初三数学总复习基础班练习卷5
初三数学总复习资料_分专题试题及答案(90页)[2]
![初三数学总复习资料_分专题试题及答案(90页)[2]](https://img.taocdn.com/s3/m/be1d343b6f1aff00bed51eea.png)
初三数学总复习资料_分专题试题及答案(90页)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学总复习资料_分专题试题及答案(90页)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学总复习资料_分专题试题及答案(90页)(word版可编辑修改)的全部内容。
《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________.3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解.无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
初三数学总复习训练题(二次不定方程的整数解)-含提示

二次不定方程的整数解训练题一. 填空:班级:初三(五)学生:◇李○坤□奇1. 方程x2-y2=12的整数解有______组.[提示:因为x与y均为整数,所以x+y与x-y同为奇数或偶数,故只需把12分解为两个奇数的积以及两个偶数的积,这样的分解有多少组,原方程就有多少组整数解]2. 方程(x-1)2+y2=100的整数解有______组.[提示:(±6)2+(±8)2=102,(±8)2+(±6)2=102,所以原方程可以变为多少个二元一次方程组,原方程就有多少组整数解]3. 若关于x的方程(x-a)(x-8)=1有两个整数根,则整数a的值是______.[提示: 1=1×1=(-1)×(-1),所以原方程可以变为?个二元一次方程组]4. 方程-=的正整数解是:[提示: 去分母后用因式分解法将原方程变为两个一次式的积等于一个整数的形式]5. 方程2xy+5x-y=995的正整数解是:[提示: 先把2xy的系数变为完全平方数,再用因式分解法变为( )( )=(一个整数)的形式]6. 已知自然数n使得n2-19n+91的值是完全平方数,则n的值是___.[提示: 设n2-19n+91=k2,(k为整数),再用配方法逐步变为( )2-( )2=(一个整数)的形式,进一步分解左边]7. 已知关于x的一元二次方程[(k+1)x-6](kx-4)=0 (k为整数).(1) 要使方程至少有一个正整数根, k的值是________.(2) 要使方程有两个正整数根, k的值是__________.(3) 要使方程有两个不相同的正整数根, k的值是_____.[提示: 先求出两个根x1和x2的表达式,再用约数分析法求出k的整数值]8. 已知关于x的方程x2+mx-m+1=0(m为整数)有两个不同的正整数根,则m的值为_____.[提示: 先用韦达定理列出不定方程组,再消去参数m,进一步变为( )( )=(一个整数) 的形式]9. 设k为自然数,且关于x的方程(k-1)x2-px+k=0有两个正整数根,则k+p的值为_____.10. 设m、n为整数,且关于x的方程x2+mx+2-n=0的两个整数根x1、x2满足(x12+1)(x22+1)=10,则m、n共有______组不同的值.二.解下列各题:(10分×7=70分)1.求方程组的正整数解.[提示:用因式分解法.因为23是质数,故先分解方程②的两边]2.求方程2x2-4xy+y4+1=0的整数解.[提示:用判别式法.把方程看成关于x的一元二次方程,再由判别式Δ≥0解出y的整数值]3.已知关于x的方程x2+(m-6)x+m=0的两根均为整数,求实数m的值.[提示:“两根均为整数,且由韦达定理列出的不定方程组容易消去(或求出)参数”,这类题均可用韦达定理来解]4.当a取何正整数时,关于x的方程a2x2-(3a2-8a)x+2a2-13a+15=0的两个根:(1)至少有一个是整数? (2)两根均为整数?[提示:若“判别式Δ是完全平方式”,这类题均可用求根法:先用因式分解法或公式法求出两根x1和x2的表达式并分离整数,再用约数分析法求出参数]5.已知关于x的方程x2-(m+1)x+m2-m=0 (m为整数)的两根均为整数,求m的值.[提示:“判别式Δ不是完全平方式”,这类题有两种解法:①由Δ≥0解出参数的整数值, 再代入原方程检验参数的值能否使两根均为整数.②设Δ=k2 (k为非负整数),再用因式分解法或求根法解之]6.设n为整数,且关于x的方程nx2-(n-1)x+1=0有有理根,求n的值.[提示:分两种情况.当n≠0时,设Δ=k2(k为整数),再用因式分解法求出n]7.已知关于x的方程mx2-(6-2m)x+m-2=0(m为整数)至少有一个整数根,求m的值. [提示:分两种情况.当m≠0时,先用公式法求出根,再设被开方数=k2(k为…)]。
初三数学中考复习 实数的大小比较和运算 专题练习题 含答案

2019 初三数学中考复习实数的大小比较和运算专题练习题1. 下列四个数中,最大的数是( )A.3 B. 3 C.0 D.π2.|6-3|+|2-6|的值为( )A.5 B.5-2 6 C.1 D.26-13. 下列说法中正确的是( )A.实数-a2是负数 B.a2=|a|C.|-a|一定是正数 D.实数-a的绝对值是a4. 下列实数中最大的数是( )A.3 B.0 C. 2 D.-45. 比较三个数-3,-π,-10的大小,下列结论正确的是( ) A.-π>-3>-10 B.-10>-π>-3C.-10>-3>-π D.-3>-π>-106. 3-11的相反数是___________.7. 估计5-12与0.5的大小关系是:5-12_______0.5.(填“>”“=”或“<”)8. 若|a|=|-5|,则a=____________9. 若|a+1|=5,则a=_______________________10. 实数a在数轴上的位置如图,则|a-3|=__________11. 大于-18而小于13的所有整数的和为____.12. 已知实数a,b在数轴上的对应点的位置如图所示,则a+b____0.(填“>”“<”或“=”)13. 求下列各式中的x:(1)|-x|=5-1; (2)|3-x|= 2.14. 计算:25+3-8-(3)2+2215. 观察例题:∵4<7<9,即2<7<3,∴7的整数部分为2,小数部分为7-2.请你观察上述规律后解决下面的问题:(1)规定用符号[m]表示实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[10+1]的值为____;(2)如果3的小数部分为a ,5的小数部分为b ,求3·a+5·b-8的值. 参考答案:1---5 DCBAD 6. 11-37. >8. ±5 9. 5-1或-5-1 10. 3-a11. -412. >13. (1) 解:x =5-1或-5+1.(2) 解:x =3+2或3- 2.14. 解:原式=5-2-3+2=2.15. (1) 4(2) 解:∵1<3<4,即1<3<2,∴3的整数部分为1,小数部分为a =3-1.∵4<5<9,即2<5<3,∴5的整数部分为2,小数部分为b =5-2,∴3·a+5·b-8=3(3-1)+5(5-2)-8=3-3+5-25-8=-3-2 5.。
2019年中考数学总复习《三角形内角和定理》专题复习练习及答案

2019 初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠13. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF =____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC中,∠A∶∠B=2∶1,∠C=60°,则∠A=____°.17. 如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD11. 3512. 60°13. 4514. 30°15. 360°16. 8017. 解:在△ABN中,∠A+∠B+∠1=180°,在△CDP中,∠C+∠D+∠3=180°,在△EFM中,∠E +∠F+∠2=180°,∴∠A+∠B+∠1+∠C+∠D+∠E+∠F+∠3+∠2=540°,在△MNP中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD=90°-∠FED=90°-(∠B+∠BAE)=90°-∠B-12∠BAC=90°-∠B-12(180°-∠B-∠C)=90°-∠B-90°+12∠B+12∠C=12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD=12(∠C-∠B)20. 证明:∵∠BAC>∠ACE,∠DCE>∠B,又∠ACE=∠DCE,∴∠BAC>∠B21. 证明:∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A2019-2020学年数学中考模拟试卷一、选择题1.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a .如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x 2+1,﹣x}的最大值是( )C.1D.02.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272-3.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为( )A. B. C. D.4.下列各因式分解正确的是( ) A .x 2+2x ﹣1=(x ﹣1)2 B .﹣x 2+(﹣2)2=(x ﹣2)(x+2) C .x 3﹣4x =x (x+2)(x ﹣2)D .(x+1)2=x 2+2x+15.合肥市教育教学研究室为了了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A 等,130分:150分;B 等,110分:129分;C 等,90分:109分;D 等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):2019年合肥市一模数学成绩频数分布表2019年合肥市一模教学成绩频数分布直方图根据图表中的信息,下列说法不正确的是( ) A .这次抽查了20名学生参加一模考试的数学成绩 B .这次一模考试中,考试数学成绩为B 等次的频率为0.4C .根据频数分布直方图制作的扇形统计图中等次C 所占的圆心角为105︒D .若全市有20000名学生参加中考一模考试,则估计数学成绩达到B 等次及以上的人数有12000人 6.把一副三角板按如图所示摆放,使FD BC ∕∕,点E 恰好落在CB 的延长线上,则BDE ∠的大小为( )A .10︒B .15︒C .25︒D .30°7.已知一次函数y =kx ﹣1和反比例函数y =kx,则这两个函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.等腰三角形的周长为16,其一边长为6,那么它的底边长为( ) A.4或6B.4C.6D.59.甲、乙、丙三个人玩一种游戏,每玩一局都会将三人随机分成两组.积分方法举例说明:第一局甲、乙胜出,分别获得3分,丙获得﹣6分;第二局甲胜出获得12分,乙、丙分别获得﹣6分,两局之后的积分是:甲15分,乙﹣3分,丙﹣12.如表是三人的逐局积分统计表,计分错误开始于( )A .第三局B .第四局C .第五局D .第六局10.如图,下图经过折叠不能围成一个正方体是( )A .B .C .D .11.如图,在△ABC 中,∠B =50°,点D 为边AB 的中点,点E 在边AC 上,将△ADE 沿DE 折叠,使得点A 恰好落在BC 的延长线上的点F 处,DF 与AC 交于点O ,连结CD ,则下列结论一定正确的是( )A .CE =EFB .∠BDF =90°C .△EOD 和△COF 的面积相等D .∠BDC =∠CEF+∠A12.若一个多边形的内角和等于1620°,则这个多边形的边数为( ) A .9 B .10C .11D .12二、填空题13.把多项式33327a b ab 分解因式的结果是_____.14.如图,在平面直角坐标系中,点A (0,3),将△AOB 沿x 轴向右平移得到△A'O'B',与点A 对应的点A'恰好在直线y =32x 上,则BB'=_____.15.已知x 满足(x+3)3=64,则x 等于_____. 16.写出一个比5大且比6小的无理数________.17.若直线232y x b =-++经过第一、二、四象限,则b 的取值范围是_____.18.小明有5根小棒,长度分别为3cm ,4cm ,5cm ,6cm ,7cm ,现从中任选3根小棒,怡好能搭成三角形的概率是______ 三、解答题19.如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交弧AC 于点D ,过点D 作⊙O 的切线,交BA 的延长线于点E . (1)求证:AC ∥DE ; (2)连接AD 、CD 、OC .填空①当∠OAC 的度数为 时,四边形AOCD 为菱形; ②当OA =AE =2时,四边形ACDE 的面积为 .20.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).21.如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC . (1)求证:四边形ABCD 是菱形;(2)过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.22.如图,二次函数图象的顶点为(﹣1,1),且与反比例函数的图象交于点A (﹣3,﹣3) (1)求二次函数与反比例函数的解析式;(2)判断原点(0,0)是否在二次函数的图象上,并说明理由;(3)根据图象直接写出二次函数的值小于反比例函数的值时自变量x 的取值范围.23.计算:14011(2018)|12sin 602π-︒⎛⎫-+---+- ⎪⎝⎭24.为弘扬“绿水青山就是金山银山”精神,某地区鼓励农户利用荒坡种植果树,某农户考察三种不同的果树苗A 、B 、C ,经引种试验后发现,引种树苗A 的自然成活率为0.8,引种树苗B 、C 的自然成活率均为0.9.(1)若引种树苗A 、B 、C 各10棵. ①估计自然成活的总棵数;②利用①的估计结论,从没有自然成活的树苗中随机抽取两棵,求抽到的两棵都是树苗A 的概率: (2)该农户决定引种B 种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B 种树苗多少棵?25.如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E. F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=2,BF=2,求⊙O 的半径.【参考答案】*** 一、选择题二、填空题13.3ab (a+3b )(a ﹣3b ). 14.2 15.16 17.23b >-; 18.35.三、解答题19.(1)证明见解析;(2)①30°;②【解析】【分析】(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得21222AO OF AFOE OD DE====+,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.【详解】(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∴△AFO∽△EDO∴21222 AO OF AFOE OD DE====+∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE=∴S四边形ACDE=DE×DF1==故答案为:【点睛】本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.(1)3;(2)﹣x+4.【解析】【分析】(1)先化简二次根式、负整数指数幂、代入三角函数值及零指数幂,再先后计算乘法和加减运算即可;(2)先计算完全平方式和单项式乘多项式的积,再合并同类项即可得.【详解】(1)原式=+2﹣4×2+1=+2﹣=3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.【点睛】本题主要考查实数和整式的混合运算,解题的关键是熟练掌握实数和整式的混合运算顺序和运算法则.21.(1)详见解析;(2)26.【解析】【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB =∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.(1)y=﹣(x+1)2+1,9yx=;(2)原点(0,0)是在二次函数的图象上;(3)当x<﹣3或x>0时二次函数的值小于反比例函数的值.【解析】(1)设二次函数为y=a(x+1)2+1,设反比例函数的解析式为y=kx,把A点的坐标代入,关键待定系数法即可求得;(2)把x=0代入求得的二次函数的解析式即可判断;(3)由两函数的图象直接写出x的取值范围即可.【详解】解:(1)设二次函数为y=a(x+1)2+1,∵经过点A(﹣3,﹣3)∴﹣3=4a+1,∴a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+1,设反比例函数的解析式为y=kx,∵二次函数的图象与反比例函数的图象交于点A(﹣3,﹣3)∴k=﹣3×(﹣3)=9,∴反比例函数的解析式为y=9x;(2)把x=0代入y=﹣(x+1)2+1,得y=﹣1+1=0,∴原点(0,0)是在二次函数的图象上;(3)由图象可知,二次函数与反比例函数图象的交点为A(﹣3,﹣3),当x<﹣3或x>0时二次函数的值小于反比例函数的值.【点睛】本题是一道函数的综合试题,考查了待定系数法求反比例函数的解析式和求二次函数的解析式,由图象特征确定自变量的取值范围.23.1【解析】【分析】直接利用零指数幂、负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.【详解】解:原式=11(2)122-+---⨯=﹣﹣1=1.【点睛】此题主要考查了实数运算,正确应用整数指数幂和绝对值的性质化简各数是解题关键.24.(1)①自然成活的有26棵;②16;(2)至少引种B种树苗700棵.【解析】(1)①根据成活率求得答案即可;②列出树状图,利用概率公式求解即可;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96x,未能成活棵数为0.04x,利用农户为了获利不低于20万元列出不等式求解即可.【详解】解:(1)①10×0.8+10×0.9+10×0.9=26(棵),答:自然成活的有26棵;②在这12种情况下,抽到的2棵均为树苗A的有2种,∴P=16;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96 x,未能成活棵数为0.04 x 300(0.96 x)﹣50(0.04x)≥200000x≥100000143=69943143∴x=700棵答:该户至少引种B种树苗700棵.【点睛】本题考查了利用频率估计概率及列表法求概率的知识,解题的关键是能够正确的通过列树状图将所有等可能的结果列举出来,难度不大.25.(1)相切,理由见解析;(2)2.【解析】【分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+2) =(2)+R,解得:R=2,即⊙O的半径是2.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.2019-2020学年数学中考模拟试卷一、选择题1.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.122.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×1073.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°4.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n.则11m n+的值为()A.35B.35-C.53D.53-5.如图,在△ABC中,BD、CE是高,点G、F分别是BC、DE的中点,则下列结论中错误的是()A.GE=GD B.GF⊥DE C.∠DGE=60°D.GF平分∠DGE6.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④B.①③C.①②D.③④7.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()8.下列四个数中,最大的数是( )A .-5BC .0D .π91导致乘积减小最大?( )A B C D10.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A.πB.32π C.6﹣ππ11.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种( ) A .2B .3C .4D .512.下列计算结果为a 2的是( ) A .a 8÷a 4(a≠0) B .a 2•a C .﹣3a 2+(﹣2a )2D .a 4﹣a 2二、填空题13.已知关于x 的一元二次方程x 2﹣x+m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是_____. 14.如图,在.△ABC 中,各边的长度如图所示,∠C=90°,AD 平分∠CAB 交BC 于点D ,则点D 到AB 的距离是__.15.如图,AD 是△ABC 的中线,点E 在边AB 上,且DE ⊥AD ,将△BDE 绕着点D 旋转,使得点B 与点C 重合,点E 落在点F 处,联结AF 交BC 于点G ,如果52AE BE =,那么GFAB的值等于______.16.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为_____.17.中国高铁被誉为“新四大发明”,截止2018年底中国高速铁路营业里程已达29000公里,请将29000用科学记数法表示为_____.18.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_____个.三、解答题19.如图,在平面直角坐标系中,直线l :y =﹣12与y 轴、x 轴分别交于点E 、F ,边长为2的等边△ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移,在平移过程中,得到△A 1B 1C 1,当点B 1与原点重合时,解答下列问题: (1)写出点E 、F 坐标;(2)求出点A 1的坐标,并判断点A 1是否在直线l 上;(3)如果点A 1在直线l 上,此问不作答,如果点A 1不在直线l 上,继续平移△ABC ,直到点A 的对应点A 2落在直线l 上这时点A 2横坐标为多少?20.现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩.(1)用x 的式子分别表示y、z ;(2)问如何安排劳力与养殖亩数收益最大?21.先化简,再求值:22211211x x x x x x ⎛⎫-÷-+ ⎪-+-⎝⎭,其中1x =.221tan 602|︒-+-.23.有四张完全一样的卡片,在正面分別写上2、3、4、6四个数字后洗匀,反面朝上放在桌上.小明从中先后任意抽取两张卡片,然后把先抽到的卡片上的数字作为十位数,后抽到的卡片上的数字作为个位数,组成一个两位数.求这个两位数恰好能被4整除的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.红星公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的日销售量y 1(件)与时间t (天)的关系如图所示;未来40天内,每天的价格y 2(元/件)与时间t (天)的函数关系式为:y 2=1t 25(1t 20)41t 40(21t 40)2⎧+⎪⎪⎨⎪-+⎪⎩剟剟(t 为整数);(1)求日销售量y 1(件)与时间t (天)的函数关系式;(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件商品就捐赠a 元(a 为定值)利润给希望工程.公司通过销售记录发现,前20天中,第18天的时候,扣除捐赠后日销售利润为这20天中的最大值,求a 的值.25.为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:“中位数”,“众数”或“平均数”)(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【参考答案】*** 一、选择题二、填空题 13.m <54. 14.3 15.106316.3 2 17.18.1 三、解答题19.(1) 点E 的坐标为:(0,,点F 的坐标为:(0),(2) 点A 1的坐标为:(1,点A 1不在直线l 上;(3)点A 2横坐标为 【解析】 【分析】(1)把x =0,y =0分别代入y =﹣12x +E,F 的坐标(2)先根据点A 1的横坐标为1,纵坐标为:2sin60°=2×求出A1的坐标,然后A1的坐标y=﹣12x +(3)根据前面两题把把y y =﹣12x + 【详解】解:(1)把x =0代入y =﹣12x +得:y =,把y =0代入﹣12x +﹣12x +0,解得:x =,即点F 的坐标为:(0),(2)根据题意得:点A 1的横坐标为1,即点A 1的坐标为:(1,把x =1代入y =﹣12x +y =12即点A 1不在直线l 上,(3)把y 代入y =﹣12x +﹣12x +,解得:x =,这时点A 2横坐标为【点睛】此题为一次函数的综合题,要运用到三角形函数来解答20.(1)y =140﹣2x ,z =x ﹣40.(2)对虾400亩,大黄鱼600亩,蛏子0亩;养植对虾的劳动力是12人,养殖大黄鱼的劳动力是12人,养殖蛏子的劳动力是0人.【解析】【分析】(1)本题考查对方程组的应用能力,要注意由题中提炼出的两个等量关系,即所需劳动力的总和是24、所养殖的总亩数是1000,据此可列方程组解应用题;(2)设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩的收益为T ,则T=2x+8y+1.6z ,再根据实际问题,求出定义域,然后,由函数的单调性来求值即可.【详解】解:(1)根据题意,得1010101000(1)0.30.20.124(2)x y z x y z ++=⎧⎨++=⎩解得,140240y x z x =-⎧⎨=-⎩∴y =140﹣2x ,z =x ﹣40.(2)设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩的收益为T ,则T =2x+8y+1.6z ①由(1)解得,140240y x z x =-⎧⎨=-⎩将其代入①并整理,得T =﹣12.4x+1056,∵0<10x≤1000,即0<x≤100,又∵01000100y z <⎧⎨<⎩……即01402100040100x x <-⎧⎨<-⎩…… 解得40≤x≤70,∵函数T =﹣12.4x+1056在[40,70]上是减函数,∴当x =40时,T 最大,∴y =140﹣2×40=60,z =40﹣40=0,10x =400,10y =600,10z =0,21.2. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2221(1)121x x x x x x -÷-+--+, =2221(1)(1)(1)1x x x x x x ----÷-- =222211(1)21x x x x x x --⋅--+- =211121x x x -⋅-- =11x -,当1x === 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.12【解析】【分析】根据负整数指数幂和12 【详解】原式=+12 =12. 【点睛】本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算.也考查了负整数指数幂以及特殊角的三角函数值.23.这个两位数恰好能被4整除的概率为13. 【解析】【分析】将可能出现的情况全部列举出来,一共12种可能,其中符合条件的只有4种可能即可求解【详解】画树状图如下:由树状图知共有12种等可能结果,其中这个两位数恰好能被4整除的有4种结果,所以这个两位数恰好能被4整除的概率为41123=. 【点睛】此题考查了列表法或树状图法求概率24.(1)y =﹣2t+96;(2)第14天时,销售利润最大,为578元;(3)a =2.【解析】【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值.【详解】解:(1)设一次函数为y =kt+b ,将(30,36)和(10,76)代入一次函数y =kt+b 中,有36307610k b k b=+⎧⎨=+⎩ 解得:.296k b =-⎧⎨=⎩故所求函数解析式为y =﹣2t+96;(2)设前20天日销售利润为W1元,后20天日销售利润为W2元.由W1=(﹣2t+96)(14t+25﹣20)=(﹣2t+96)(14t+5)=﹣12t2+14t+480=﹣12(t﹣14)2+578,∵1≤t≤20,∴当t=14时,W1有最大值578(元).由W2=(﹣2t+96)(﹣12t+40﹣20)=(﹣2t+96)(﹣12t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数W2在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴当t=21时,W2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)由题意得:W=(﹣2t+96)(14t+25﹣20﹣a)(1≤t≤20),配方得:W=﹣12[t﹣2(a+7)]2+2(a﹣17)2(1≤t≤20)∵a为定值,而t=18时,W最大,∴2(a+7)=18,解得:a=2【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.25.(1)10、10、11;(2)中位数和众数;(3)2200次【解析】【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是10102+=10(次),众数为10次,平均数为015110415320110⨯+⨯+⨯+⨯+⨯=11(次),故答案为:10、10、11;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为200×11=2200次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.。
初三数学练习试卷(共有12套,含答案)

初三数学练习(1)姓名时间1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是 .2、一组数据3、-1、0、2、X的极差是5,且x为自然数,则x= .3、下列几个常见统计量中能够反映一组数据波动范围的是()A.平均数B.中位数C.众数D.极差4、一组数据x1、x2…xn的极差是8,则另一组数据2x1+1、2x2+1…,2xn+1的极差是()A. 8B.16C.9D.175、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是。
6、右图是一组数据的折线统计图,这组数据的极差是,平均数是.7、某地今年1月1日至4日每天的最高气温与最低气温如下表:A. 1月1日B. 1月2日C. 1月3日D. 1月4日7、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)90、95、87、92、63、54、82、76、55、100、45、80计算这组数据的极差,这个极差说明什么问题?8、公园有两条石级路,第一条石级路的高度分别是(单位:cm):15,16,16,14,15,14;第二条石级路的高度分别是11,15,17,18,19,10,哪条路走起来更舒服?9、若1,2,3,X的平均数是5;1,2,3,X,Y的平均数是6,试求数组1,2,3,X,Y的极差。
复习练习1、如果(m +3)x 2-mx +1=0是一元二次方程,则 ( ) A .m ≠-3 B .m ≠3 C .m ≠0 D .m ≠-3且m ≠02、写出一个以-2和1为根的一元二次方程是 .3、已知关于x 的一元二次方程(m -3)x 2+4x +m 2-9=0有一个根为0,则m =_________.4、已知(x 2+y 2+1) (x 2+y 2-3)=5,则x 2+y 2= .5、已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2+ 2cx + (a + b )=0的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6、已知a 、b 是方程x 2-2x -1=0的两个根,则a 2+a +3b 的值是 。
初三数学总复习-超难度题库训练(含标准答案)

练习一1.已知BC 是半径为2cm 的圆内的一条弦,点A 为圆上除点B C ,外任意一点,若BC =,则BAC ∠的度数为 .2.若a b ,均为整数,当1x =时,代数式2x ax b ++的值为0,则b a 的算术平方根 为 . 3.如图(1),在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,则DE DF += .4.如图(2),某小区有东西方向的街道3条,南北方向的街道4条,从位置A 出发沿街道行进到达位置B ,要求路程最短,研究共有多少种不同的走法.小东是这样想的:要使路程最短,就不能走“回头路”,只能分五步来完成,其中三步向右行进,两步向上行进,如果用用数字“1”表示向右行进,数字“2”表示向上行进,那么“11221”与“11212”就表示两种符合要求的不同走法,请你思考后回答:符合要求的不同走法共有 种. 5.(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是 ;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = ; (2)如果欲求232013333+++++的值,可令232013333S =+++++……………………………………………………①将①式两边同乘以3,得………………………………………………………② 由②减去①式,得S = .(3)用由特殊到一般的方法知:若数列123n a a a a ,,,,,从第二项开始每一项与前一项之比的常数为q ,则n a = (用含1a q n ,,的代数式表示),如果这个常数1q ≠,那么123n a a a a ++++= (用有含1a q n ,,的代数式表示).练习二1.如图(4),在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.(1)当ECF △的面积与四边形EABF 的面积相等时,求CE 的长; (2)当ECF △的周长与四边形EABF 的周长相等时,求CE 的长;(3)试问在AB 上是否存在点P ,使得EFP △为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF 的长.2.如图(5),已知平行四边形ABCD 的顶点A 的坐标是(016),,AB 平行于x 轴,B C D ,,三点在抛物线2425y x =上,DC 交y 轴于N 点,一条直线OE 与AB 交于E 点,与DC 交于F 点,如果E 点的横坐标为a ,四边形ADFE 的面积为1352. 图(4)CE F ABB 图(2) A 图(1)(1)求出B D ,两点的坐标; (2)求a 的值;(3)作ADN △的内切圆P ,切点分别为M K H ,,,求tan PFM ∠的值.练习三1.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需 元钱. 2.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距3.如图,在34⨯的矩形方格图中,不包含阴影部分的矩形个数是 个. 4.如图,当四边形PABN 的周长最小时,a =.5.如图,ABC △内接于O ,60BAC ∠=,点D 是BC 的中点.BC AB ,边上的高AE CF ,相交于点H . 试证明:(1)FAH CAO ∠=∠; (2)四边形AHDO 是菱形.图(5)(2题图) 1米(3题图)x(4题图)。
2019年中考总复习《尺规作图、视图与投影》专题复习练习及答案
2018初三数学中考总复习尺规作图、视图与投影专题复习练习1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( C )2.(2019·阜新)如图,是一个空心圆柱,它的俯视图是( B )3.图中三视图对应的几何体是( C )4.下列图形中,不可以作为一个正方体的展开图的是( C )5.下列尺规作图,能判断AD是△ABC边上的高是( B )6.某老师在上完视图投影这堂课后,带着同学们来到阳光明媚的操场上.此时老师拿出一个矩形的框子问同学们地面上会出现什么图形,下面的图形不会出现的是( A )A.梯形 B.正方形 C.线段 D.平行四边形7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变8. 一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是( B )A.3个B.4个C.5个D.6个9.写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.10.如图,根据尺规作图所留痕迹,可以求出∠ADC=__70__°.11.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__.12.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是__24__cm 3.13.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成28°角时,测得旗杆AB 在地面上的投影BC 长为25米,则旗杆AB 的高度是__13.3__米.(结果精确到0.1)14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是__7__个.13.如图,已知线段a 及∠O ,只用直尺和圆规,求作△ABC ,使BC =a ,∠B=∠O ,∠C=2∠B.(在指定作图区域作图,保留作图痕迹,不写作法)解:如图所示∶14.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示(2)∵DG∥AC,∴∠G =∠C ,∴Rt △ABC ∽Rt △DGE ,∴AB DE =BC EG ,即1.6DE =2.416,解得DE =323,∴旗杆的高度为323m15. 如图,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC =3,∠A=30°,求DE ︵的长.解:(1)如图, ⊙C 为所求(2)∵⊙C 切AB 于D, ∴CD⊥AB,∴∠ADC=90°, ∴∠DCE=90°-∠A=90°-30°=60°, ∴∠BCD=90°-∠ACD=30°, 在Rt△BCD 中,∵cos∠BCD=CD BC ,∴CD=3cos30°=332,∴DE ︵的长=60·π·332180=32π2019-2020学年数学中考模拟试卷一、选择题1.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()C.1D.02.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2nC.C n H2n﹣2D.C n H n+33.七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.已知如图1所示的“正方形”和如图2所示的“风车型”都是由同一副七巧板拼成的,若图中正方形ABCD的面积为16,则正方形EFGH的面积为()A.22B.24C.26D.284.在数学课上,甲、乙、丙、丁四位同学共同研究二次函数y=x2﹣2x+c(c是常数).甲发现:该函数的图象与x轴的一个交点是(﹣2,0);乙发现:该函数的图象与y轴的交点在(0,﹣4)上方;丙发现:无论x取任何值所得到的y值总能满足c﹣y≤1;丁发现:当﹣1<x<0时,该函数的图象在x轴的下方,当3<x<4时,该函数的图象在x轴的上方.通过老师的最后评判得知这四位同学中只有一位同学发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁5.下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志6.如图,,交于点,,,则的度数为()A. B. C. D.7.如图,平行四边形OABC的顶点O,B在y轴上,顶点A在反比例函数y=﹣5x上,顶点C在反比例函数y=7x上,则平行四边形OABC的面积是( )A.8 B.10 C.12 D.31 28.下列运算正确的是()A. B. C. D.9.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于()A.B.C.D.10.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是()A.0B.C.2+D.2﹣11.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点A为圆心作圆,如果圆A与线段BC没有公共点,那么圆A的半径r的取值范围是( )A .5≥r≥3B .3<r <5C .r =3或r =5D .0<r <3或r >512.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x 斤,每只燕重y 斤,可列方程组为( )A .45561x y y x x y -=+⎧⎨+=⎩B .54561x y y xx y +=+⎧⎨+=⎩C .45561x y y x x y +=+⎧⎨+=⎩D .45561x y y x x y +=+⎧⎨-=⎩二、填空题13.如图,在矩形ABCD 中,AB =3,AD =4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,连接PD ,PG ,则PD+PG 的最小值为_____.14.如图,在四边形ABCD 中,AB//CD ,AC 、BD 相交于点E ,若AB 1CD 4=,则AEAC=______.15.合并同类项:8m 2﹣5m 2﹣6m 2=_____.16.已知抛物线2=2(1)3y x -+-与直线2y kx m =+相交于A (-2,3)、B (3,-1)两点,则12y y ≥时x 的取值范围是___________.17.等边三角形外接圆的面积是4π,则该等边三角形的面积是____. 18.不等式5﹣2x >﹣3的解集是_____. 三、解答题 19.已知直线12y x b =+与x 轴交于点A (﹣4,0),与y 轴交于点B . (1)求b 的值;(2)把△AOB 绕原点O 顺时针旋转90°后,点A 落在y 轴的A′处,点B 若在x 轴的B′处. ①求直线A′B′的函数关系式;②设直线AB 与直线A′B′交于点C ,矩形PQMN 是△AB′C 的内接矩形,其中点P ,Q 在线段AB′上,点M 在线段B′C 上,点N 在线段AC 上.若矩形PQMN 的两条邻边的比为1:2,试求矩形PQMN 的周长. 20.甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1,2,3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1,2,3,4,5,6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜.①请你用画树状图或列表法把两人所得的数字之和的所有结果都列举出来;②这个游戏公平吗?如果公平,请说明理由;如果不公平,请你加以改进,使游戏变得公平.21.如果关于x 的一元二次方程ax 2+bx+c =0有2个实数根,且其中一个实数根是另一个实数根的3倍,则称该方程为“立根方程”.(1)方程x 2﹣4x+3=0 立根方程,方程x 2﹣2x ﹣3=0 立根方程;(请填“是”或“不是”) (2)请证明:当点(m ,n )在反比例函数y 3x=上时,关于x 的一元二次方程mx 2+4x+n =0是立根方程; (3)若方程ax 2+bx+c =0是立根方程,且两点P (3,2)、Q (6,2)均在二次函数y =ax 2+bx+c 上,求方程ax 2+bx+c =0的两个根.22.如图,在平面直角坐标系中,二次函数y =﹣14x 2+bx+c 的图象与y 轴交于点A (0,8),与x 轴交于B 、C 两点,其中点C 的坐标为(4,0).点P (m ,n )为该二次函数在第二象限内图象上的动点,点D 的坐标为(0,4),连接BD .(1)求该二次函数的表达式及点B 的坐标;(2)连接OP ,过点P 作PQ ⊥x 轴于点Q ,当以O 、P 、Q 为顶点的三角形与△OBD 相似时,求m 的值; (3)连接BP ,以BD 、BP 为邻边作▱BDEP ,直线PE 交x 轴于点T .当点E 落在该二次函数图象上时,求点E 的坐标.23.(1)计算:-+;(2)先化简,再求值:211(1)224x x x -+÷--,其中x 1. 24.已知,如图,在△ABC 和△A'B'C'中,AD ,A'D'分别是△ABC 和△A'B'C'的中线,AB =A'B',BC =B'C',AD =A'D'.求证:△ABC ≌△A'B'C'.25.如图,在菱形ABCD 中,取CD 中点O ,以O 为圆心OD 为半径作圆交AD 于E 交BC 的延长线交于点F ,AB=4,BE=5,连结OB (1)求DE的长;(2)求tan∠OBC的值.【参考答案】***一、选择题二、填空题13.3﹣2 .14.1 515.﹣3m216.x≤-2或x≥31718.x<4三、解答题19.(1)b=2;(2)①y=﹣2x+4;②当PN:PQ=1:2时,矩形PQMN的周长为8;当PQ:PN=1:2时,矩形PQMN的周长为6.【解析】【分析】(1)把A(﹣4,0)代入12y x b=+求得b值即可;(2)①先求得B点的坐标为(0,2),根据旋转的性质可得A'(0,4),B'(2,0),再用待定系数法求得直线A'B'的解析式即可;②分PN:PQ=1:2和PQ:PN=1:2求矩形PQMN的周长即可.【详解】解:(1)由题意得把A(﹣4,0)代入12y x b =+,得1402()b⨯-+=,b=2;(2)①由(1)得:122y x=+,令x=0,得y=2,∴B(0,2)由旋转性质可知OA'=OA=4,OB'=OB=2 ∴A'(0,4),B'(2,0)设直线A'B'的解析式为y=ax+b’,把A'、B'分别代入得:420ba b''=⎧⎨+=⎩,解得24ab'=-⎧⎨=⎩∴直线A'B'的解析式为y=﹣2x+4;②∵点N在AC上∴可设N(x,122x+)(﹣4<x<0)∵四边形PQMN为矩形∴NP=MQ=12 2x+(ⅰ)当PN:PQ=1:2时PQ=2PN=12(2)4 2x x+=+∴Q(x+4+x,0)∴M(2x+4,122x+)∵点M在B'C上∴12(24)422x x-++=+解得43 x=-此时,PQ=8 3∴矩形PQMN的周长为:4828 33()+=;(ⅱ)当PN:PQ=2:1时PQ=12PN=111(2)1224x x+=+∴Q(114x x++,0)M(514x+,122x+)∵点M在B'C上∴512(1)4242x x-++=+解得x=0此时PN=2,PQ=1∴矩形PQMN的周长为:2(2+1)=6.综上所述,当PN:PQ=1:2时,矩形PQMN的周长为8.当PQ:PN=1:2时,矩形PQMN的周长为6.【点睛】本题考查了待定系数法求一次函数及其坐标特征、旋转的性质,熟练运用一次函数的性质及旋转的性质是解决问题的关键.20.①见解析;②这个游戏不公平,见解析,要使游戏公平,改规则如下:若两人的数字之和小于6,则甲获胜;否则,乙获胜.【解析】【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两人的数字之和小于7与大于等于7的概率是否相等,求出概率比较,即可得出结论.【详解】解:①两人所得的数字之和的所有结果如图:②这个游戏不公平.由图可知,所得结果小于7的情况有6种,即甲获胜的概率为23,乙获胜的概率为13,很明显不公平;要使游戏公平,改规则如下:若两人的数字之和小于6,则甲获胜;否则,乙获胜.【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(1)是,不是;(2)见解析;(3)x1=274, x2=94【解析】【分析】(1)分别解方程x2-4x+3=0与x2-2x-3=0,求出它们的根,根据“立根方程”的定义,判断它们是不是立根方程.(2)由点(m,n)在反比例函数y=3x的图象上,得到mn=3,解方程mx2+4x+n=0求得x1与x2的值,判断是不是立根方程.(3)由方程ax 2+bx+c=0是立根方程,得到x 1=3x 2,由纵坐标相同的两点P (3,2)、Q (6,2)都在抛物线y=ax 2+bx+c 上,根据抛物线的对称轴得到x 1+x 2=9,从而求出方程的两个根.【详解】解:(1)解方程x 2-4x+3=0,得:x 1=3,x 2=1,∵x 1=3x 2,∴方程x 2-4x+3=0是立根方程;解方程x 2-2x-3=0,得:x 1=3,x 2=-1,∵x 1=-3x 2,∴方程x 2-2x-3=0不是立根方程.故答案为:是,不是.(2)∵点(m,n )在反比例函数3y x =上,所以3mn =用求根公式解方程得:x ==x 1=﹣3m ,x 2=﹣1m, ∴x 1=3x 2, 当点(m ,n )在反比例函数y =3x 上时,一元二次方程mx 2+4x+n =0是立根方程; (3)∵方程ax 2+bx+c =0是立根方程,∴设x 1=3x 2,∵P (3,2),Q (6,2)在抛物线y =ax 2+bx+c 上, ∴抛物线的对称轴123622x x x ++==, ∴x 1+x 2=9,∴3x 2+x 2=9,∴x 2=94,∴x 1=3x 2=274. 所以方程ax 2+bx+c =0的两个根为:x 1=274, x 2=94 【点睛】本题考查了根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,二次函数图形上点的坐标特征,正确的理解“立根方程”的定义是解题的关键.22.(1)2184y x x =--+ ,(﹣8,0);(2)﹣4或﹣1;(3)(1,274). 【解析】【分析】(1)直接将A ,C 两点代入即可求(2)可设P (m ,-14m 2-m+8),由∠OQP=∠BOD=90°,则分两种情况:△POQ ∽△OBD 和△POQ ∽△OBD 分别求出PQ 与OQ 的关系即可(3)作平行四边形,实质是将B 、P 向右平移8个单位,再向上平移4个单位即可得到点E 和点D ,点E 在二次函数上,代入即可求m 的值,从而求得点E 的坐标.【详解】(1)把A (0,8),C (4,0)代入y =﹣14x 2+bx+c 得 8440c b c =⎧⎨-++=⎩,解得18b c =-⎧⎨=⎩∴该二次函数的表达为y =﹣14x 2﹣x+8 当y =0时,﹣14x 2﹣x+8=0,解得x 1=﹣8,x 2=4 ∴点B 的坐标为(﹣8,0) (2)设P (m ,﹣14m 2﹣m+8),由∠OQP =∠BOD =90°,分两种情况: 当△POQ ∽△OBD 时,PQ BO 82OQ OD 4=== ∴PQ =2OQ 即﹣14m 2﹣m+8=2×(﹣m ),解得m =﹣4,或m =8(舍去) 当△POQ ∽△OBD 时,OQ B 82PQ D 4O O === ∴OQ =2PQ即﹣m =2×(﹣14m 2﹣m+8),解m =﹣1或m =﹣综上所述,m 的值为﹣4或﹣1(3)∵四边形BDEP 为平行四边形,∴PE ∥BD ,PE =BD∵点B 向右平移8个单位,再向上平移4个单位得到点D∴点P 向右平移8个单位,再向上平衡4个单位得到点E∵点P (m ,﹣14m 2﹣m+8), ∴点E (m+8,﹣14m 2﹣m+12), ∵点E 落在二次函数的图象上 ∴﹣14(m+8)2﹣(m+8)+8=﹣14m 2﹣m+12 解得,m =﹣7 ∴点E 的坐标为(1,274). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23.(1);(2.【解析】【分析】(1)根据二次根式的运算法则进行计算即可;(2)先通分,进行分式的加法,然后把除法转化为乘法进行化简.化简后代入求值即可.【详解】(1)=6﹣=(2)2111224x x x -⎛⎫+÷ ⎪--⎝⎭ 12(2)2(1)(1)x x x x x --=⋅-+- 21x =+,当x 1时,原式3== 【点睛】本题考查了二次根式的混合运算和分式的化简求值,熟练掌握运算法则是解题关键.24.见解析.【解析】【分析】依据BD =B'D',AB =A'B',AD =A'D',即可判定△ABD ≌△A'B'D',再根据∠B =∠B',AB =A'B',BC =B'C',即可得判定△ABC ≌△A'B'C'.【详解】∵AD ,A'D'分别是△ABC 和△A'B'C'的中线,BC =B'C',∴BD =B'D',又∵AB =A'B',AD =A'D',∴△ABD ≌△A'B'D'(SSS ),∴∠B =∠B',又∵AB =A'B',BC =B'C',∴△ABC ≌△A'B'C'(SAS ).【点睛】本题考查了全等三角形的性质和判定的应用,能求出△ABD ≌△A′B′D′是解此题的关键.25.(1;(2)819-. 【解析】【分析】 (1)根据菱形的性质得到AB =BC =CD =4,AD ∥BC ,根据圆周角定理得到∠DEC =90°,根据勾股定理即可得到结论;(2)连接DF ,过O 作OH ⊥CF 于H ,推出四边形ECFD 是矩形,得到DF =CE =3,CF =DE ,根据三角函数的定义即可得到结论.【详解】解:(1)∵四边形ABCD 是菱形,∴AB =BC =CD =4,AD ∥BC ,∵CD 是⊙O 的直径,∴∠DEC =90°,∴∠BCE =∠DEC =90°,∴CE =3,∴DE =(2)连接DF ,过O 作OH ⊥CF 于H ,∵CD 是⊙O 的直径,∴∠DFC =90°,∴四边形ECFD 是矩形,∴DF =CE =3,CF =DE ,∴CH , ∴OH =12DF =32,∴BH =BC+CH =,∴tan ∠OBC =819OH BH =.【点睛】本题考查了圆周角定理,菱形的性质,解直角三角形,正确的作出辅助线是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .2 2.在数学课上,甲、乙、丙、丁四位同学共同研究二次函数y =x 2﹣2x+c (c 是常数).甲发现:该函数的图象与x 轴的一个交点是(﹣2,0);乙发现:该函数的图象与y 轴的交点在(0,﹣4)上方;丙发现:无论x 取任何值所得到的y 值总能满足c ﹣y≤1;丁发现:当﹣1<x <0时,该函数的图象在x 轴的下方,当3<x <4时,该函数的图象在x 轴的上方.通过老师的最后评判得知这四位同学中只有一位同学发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁3.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )A .①和②B .②和③C .①和③D .①和④4.目前世界上能制造的芯片最小工艺水平是5纳米,国产芯片的最小工艺水平理论上是12纳米,已知1纳米910-=米,用科学记数法将12纳米表示为( )米A.91210-⨯B.101.210-⨯C.81.210-⨯D.80.1210-⨯5.如图,直线l 1∥l 2,且分别与直线l 交于C 、D 两点,把一块含30o 角的三角尺按如图所示的位置摆放,若∠1=53o,则∠2的度数是( )A.93oB.97oC.103oD.107o6.如图,△ABC 中,G 、E 分别为AB 、AC 边上的点,GE ∥BC ,BD ∥CE 交EG 延长线于D ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .AE EC =GE BCB .AG AB =AE DBC .CF CD =CE CA D .DG BC =BG BA 7.如图1.已知正△ABC 中,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,y 关于x 的函数图象如图2,则△EFG 的最小面积为( )A.4B.2C.28.若a b <,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b ->-D .22a b <9.下面给出四个命题:①各边相等的六边形是正六边形;②顶角和底边对应相等的两个等腰三角形全等;③顺次连结一个四边形各边中点所成的四边形是矩形,则原四边形是菱形;④正五边形既是中心对称图形又是轴对称图形其中真命题有( )A .0个B .1个C .2个D .4个10.如图,点A (0,2),在x 轴上取一点B ,连接AB ,以A 为圆心,任意长为半径画弧,分别交OA 、AB 于点M 、N ,再以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点D ,连接AD 并延长交x 轴于点P .若△OPA 与△OAB 相似,则点P 的坐标为( )A .(1,0)B .0)C .(230) D .(0) 11.如图,AB A B ''=,A A '∠=∠,若ABC A B C '''∆≅∆,则还需添加的一个条件有( )A.1种B.2种C.3种D.4种12.如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的D 处测得楼顶B 的仰角为45°,其中点A,C,E 在同一直线上.则斜坡CD 的长度为( ).A .120B .60C .120-D .120-二、填空题 13.已知关于x 的一元二次方程x 2﹣x+m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是_____.14.已知反比例函数y =的图象经过点(2,﹣1),则k =_____.15.月球离地球近地点的距离为363300千米,数据363300用科学记数法表示是______.16.对于m ,n (n≥m)我们定义运算A n m =n (n ﹣1)(n ﹣2)(n ﹣3)…(n ﹣(m ﹣1)),A 73=7×6×5=210,请你计算A 42=_____.17.化简:239m m --=_____. 18.在直角△ABC 中,∠C =90°,AC =8,BC =6,G 是重心,那么G 到斜边AB 中点的距离是___.三、解答题19021tan 60()2-+ 20.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a 的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.21.如图,大楼AC 的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B 处测得坡面底部E 处的俯角为33°,在楼顶A 处测得坡面D 处的俯角为30°.已知坡面DE =20m ,CE =30m ,点C ,D ,E 在同一平面内,求A ,B 两点之间的距离.(结果精确到1m tan33°≈0.65)22.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,交点为G .求证:AE ⊥BF .23.如图,以AB 为直径作半圆O ,点C 是半圆上一点,∠ABC 的平分线交⊙O 于E ,D 为BE 延长线上一点,且DE =FE .(1)求证:AD 为⊙O 切线;(2)若AB =20,tan ∠EBA =34,求BC 的长.24.如图,抛物线P :21(2)3y a x =+-与抛物线Q :221()12y x t =-+在同一平面直角坐标系中(其中a ,t 均为常数,且t >0),已知点A (1,3)为抛物线P 上一点,过点A 作直线l ∥x 轴,与抛物线P 交于另一点B .(1)求a 的值及点B 的坐标;(2)当抛物线Q 经过点A 时①求抛物线Q 的解析式;②设直线l 与抛物线Q 的另一交点为C ,求AC AB的值.25.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,动点D从点A出发,沿线段AC以每秒1个单位的速度向终点C运动,动点E同时从点B出发,以每秒2个单位的速度沿射线BC方向运动,当点D停止时,点E也随之停止,连结DE,当C.D.E三点不在同一直线上时,以ED、EC我邻边作▱ECFD,设点D运动的时间为t(秒).(1)用含t的代数式表示CE的长度。
初三数学复习 第五章 四边形 第二节 矩形、菱形、正方形(1)
第二节 矩形、菱形、正方形姓名:________ 班级:________ 限时:______分钟1.(2019·无锡)下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和360° B .对角线互相平分 C .对角线相等 D .对角线互相垂直2.(2019·合肥模拟)如图,在菱形ABCD 中,AB =13,对角线BD =24.若过点C 作CE⊥AB,垂足为E ,则CE 的长为( )A.12013 B .10 C .12 D.240133.(2019·台州)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2 cm ,BC =FG =8 cm ,把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( )A.14B.12C.817D.8154.(2019·绵阳)如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E 的坐标为( )A .(2,3)B .(3,2)C .(3,3)D .(3,3)5.(2019·临沂)如图,在平行四边形ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .OM =12AC B .MB =MOC .BD⊥ACD .∠AMB=∠CND6.(2019·乐山)把边长分别为1和2的两个正方形按如图的方式放置,则图中阴影部分的面积为( )A.16B.13C.15D.147.(2019·庐阳区二模)在矩形ABCD 中,E 是BC 边的中点,AE⊥BD,垂足为点F ,则tan∠AED 的值是( )A.63B.263C .2 3D .2 2 8.(2019·庐江县模拟)如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上.若四边形EFGH 是正方形,则AE 的长是( )A .5 B.11924 C.13024 D.169249.(2019·鸡西)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,AB∶BC=3∶2,过点B 作BE∥AC,过点C 作CE∥DB,BE ,CE 交于点E ,连接DE ,则tan∠EDC =( )A.29B.14C.25D.31010.如图,在菱形 ABCD 中,∠BAD=60°,AC 与 BD 交于点 O ,E 为 CD 延长线上的一点,且 CD =DE, 连接 BE 分别交 AC ,AD 于点 F ,G ,连接 OG ,AE ,则下列结论: ①OG=12BD;②与△EGD 全等的三角形共有 5 个; ③S △ABF ∶S △CEF =1∶4;④由点 A ,B ,D ,E 构成的四边形是菱形. 其中正确的是( )A .①④B .①③④C .①②③D .②③④11.(2019·达州)矩形OABC 在平面直角坐标系中的位置如图所示,已知B(23,2),点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD⊥PC 交x 轴于点D.下列结论: ①OA =BC =23;②当点D 运动到OA 的中点处时,PC 2+PD 2=7; ③在运动过程,∠CDP 是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为(233,0).其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.(2019·江西)我国古代数学名著《孙子算经》有估算方法:“方五,邪(通‘斜’)七,见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七,已知正方形的边长,求对角线长,则先将边长乘七再除以五.若正方形的边长为1,由勾股定理得对角线长为2,依据《孙子算经》的方法,则它的对角线的长是________.13.(2019·广西)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH⊥BC 于点H.已知BO =4,S 菱形ABCD =24,则AH =________.14.(2019·扬州)如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M ,N 分别是DC ,DF 的中点,连接MN.若AB =7,BE =5,则MN =________.15.(2019·兰州)如图,矩形ABCD ,∠BAC=60°,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于M ,N 两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E.若BE =1,则矩形ABCD 的面积等于________.16.(2019·怀化)已知:如图,在▱ABCD 中,AE⊥BC,CF⊥AD,E ,F 分别为垂足.(1)求证:△ABE≌△CDF; (2)求证:四边形AECF 是矩形.17.(2019·长丰县二模)已知,如图,四边形ABCD 是正方形,点E 是边BC 上任意一点,∠AEF=90°,且EF 交正方形外角平分线CF 于点F.求证:AE =EF.18.(2019·宿迁)如图,矩形ABCD 中,AB =4,BC =2,点E ,F 分别在AB ,CD 上,且BE =DF =32.(1)求证:四边形AECF 是菱形; (2)求线段EF 的长.19.(2019·昆明二模)如图,在▱ABCD 中,E 是对角线BD 上的一点,过点C 作CF∥DB,且CF =DE ,连接AE ,BF ,EF. (1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE 是什么特殊四边形?说明理由.20.(2019·甘肃)如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG⊥ED 于点F ,交CD 于点G. (1)求证:△ADG≌△DCE; (2)连接BF ,证明:AB =FB.1.(2019·深圳)已知菱形ABCD ,E ,F 是动点,边长为4,BE =AF ,∠BAD=120°,则下列结论中正确的个数是( )①△BEC≌△AFC;②△ECF 为等边三角形;③∠AGE=∠AFC;④若AF =1,则GFEG=13.A .1B .2C .3D .42.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E ,使得∠CDE=15°,连接BE 并延长BE 到F ,使CF =CB ,BF 与CD 相交于点H.若AB =1,有下列结论:①BE=DE ;②CE+DE =EF ;③S △DEC =14-312;④DHHC =23-1,则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④3.(2019·孝感)如图,正方形ABCD 中,点E ,F 分别在CD ,AD 上,BE 与CF 交于点G.若BC =4,DE =AF =1,则GF 的长为( )A.135B.125C.195D.1654.(2019·金华)如图,矩形ABCD 的对角线交于点O.已知AB =m ,∠BAC=α,则下列结论错误的是( )A .∠BDC=αB .BC =m·tan α C .AO =m 2sin αD .BD =mcos α5.(2019·安顺)如图,在Rt△ABC 中,∠BAC=90°,且BA =3,AC =4,点D 是斜边BC 上的一个动点,过点D 分别作DM⊥AB 于点M ,DN⊥AC 于点N ,连接MN ,则线段MN 的最小值为________.6.(2019·温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2 cm.若点C 落在AH 的延长线上,则△ABE 的周长为________cm.7.(2019·哈尔滨)已知:在矩形ABCD 中,BD 是对角线,AE⊥BD 于点E ,CF⊥BD 于点F.(1)如图1,求证:AE =CF ;(2)如图2,当∠ADB=30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.8.(2019·合肥模拟)如图1,点E为正方形ABCD内部一点,AF⊥BE于点F,G 为线段AF上一点,且AG=BF.(1)求证:BG=CF;(2)如图2,在图1的基础上,延长BG交AE于点M,交AD于点H,连接EH,移动E点的位置使得∠ABH=∠GAM.①若∠EAH=40°,求∠EBH的度数;②求证:HE∥AF.参考答案基础训练1.C 2.A 3.D 4.D 5.A 6.A 7.D 8.B9.A 10.B 11.C12.1.413.245 14.13215.3 316.(1)证明:∵四边形ABCD 是平行四边形, ∴∠B =∠D,AB =CD ,AD∥BC. ∵AE⊥BC,CF ⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°. 在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠B=∠D,∠AEB=∠CFD,AB =CD ,∴△ABE≌△CDF(AAS). (2)证明:∵AD∥BC, ∴∠EAF=∠AEB=90°, ∴∠EAF=∠AEC=∠AFC=90°, ∴四边形AECF 是矩形. 17.证明:如解图,在AB 上截取BM =BE ,连接ME. ∵∠B=90°,BM =BE , ∴∠BME=∠BEM=45°, ∴∠AME=∠B+∠BEM=135°. ∵CF 是∠DCG 的平分线, ∴∠DCF=12∠DCG=45°,∴∠ECF=∠ECD+∠DCF=135°,∴∠AME=∠ECF. ∵AB=BC ,BM =BE , ∴AM=EC.在△AME 和△ECF 中⎩⎪⎨⎪⎧∠MAE=∠CEF,AM =EC ,∠AME=∠ECF,∴△AME≌△ECF(ASA).18.(1)证明:∵四边形ABCD 中,AB =4,BC =2, ∴CD=AB =4,AD =BD =2,CD∥AB,∠D=∠B=90°. ∵BE=DF =32,∴CF=AE =4-32=52.又∵AF=CE =22+(32)2=52,∴AF=CF =CE =AE =52,∴四边形AECF 是菱形.(2)解:如解图,过点F 作FH⊥AB 于H ,则四边形AHFD 是矩形,∴AH=DF =32,FH =AD =2,∴EH=AE -AH =52-32=1,∴EF=FH 2+HE 2=22+12= 5.19.(1)证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD∥BC, ∴∠ADB=∠DBC. ∵CF∥DB, ∴∠BCF=∠DBC, ∴∠ADB=∠BCF.在△ADE 与△BCF 中,⎩⎪⎨⎪⎧DE =CF ,∠ADE=∠BCF,AD =BC ,∴△ADE≌△BCF(SAS). (2)解:四边形ABFE 是菱形. 理由:∵CF∥DE,且CF =DE , ∴四边形CFED 是平行四边形, ∴CD=EF ,CD∥EF.∵四边形ABCD 是平行四边形, ∴AB=CD ,AB∥CD, ∴AB=EF ,AB∥EF,∴四边形ABFE 是平行四边形. ∵△ADE≌△BCF, ∴∠AED=∠BFC. ∵∠ABE+∠BCF=180°, ∴∠ABE+∠AED=180°. ∵∠AED+∠AEB =180°, ∴∠ABE=∠AEB, ∴AB=AE ,∴四边形ABFE是菱形.20.解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°.又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE.在△ADG和△DCE中,⎩⎪⎨⎪⎧∠DAG=∠CDE,AD=DC,∠ADG=∠C,∴△ADG≌△DCE(ASA).(2)如解图,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE.又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点.又∵∠AFH=90°,∴Rt△AFH中,BF=12AH=AB.拔高训练 1.D 2.A 3.A4.C 【解析】A.∵四边形ABCD 是矩形,∴∠ABC=∠DCB=90°,AC =BD ,∴AO =OB =CO =DO ,∴∠DBC=∠ACB,∴由三角形内角和定理得∠BAC=∠BDC=α,故本选项不符合题意;B.在Rt△ABC 中,tan α=BCm ,即BC =m·tan α,故本选项不符合题意;C.在Rt△ABC 中,AC =m cos α,即AO =m2cos α,故本选项符合题意;D.∵四边形ABCD 是矩形,∴DC=AB =m ,∵∠BAC=∠BDC=α,∴在Rt△DCB 中,BD =mcos α,故本选项不符合题意.故选C.5.1256.12+8 2 7.(1)证明:∵四边形ABCD 是矩形, ∴AB=CD ,AB∥CD, ∴∠ABE=∠CDF.∵AE⊥BD 于点E ,CF⊥BD 于点F , ∴∠AEB=∠CFD=90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠ABE=∠CDF,∠AEB=∠CFD,AB =CD ,∴△ABE≌△CDF(AAS), ∴AE=CF.(2)解:S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .∵AD∥BC,∵∠ABC=90°,∴∠ABE =60°. ∵AE⊥BD, ∴∠BAE=30°, ∴BE=12AB ,AE =12AD ,∴S △ABE =12BE×AE=12×12AB×12AD =18AB×AD=18S 矩形ABCD ,∵△ABE≌△CDF, ∴S △CDF =18S 矩形ABCD .作EG⊥BC 于G ,如图解所示.∵∠CBD=30°,∴EG=12BE =12×12AB =14AB ,∴S △BCE =12BC×EG=12BC×14AB =18BC×AB=18S 矩形ABCD ,同理S △ADF =18S 矩形ABCD .8.(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABC=∠BAD=90°, ∴∠ABF+∠CBF=90°, ∵AF⊥BE, ∴∠AFB=90°,∴∠BAG=∠CBF,在△ABG 和△BCF 中,⎩⎪⎨⎪⎧AB =BC ,∠BAG=∠CBF,AG =BF ,∴△ABG≌△BCF(SAS), ∴BG=CF.(2)①解:∵∠EAH=40°, ∴∠BAM=90°-40°=50°. ∵∠ABH=∠GAM,∴∠BGF=∠BAG+∠ABG=∠BAG+∠GAM=∠BAM=50°, ∴在Rt△BGF 中,∠EBH=90°-∠BGF=40°. ②证明:∵正方形ABCD 中,AF⊥BE, ∴∠ABH+∠AHB=90°,∠GAM+∠AEF=90°. 又∵∠ABH=∠GAM, ∴∠AHB=∠AEF. 又∵∠AMH=∠BME, ∴△AMH∽△BME. ∴AM∶BM=HM∶EM, 即AM∶HM=BM∶EM, 又∠AMB=∠EMH, ∴△ABM∽△HEM, ∴∠ABH=∠AEH, 又∵∠ABH=∠GAM,∴∠AEH=∠GAM,∴HE∥AF.。
初三数学上册总复习专题练习
初三数学上册总复习专题练习一、整数与有理数1. 整数的概念- 知识点:整数的定义、正整数、负整数、零- 例题:写出下列整数的相反数:3,-5,02. 整数的比较- 知识点:整数的大小比较、负整数与正整数的比较- 例题:比较下列整数的大小:-2,5,-7,33. 有理数- 知识点:有理数的概念、整数是有理数、分数是有理数- 例题:判断下列数是有理数还是无理数:-3,0.5,√2二、代数表达式与四则运算1. 代数表达式的定义- 知识点:代数变量、常数、代数表达式的概念- 例题:写出下列代数表达式:2x-3,y²+4y+12. 代数式的运算法则- 知识点:代数式的加减运算、代数式的乘法运算- 例题:计算下列代数式的和:3a+5b,-2a+4b3. 代数式与数的乘法- 知识点:代数式与数的乘法、分配律的应用- 例题:计算下列式子的值:2(3a+2b)-5a三、一元一次方程与方程的应用1. 一元一次方程的概念- 知识点:方程的定义、未知数、系数、等式- 例题:解下列方程:2x+3=9,5x-4=162. 解一元一次方程的方法- 知识点:等式方程的变形、等式两边相等性质- 例题:解下列方程:4x-7=5+3x,2(3x+4)-5=3x3. 方程的应用题- 知识点:方程的应用、转化实际问题为代数方程- 例题:应用一元一次方程解决问题:一个数的三倍减去5等于20,求这个数。
四、面积、周长与体积1. 平行四边形的面积- 知识点:平行四边形的性质、计算平行四边形的面积- 例题:计算下列平行四边形的面积:底边长14,高102. 圆的面积和周长- 知识点:圆的半径、直径、周长、面积公式- 例题:计算下列圆的周长和面积:半径3cm3. 立体图形的体积- 知识点:长方体的体积、计算立方体的体积- 例题:计算下列长方体的体积:长10cm,宽8cm,高6cm以上是初三数学上册的总复习专题练习,希望能帮助你温习知识,提高数学能力。
初三数学总复习测试三方程(组)、
初三数学总复习测试三方程(组)、不等式(组)班级 姓名 学号 得分卷 一一、选择题(本题共有12个小题,每小题都有A 、B 、C 、D 四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每小题4分,共48分)1、方程4=x 的解是( )(2001湖州)A x=2B x=±2C x=±16D x=162、有解集2<x<3的不等式组是( )(2001深圳)A ⎩⎨⎧>>23x x B ⎩⎨⎧<>23x x C ⎩⎨⎧><23x x D ⎩⎨⎧<<23x x 3、已知2是关于x 的方程23x 2―2a=0的一个解,则2a ―1的值是( )(2001广州) A 3 B 4 C 5 D 64、已知关于x 的方程x a x =-3有一个根为1,那么另一个根是( )(2001呼和浩特)A ―1B 0C 2D 35、下列方程中,有实数根的是( )(2001辽宁)A021=+-x B x 2+3x+4=0 C x+x 1=0 D 5-x =5―x 6、方程2132=+-x x 的根是( )(2001甘肃)A ―2B 21C ―2,21 D ―2,1 7、不等式组⎩⎨⎧<>+72013x x 的整数解的个数是( )(2001哈尔滨) A 1个 B 2个 C 3个 D 4个8、若a>b ,则下列不等式一定成立的是( )(2001天津)A a b <1B ba >1 C ―a>―b D a ―b>0 9、a 为实数,且a ≠0,那么下列各式中一定成立的是( )(2001广西)A a 2+1>1B 1―a 2<0C 1+a 1>1D 1―a1>1 10、方程x(x+3)(x ―2)=0的根是( )(2001金华)A 2,―3B ―2,3C 0,2,―3D 0,―2,311、方程组⎩⎨⎧=-++=-+032012y x x y x 的解是( )(2001广州)A ⎩⎨⎧=-=⎩⎨⎧==21,012211y x y xB ⎩⎨⎧-==⎩⎨⎧==12,012211y x y xC ⎩⎨⎧==⎩⎨⎧=-=21,012211y x y xD ⎩⎨⎧=-=⎩⎨⎧=-=21,012211y x y x 12、已知分式方程71)1(61)1(222=+++++x x x x ,设y x x =++112,于是原方程变形为整式方程是( )(2001厦门)A 2y 2―7y+6=0B 2y 2+7y ―6=0C 6y 2+7y ―2=0D 6y 2―7y+2=0卷 二二、填空题(本题共有6个小题,每小题5分,共30分)13、若x<1,则―2x+2 0(用“>”、“=”、“<”号填空)(2001南昌)14、不等式组⎩⎨⎧<+≥-0323x x 的解是 (2001河南) 15、方程组⎩⎨⎧=+=-123422y x y x 的解是 (2001辽宁) 16、用换元法解方程:x 2+42+x =4,若设y=42+x ,则原方程可化为 ,原方程的解是 (2001北京海淀)17、若2x 2―5x+15282+-x x ―5=0,则2x 2―5x ―1的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周六基础班练习六
(一)1.已知正比例函数y=(1—2k)x ,函数值y 随自变量x 的增大而减小,则k 的取值范围是_____________. 2.已知反比例函数x
y 6-
=的图像经过第______象限,函数值y 随x 的增大而______.
3已知正比例函数y= 3x 的图像经过第______象限,函数值y 随x 的增大而______. 4反比例函数x
k y 1-=
的图像在每个象限内y 随x 的增大而减小,那么k 的取值范围是______
5.一次函数y= —32+x 的截距是________,它的图像经过第_______象限,函数值y 随x 的增大而______.。
6.已知一次函数2
11k x )k (y -+-=的图像经过原点,那么k=_______. 7.抛物线12
12
-+=
x x
y 的对称轴是______
8.已知f(x)=13,那么f(2012)=________
(二)1.正多边形的_____________相等,___________也相等. 2.矩形的判定方法:________________的四边形是矩形.(角) ____________________平行四边形是矩形.(角) ____________________平行四边形是矩形.(对角线) 3.菱形的判定方法:________________的四边形是菱形.(边) ____________________平行四边形是菱形.(边) ____________________平行四边形是菱形.(对角线)
菱形的面积等于_____________________,还可以等于___________(作为特殊的平行四边形) 4.正方形的判定方法:____________________平行四边形是正方形. ___________________________的矩形是正方形. __________________________的矩形是正方形. 5.连结对角线___________的四边形各边的中点所得的四边形是菱形 .连结对角线___________的四边形各边的中点所得的四边形是矩形 .连结___________的四边形各边的中点所得的四边形是平行四边形 (三)1如图,一次函数y kx b =+的图象与反比例函数m y x
=
的图象交于
(21)(1)A B n -,,,两点.
(1
(2)求A O B △的面积.
2.如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;
(2)当四边形A O B C 为菱形时,求函数2y ax bx =+的关系式.
3.如图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.
(1)求抛物线的解析式;
(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.
4.已知:如图,在平面直角坐标系x O y 中,
Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3, DC=4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的解析式.
(四)1.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)A C E B C D
△≌△;(2)222
AD DB DE
+=.
2.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.
(1)求证:△ABE≌△ACE
(2)当AE与AD满足什么数量关系时,四边形ABEC
是菱形?并说明理由.
3.如图,在四边形A B C D中,点E是线段A D上的任意一点(E与A D
,不重合),
G F H
,,分别是B E B C C E
,,的中点.
(1)证明四边形E G F H是平行四边形;
(2)在(1)的条件下,若EF BC
⊥,且
1
2
E F B C
=,证明平行四边形E G F H是
正方形.
B G
A E
F
H
D
C
4. 如图,在梯形A B C D 中,A D B C ∥,AB AC ⊥,45B ∠=
,AD =
BC =求D C 的长.
5.如图1,在边长为5的正方形A B C D 中,点E 、F 分别是B C 、D C 边上的点,且AE EF ⊥,2BE =.(1)
求E C ∶C F 的值;(2)延长E F 交正方形外角平分线CP P 于点(如图2),试判断AE EP 与的大小关系,并说明理由;(3)在图2的A B 边上是否存在一点M ,使得四边形D M E P 是平行四边形?若存在,请给予证明;若不存在,请说明理由.
图1
A
D
C
B E
图2
B
C
E D
A
F P F
A B
C
D。