总体中抽取样本112,,,n X X X 和212,,,n Y Y Y 且两样本独 %0.100.300.400.550.700.800.951518192122.623.8 26 碳含量 x ()电阻 y 1234567 36232931346025星期次数

数理统计复习题,

数理统计复习题 一、名词解释: 1. 简单随机样本 2. 无偏估计 3.有效估计 4.相合估计 5. 统计量 6. )(2n χ分布、)(n t 分布、 F 分布的概念及上α分位点概念 7. 回归分析中残差平方和的概念 8.假设检验中p 值的概念 二、填空判断选择: 1.设12,,,n x x x 是正态总体),0(2σN 的一个样本,x 和2 S 分别为样本均值和样本方差,则 x ~ ; 22 1 1 ~n i i x σ=∑ ; 2 2 )1(σs n -~ ;2i Ex = (n i ,,2,1 =). 2. 设n x x x ,,,21 是来自)(λπ的一个样本,x 和2 s 分别为样本均值和样本方差,则=)(x D . 3. 设n x x x ,,,21 是正态总体),(2 σμN 的一个样本,x 是样本均值,则 ~n x σ μ - . 4. 设n x x x ,,,21 是来自 )(2n χ分布的一个样本,x 和2s 分别为样本均值和样本方差,则 =)(x D ;)(x E = . 5. 已知随机变量)(~),(~ 2212n V n U χχ,且两随机变量相互独立,则 ~2 1 n V n U . 6. 设1021,,,x x x 是来自参数为p 的0—1分布的一个样本,x 为样本均值,则=)(x D ; )(x E = . 7. 设1X ,n X ,,X 2 是来自标准正态分布01(,)N 的一个简单随机样本,则∑== n i i x Y 1 2~ 分布 . 8.设总体~()X πλ,12,,,n X X X 来自X 的样本,则1 ~n i i X =∑ 。 9. 设n X X X ,,,21 是来自)10(2 χ分布总体的一个样本,则统计量Y = ∑=10 1 i i X 服从 分布. 10.设n x x x ,,,21 是正态总体),(2 σμN 的一个简单随机样本,则 )(1i i x x E -= (n i ,,2,1 =). 11. 在点估计中,常用来评价估计量的三个标准为 、 、 12. 检验总体是否为正态分布的方法有哪些(填两种即可) 、 . 13. 设n X X X ,,,21 是来自总体X 的一个样本,已知)(~λP X ,则 )0(=X P 的最大似然估计

广西大学数理统计试卷2004-2005

广西大学研究生课程考试试卷 2004 --- 2005 学年度第二学期 课程名称:数理统计试卷类型:A 卷 命题教师签名:院长(系主任)签名: 注:考试过程不允许将试卷拆开! 一、填空题(本大题共6小题,每小题3分,共18分) 1、假设子样 9 2 1 , , ,X X X 来自正态母体) 81 .0, (μ N,测得样本均值5 = x, 则μ的置信度是95 .0的置信区间为。(96 .1 025 .0 = u) 2、假设子样 n X X X, , , 2 1 来自正态母体) , (2 σ μ N,μ与2σ未知,计算得75 . 14 16 116 1 = ∑ =i i X,则原假设 H:15 = μ的t检验选用的统计量为。3、 某产品以往废品率为5%,今抽取一个子样检验这批产品废品率是否低于5%, 此问题的原假设为。 6、设 n X X X , , 2 1 为母体X的一个子样,如果) , , ( 2 1n X X X g ,则称) , , ( 2 1n X X X g 为统计量。

二、选择题(本大题共6小题,每小题2分,共12分) 1、母体均值的区间估计中,正确的是 ( ① ) ① 置信度α-1一定时,样本容量增加,则置信区间长度变短 ② 置信度α-1一定时,样本容量增加,则置信区间长度变长 ③ 置信度α-1增大,则置信区间长度变短 ④ 置信度α-1减少,则置信区间长度变短 2、对于给定的正数α,10<<α,设αz 是标准正态分布的α上侧分位数,则有( ④ ) ① αα-=<1)(2 u U P ② αα=<)|(|2 u U P ③ αα-=>1)(2 u U P ④ αα=>)|(|2 u U P 3、设n x x x ,,,21 为来自),(~2 σμN X 的子样观察值,2 ,σμ未知,∑==n i i x n x 1 1 则2 σ的矩估计值为 ( ② ) ① ∑=-n i i x x n 12)(1② ∑=-n i i x x n 1)(1 ③ ∑=--n i i x x n 12)(11 ④∑=--n i i x x n 1 )(11 4、在假设检验中,记0H 为原假设,则犯第二类错误是( ③) ① 0H 成立而接受0H ② 0H 成立而拒绝0H ③ 0H 不成立而接受0H ④ 0H 不成立而拒绝0H 5、假设母体X 的数学期望μ的置信度是95.0,置信区间上下限分别为样本函数 ),(1n X X b 与 ),,(1n X X a ,则该区间的意义是( ① ) ① 95.0)(=<

最新研究生《应用数理统计基础》庄楚强-何春雄编制---课后答案

研究生 习题2: 2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2 χ分布。 2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η 所以 )1,0(~3 1 N η , )1,0(~3 2 N η )2(~)(3 1332 22212 22 1χηηηη+=??? ??+??? ?? 由于 2 22 1ηηη+= 因此 当 3 1=c 时,)2(~2 χηc 。 2-8. 设 ),,,(1021ξξξΛ为)3.0,0(2 N 的一个样本,求 ? ?? ???>∑=101244.1i i P ξ 。(参考数据:) 2-8解:因为 )3.0,0(~),,,(2 1021N ξξξξΛ=, 所以 )1,0(~3 .0N ξ , 即有)10(~3.0210 12 χξ∑=?? ? ??i i 所以 ??? ???>∑=101244.1i i P ξ??????>=∑=1012223.044.13.0i i P ξ??????>=∑=10122163.0i i P ξ ? ?? ???≤-=∑=10122163.01i i P ξ1.09.01=-= 2-14. 设总体)4,1(~N ξ,求{}20≤≤ξP 与{} 20≤≤ξP ,其中ξ是样本容量为16的样 本均值。(参考数据:)

2-14解: {}20≤≤ξP )0()2(F F -=)210()212( -Φ--Φ=)2 1 ()21(-Φ-Φ= 1)2 1 (2-Φ=3830.016915.02=-?= 由于 )4,1(~N ξ , 所以 )1,0(~21 1 16 21N -=-ξξ {} 20≤≤ξP ????? ?-≤-≤-=21122112110ξP ? ?? ???≤-≤-=22112ξP )2()2(-Φ-Φ=9545.019725.021)2(2=-?=-Φ= 2-17. 在总体)20,80(2 N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的 绝对值大于3的概率是多少?(参考数据:) 2-17解:因为 )20,80(~2 N ξ, 所以 )1,0(~2 80 100 20 80 N -= -ξξ 所以 {}380>-ξP {} 3801≤--=ξP ?? ? ?????? ?≤--=232801ξP ? ?? ???≤ -≤--=23280 231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-= 2-25. 设总体ξ的密度函数为 ?? ?<<=其它 102)(x x x p 取出容量为4的样本),,,(4321ξξξξ,求: (1) 顺序统计量)3(ξ的密度函数)(3x p ;(2))3(ξ的分布函数)(3x F ;(3)??? ? ??>21)3(ξP 。 2-25解:(1)由 ()()[][])()(1)(! !1! )(1)(x p x F x F k n k n x p k n k k -----= ξ 所以 当 10<

西南交通大学研究生数理统计与多元统计考试 试题答案

西南交通大学研究生2016-2017 学年第(1)学期考试试卷答案 课程代码 课程名称 数理统计与多元统计 考试时间 150分钟 1、设总体X (0,1)N :,12n ,,,X X X L 是来自正态的简单随机样本,其中 ξ= ,3 2 1 2 4 1)3i i n i i n X X η==-=∑∑(试推断统计量ξ和η的分布。 解: = (1) X t n ξ= -:(5分) 3 23 2 1 1 224 4 1)33 (3-3)-3i i i i n n i i i i X n X F n X X n ====-= ~∑∑∑∑(,() (5分) 2、设某种元件的使用寿命X 的概率密度为 () 1(;)0x e x f x x μθμθθ μ --?≥?=??>,为未知参数,又设12,,,n x x x L 是X 的一组样本观测值,(1)试求参数,μθ的极大似然估计量;(2) 试求参数,μθ的矩估计量. 解: 1 121 () 1(,,,)1 (,,), n i i n n x i i n i L X X X f x e x μθ θμθμμ θ =- -=∑== >∏L 极大似然函数为:(2分) 121 1 ln (,,,)ln (), n n i i i L X X X n x x θμθμμθ ==-- ->∑L (1分) 21ln (,)1(), n i i i L n x x μθμμθθθ=?-=+->?∑(2分)

ln (,)0, i L n x θμμμθ ?=>>?(2分) 12(1)(2)(),,...,:...n x x x x x x ≤≤≤的顺序统计值为 (1)1?min i i n X X μ ≤≤==,()X θ∧ 1=X-,(2分) 1 ()x u EX xf x dx xe dx μ θ θμθ -- +∞ +∞ -∞ ===+? ? (2分) 2 2 2 21 ()2() x u EX x f x dx x e dx μ θ θ μθθμ-- +∞ +∞ -∞ ===++? ? (2分) 1222121211212()??n i i X X n X θθθθθθθθ=?+=? ?++=???=??? ?=?? ∑解方程得矩估计为: -(2 分) 3.抛一枚硬币,设正面向上的概率为θ,提出如下假设: 011 3::2 4 H H θθ= = 如果检验规则为:将该硬币抛掷5次,若正面向上的次数多余3次,则拒绝0H 。 (1)求该检验犯第一类错误的概率。(2)求该检验犯第二类错误的概率。 (3)在硬币抛掷次数不变的情况下,为使检验的显著性水平0.05α=,应如何修改检验规则。 解: (1)44 55 516(3|)=C (1)22 P X θθθθ>=-+= (2)5114 5223332553(3|)=(1)C (1) 4C (1)C (1) P X θθθθθθθθ≤=-+--+- 1144455513(|)=C (1)C (1)0.052 m m m P X m θθθθθθ++->=-+-+=L ()

(研究生 数理统计)多元线性回归及显著性检验Matlab程序(完美版).doc

多元线性回归及显著性检验Matlab程序(完美版) 一、说明: 1、本程序是研究生教材《数理统计》(杨虎、刘琼、钟波编著)例4.4.1(P133)的Matlab 编程解答程序。教材上的例题只做了回归方程显著性分析和一次回归系数显著性分析(剔除x1后没有再检验x2和x3)。 2、本程序在以上的基础之上,还分别检验了x2和x3,并且计算精度更高。 3、本程序可根据用户的需要,在输入不同的显著性水平α之下得到相应的解答。 4、本程序移植性强,对于其他数据,只需要改变excel中的数据即可。 5、本程序输出的可读性强,整洁美观。 二、数据入下(将数据存入excel表格,文件名为jc_p133_example.xls。注意数据是按x1, ):

三、完整程序如下: %----------------------------by ggihhimm---------------------------- %《数理统计》杨虎、刘琼、钟波编著例4.4.1 多元线性回归及显著性检验完整解答 % 输入需要的显著水平α(默认α=0.02),计算出不同结果(见运行结果) % 该程序也适合其他维数的数据分析(只需改变excel表格中的数据即可) %----------------------------by ggihhimm---------------------------- clear;clc; data=xlsread('jc_p133_example.xls','sheet1'); xi=data(:,1:end-1); [n,k]=size(data); k=k-1; index_of_xi_array=ones(1,k); X=[ones(n,1) xi]; Y=data(:,end); fprintf('第1次计算结果:\r') beta_mao=((X'*X)\X'*Y)'; fmt_str0=''; for i0=1:k+1 fmt_str0=[fmt_str0 'β' num2str(i0-1) ' = %0.4f\r']; end fprintf(fmt_str0,beta_mao) fprintf('\r')

相关文档
最新文档