方形磁体的空间磁场分布

合集下载

方形磁体的空间磁场分布

方形磁体的空间磁场分布

方形磁体的空间磁场分布磁体是由磁场产生并维持的,它可以是永久磁体和临时磁体。

永久磁体具有自发磁性,而临时磁体只能在外部磁场存在时保持其磁性。

磁体的磁场分布可以通过微分方程和磁性材料的流动磁致传动特性来研究。

本文将讨论方形磁体的空间磁场分布,探讨其磁场特性以及磁致传动特性。

方形磁体是一种典型的磁性材料,它的空间磁场分布可以用微分方程来描述,它的磁场的大小取决于以下因素:材料的频率、点磁化、表面磁化和外加磁场等。

传统的磁体分析方法是基于Biot-Savart定律,这种方法在处理复杂空间磁场分布时有较大的局限性。

为了解决这个问题,可以使用有限元方法,利用Lorentz力来精确描述材料的空间磁场分布。

使用有限元方法对正方形磁体进行模拟,结果显示,随着磁体内场增加,磁场分布量随之增大。

当磁体内场超过一定值时,磁体周围的磁场量化,这是由于磁体的空间磁场分布特性决定的。

通过模拟结果,可以看出,当点磁化较强时,其磁场分布更加显著,具有更大的空间梯度,对磁致传动特性也有较大影响。

同时,空间磁场分布也可以由磁体的外加磁场引起,并且随着外加磁场的增大而发生变化。

例如,当外加磁场的强度较大时,方形磁体的空间磁场分布会聚集到固定的位置,这是由于外加磁场的作用,从而使方形磁体的磁场在空间上有较大的梯度。

此外,外加磁场的相对位置也会影响磁体的空间磁场分布,当磁体位置改变时,磁场的分布也会发生变化。

综上所述,方形磁体的空间磁场分布受到磁体内场、点磁化等因素的影响,同时还受到外加磁场的影响,它们共同决定了磁体的磁场特性以及磁致传动特性。

正确理解和利用这前述的空间分布及其影响因素,有助于我们掌握磁性材料的运作机制,更好地运用磁性材料。

所以,本文探讨了方形磁体的空间磁场分布,探讨了影响其磁场特性和磁致传动特性的因素,可以用来指导磁性材料的应用研究。

条形磁铁磁场分布

条形磁铁磁场分布

条形磁铁磁场分布条形磁铁磁场分布条形磁铁是一种常见的磁体,由一根长方形或短方形的磁铁组成,它们在物理实验室、电子设备以及工业应用中都有着广泛的应用。

条形磁铁有两个面,一面是磁铁的N极,另一面是磁铁的S极,每个极都有其特定的磁场分布,并且形成一个较强的磁场。

磁场分布是一种物理现象,它描述了磁场密度分布的情况,例如,在一个磁体中,磁场密度分布的形状和大小。

条形磁铁磁场分布是一种典型的磁场分布,它描述了条形磁铁的磁场分布情况。

条形磁铁磁场分布特点条形磁铁磁场分布的特点是,N极和S极的磁场分布有明显的差别。

在N极的磁场分布中,磁场线从条形磁铁的中心向外扩散,大部分集中在N极的一端,这一端被称为磁场的空心体。

而在S极的磁场分布中,磁场线从条形磁铁的中心向外扩散,但是大部分集中在S极的另一端,这一端被称为磁场的空心体。

另外,条形磁铁的磁场分布还受到磁体的外形以及磁体的尺寸等因素的影响。

如果磁体的形状是圆柱形,则磁场分布在圆柱形磁体的外部比内部要强,而如果磁体的形状是三角形,则磁场分布在三角形磁体的一个角上比另外两个角要强。

此外,如果磁体的尺寸较小,则磁场分布的密度会比较大,反之则会相对较小。

条形磁铁磁场分布的应用条形磁铁磁场分布的研究有着重要的应用,它可以用来设计各种新型的电子设备,也可以用来研究磁场的作用。

例如,可以利用条形磁铁磁场分布的特性来设计新型的电机和变频器,以便获得更高的性能。

此外,研究条形磁铁磁场分布也可以用来分析磁场的作用,例如,它可以用来研究磁场对物体的影响以及电磁波的传播情况。

结论条形磁铁是一种常见的磁体,它的磁场分布有着明显的特点,研究条形磁铁磁场分布有着重要的应用,可以用来设计新型的电子设备,也可以用来研究磁场对物体的影响以及电磁波的传播情况。

因此,条形磁铁磁场分布研究具有重要的意义,可以为物理研究和工程应用带来重大收获。

磁共振室的磁场分布-概述说明以及解释

磁共振室的磁场分布-概述说明以及解释

磁共振室的磁场分布-概述说明以及解释1.引言1.1 概述磁共振成像技术是一种非侵入性、无辐射的医学影像技术,广泛应用于临床诊断和科学研究。

磁共振成像技术依赖于强大的磁场和高频电磁场的相互作用,通过激发人体内的核磁共振现象来获取高分辨率的影像信息,从而实现对人体内部结构和功能的详细观察和分析。

磁共振室的磁场分布是磁共振成像中至关重要的一环,其强度、方向性和均匀性对成像质量和诊断准确性具有重要影响。

本文将对磁共振室的磁场分布特点进行深入探讨,为优化磁共振成像技术提供参考和指导。

1.2 文章结构本文主要分为以下三个部分:正文、引言和结论。

在正文部分,将详细介绍磁共振室的构造和磁场分布特点。

首先会介绍磁体位置和类型,RF线圈布置以及梯度线圈设计等构造信息,然后会探讨磁场分布的强度、方向性和均匀性等特点。

最后,会介绍磁场调节和校准方面的内容,包括磁场调节方法、校准工作流程和磁场稳定性控制。

在引言部分,会对整个文章进行概述,说明文章的目的和意义,并介绍相关背景知识,为读者提供必要的背景信息。

在结论部分,将总结磁场分布特点、展望磁共振技术的应用前景,并对磁共振技术的启示进行探讨。

通过对整个文章的内容进行总结和展望,为读者提供一个全面的认识和理解。

1.3 目的本文旨在深入探讨磁共振室中的磁场分布特性,通过对磁体位置和类型、RF线圈布置、梯度线圈设计等方面的分析,揭示磁场在磁共振成像中的重要性及影响因素。

通过研究磁场的强度分布、方向性和均匀性等特点,进一步了解磁共振成像的工作原理和性能表现。

同时,通过对磁场调节和校准的方法及流程的介绍,探讨如何确保磁场的稳定性和准确性,从而提高磁共振成像的质量和可靠性。

最终,本文旨在为磁共振技术的发展提供理论支撑和实践指导,为医学影像领域的进步做出贡献。

2.正文2.1 磁共振室的构造磁共振室是进行磁共振成像的核心设备,其构造包括磁体、RF线圈和梯度线圈。

这些部件的设计和布置对磁场的分布和性能起着至关重要的作用。

2025高考物理备考教案含答案解析 第1讲 磁场及其对电流的作用

2025高考物理备考教案含答案解析  第1讲 磁场及其对电流的作用

第十一章磁场第1讲磁场及其对电流的作用课标要求核心考点五年考情核心素养对接1.能列举磁现象在生产生活中的应用.了解我国古代在磁现象方面的研究成果及其对人类文明的影响.关注与磁相关的现代技术发展.2.通过实验,认识磁场.了解磁感应强度,会用磁感线描述磁场.体会物理模型在探索自然规律中的作用.3.通过实验,认识安培力.能判断安培力的方向,会计算安培力的大小.了解安培力在生产生活中的应用.安培定则的应用、磁场的叠加2022:全国乙T18;2021:全国甲T16,福建T6;2020:浙江7月T9;2019:上海T151.物理观念:理解磁感应强度、磁感线、安培力等概念;掌握安培定则、左手定则的应用方法;建立磁场的物质观念,运动与相互作用观念及能量观念.2.科学思维:通过电场与磁场的类比,培养科学思维;掌握安培力的应用方法.3.科学探究:体会奥斯特实验的物理思想和重要意义,通过探究影响通电导线在磁场中受力的因素,理解磁感应强度.4.科学态度与责任:了解我国古代人民对磁现象的认识与贡献,电磁技术在现代科技中的应用.安培力的分析与计算2023:江苏T2;2022:湖南T3,浙江1月T3;2021:江苏T5,浙江6月T15;2019:浙江4月T5,全国ⅠT17安培力作用下的平衡和加速问题2023:浙江6月T10;2022:湖北T11,全国甲T25;2021:广东T5;2019:江苏T7命题分析预测本部分内容为磁场的基础,单独考查时难度不大,多为选择题.对磁场的性质及安培力的考查,常涉及磁场的叠加、安培定则的应用、安培力作用下的平衡和运动问题.预计2025年高考可能会考查磁场的叠加、磁感应强度大小的计算以及与安培力相关的电磁技术的应用.考点1 安培定则的应用、磁场的叠加1.磁场、磁感线、磁感应强度磁场的基本性质磁场对处于其中的磁体、通电导体和运动电荷有[1] 力 的作用磁感应强度物理意义 描述磁场的强弱和[2] 方向定义式 B =F Il(通电导线垂直于磁场) 方向 小磁针静止时N 极所指的方向 单位 [3] 特斯拉 (T )磁感线的特点(1)磁感线上某点的[4] 切线 方向就是该点的磁场方向(2)磁感线的疏密程度定性地表示磁场的[5] 强弱(3)磁感线是闭合曲线,没有起点和终点,在磁体外部,由[6] N 极 指向[7] S 极 ;在磁体内部,由[8] S 极 指向[9] N 极(4)同一磁场的磁感线不中断、不[10] 相交 、不相切(5)磁感线是假想的线,客观上并不存在示意图特点匀强磁场磁场中各点的磁感应强度的大小[13] 相等 、方向[14] 相同 ,磁感线是疏密程度相同、方向相同的平行直线地磁场①地磁的N极在地理[15]南极附近,S 极在地理[16] 北极 附近,磁感线分布如图所示;②在赤道平面上,距离地球表面高度相等的各点,磁感应强度的大小[17] 相等 ,且方向水平[18] 向北 ;③地磁场在南半球有竖直向上的分量,在北半球有竖直向下的分量3.几种常见的磁场(1)常见磁体的磁场分布(2)电流的磁场——应用安培定则(右手螺旋定则)判断项目实物图立体图纵截面图通电直导线通电螺线管环形电流分析下列情境中小磁针的运动趋势.(填“垂直纸面向里”或“垂直纸面向外”)(1)如图所示,通电导线通有向右的直流电:N极垂直纸面向里,S极垂直纸面向外;(2)通有向右的直流电的导线放在小磁针下方:N极垂直纸面向外,S极垂直纸面向里.如图甲、乙所示,通电导线中通有大小相等的电流,判断A、B(距两导线距离相等)两点磁感应强度的方向.图甲图乙答案A点磁感应强度为0,B点磁感应强度方向垂直纸面向外.判断下列说法的正误.(1)磁场是客观存在的一种物质,磁感线也是真实存在的.(✕)(2)磁场中的一小段通电导线在该处受力为零,此处磁感应强度B不一定为零.(√)(3)由定义式B=F可知,电流I越大,导线l越长,某点的磁感应强度B就越小.Il(✕)(4)北京附近的地磁场方向是水平向北的.(✕)1.[安培定则的应用]如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图.若通电螺线管是密绕的,下列说法正确的是(B)A.电流越大,内部的磁场越接近匀强磁场B.螺线管越长,内部的磁场越接近匀强磁场C.螺线管直径越大,内部的磁场越接近匀强磁场D.磁感线画得越密,内部的磁场越接近匀强磁场解析通电密绕长螺线管内部的磁场可以视为匀强磁场,螺线管越长,内部的磁场越接近匀强磁场,与电流大小无关,A错误,B正确;螺线管直径越小,内部的磁场越接近匀强磁场,C错误;磁感线是为了形象化描述磁场而引入的假想线,磁感线的密疏,与磁场是否是匀强磁场无关,D错误.2.[磁场的叠加/2021全国甲]两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与O'Q在一条直线上,PO'与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示.若一根无限长直导线通过电流I时,所产生的磁场在距离导线d处的磁感应强度大小为B,则图中与导线距离均为d的M、N两点处的磁感应强度大小分别为(B)A.B、0B.0、2BC.2B、2BD.B、B解析根据安培定则可知沿EOQ的等效电流产生的磁场在N点的磁感应强度方向垂直纸面向里、在M点的磁感应强度方向垂直纸面向外,且大小均为B,沿POF的等效电流产生的磁场在N、M两点的磁感应强度方向均垂直纸面向里,且大小均为B,根据磁场的叠加原理可得N点的合磁感应强度大小为B N=2B,M点的合磁感应强度大小为B M=0,故A、C、D错误,B正确.方法点拨磁场叠加问题的解题思路1.确定磁场场源,如通电导线.2.定位空间中需要求解磁场的点,利用安培定则判定各个场源在这一点上产生的磁场的大小和方向.如图所示为通电导线M、N在C点产生的磁场B M、B N.3.应用平行四边形定则进行合成,如图中的B为合磁场.考点2安培力的分析与计算1.安培力的大小F=[19]BIl sinθ(其中θ为B与I之间的夹角)(1)磁场和电流垂直时:F=[20]BIl;(2)磁场和电流平行时:F=[21]0.2.安培力的方向(左手定则判断)(1)如图,伸开左手,使拇指与其余四个手指[22]垂直,并且都与手掌在同一个平面内;(2)让磁感线从掌心垂直进入,并使四指指向[23]电流的方向;(3)这时[24]拇指所指的方向就是通电导线在磁场中所受安培力的方向.利用如图所示装置探究匀强磁场中影响通电导线受力的因素,导线垂直匀强磁场方向放置.先保持导线通电部分的长度L不变,改变电流I的大小,然后保持电流I不变,改变导线通电部分的长度L,得到导线受到的力F分别与I和L的关系图像,则正确的是(B)命题点1安培力的方向3.[2021广东]截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线.若中心直导线通入电流I1,四根平行直导线均通入电流I2,I1≫I2,电流方向如图所示.下列截面图中可能正确表示通电后长管发生形变的是(C)A B C D解析由于I1≫I2,故长管外面的四根通电平行直导线间的安培力可忽略,只考虑长管中心通入电流I1的直导线对长管外四根平行直导线的安培力作用,中心直导线四周产生顺时针方向的环形磁场,根据左手定则可知,通电后左、右两根平行直导线靠近中心直导线,上、下两根平行直导线远离中心直导线,C正确.4.[2024湖北荆州模拟]铁环上绕有带绝缘皮的通电导线,电流方向如图所示,若在铁环中心O点处放置垂直纸面的电流元,电流方向向外,则电流元受到的安培力方向为(B)A.①B.②C.③D.④解析根据右手螺旋定则可知,铁环上方是N极,铁环内的磁场方向由上到下,再根据左手定则可知,电流元受到的安培力方向为水平向右,故B正确,ACD错误.命题点2安培力的大小5.[2023江苏]如图所示,匀强磁场的磁感应强度为B.L形导线通以恒定电流I,放置在磁场中.已知ab边长为2l,与磁场方向垂直,bc边长为l,与磁场方向平行.该导线受到的安培力为(C)A.0B.BilC.2BilD.√5BIl解析→F安=BI·2l=2BIl,C对,ABD错6.长度为L、通有电流为I的直导线放入一匀强磁场中,电流方向与磁场方向如图所示,已知磁感应强度大小为B,对于下列各图中,导线所受安培力的大小计算正确的是(A)A.F=BIL cosθB.F=BIL cosθC.F=BIL sinθD.F=BIL sinθ方法点拨1.安培力的方向:安培力既垂直于B,也垂直于I,即垂直于B与I决定的平面.2.公式F=BIl的应用条件:l与B垂直.公式中l指有效长度.弯曲通电导线的有效长度l等于连接导线两端点的直线的长度,相应的电流方向沿两端点连线由始端流向末端,如图所示.命题点3安培力作用下导体运动情况的判断7.[电流元法与结论法/2022江苏]如图所示,两根固定的通电长直导线a、b相互垂直,a平行于纸面,电流方向向右,b垂直于纸面,电流方向向里,则导线a所受安培力方向(C)A.平行于纸面向上B.平行于纸面向下C.左半部分垂直纸面向外,右半部分垂直纸面向里D.左半部分垂直纸面向里,右半部分垂直纸面向外解析解法1:电流元法如图,根据安培定则,可判断出导线a左半部分的空间磁场方向斜向右上方,右半部分的空间磁场方向斜向右下方,根据左手定则可判断出导线a左半部分受到的安培力方向垂直纸面向外,右半部分受到的安培力方向垂直纸面向里,故选C.解法2:结论法互成角度的通电导线有旋转到电流方向一致的趋势.若a不固定,则a的右半部分会垂直纸面向里旋转,左半部分会垂直纸面向外旋转,只有这样旋转后两导线电流方向才会一致,所以C对.8.[等效法]如图所示,把轻质导电线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心,且垂直于线圈平面,当线圈中通入如图方向的电流后,线圈的运动情况是(A)A.线圈向左运动B.线圈向右运动C.从上往下看顺时针转动D.从上往下看逆时针转动解析解法1:等效法把环形电流等效为一个小磁针,如图所示,磁铁和线圈相互吸引变成磁体间的相互作用.故A正确.解法2:电流元法把圆环形线圈分成很多小段,每一小段可以看作直线电流,取上、下对称两个小段分析,其截面图和受安培力的方向如图所示,根据对称性可知,安培力的合力水平向左,故线圈向左运动.故A正确.9.[转换研究对象法]水平桌面上一条形磁体的上方,有一根通电直导线由S极的上端平行于桌面缓慢移到N极上端的过程中,磁体始终保持静止,导线始终保持与磁体垂直,电流方向如图所示.在这个过程中,关于磁体受到的摩擦力和桌面对磁体的弹力,说法正确的是(C)A.摩擦力始终为零,弹力大于磁体重力B.摩擦力始终不为零,弹力大于磁体重力C.摩擦力方向由向左变为向右,弹力大于磁体重力D.摩擦力方向由向右变为向左,弹力小于磁体重力解析如图所示,当导线在S极上方时,导线所受安培力方向斜向左上方,由牛顿第三定律可知,磁体受到的反作用力斜向右下方,磁体有向右的运动趋势,则磁体受到的摩擦力水平向左;磁体对桌面的压力大于磁体的重力,因此桌面对磁体的弹力大于磁体重力;如图所示,当导线在N极上方时,导线所受安培力方向斜向右上方,由牛顿第三定律可知,磁体受到的反作用力斜向左下方,磁体有向左的运动趋势,则磁体受到的摩擦力水平向右;磁体对桌面的压力大于磁体的重力,因此桌面对磁体的弹力大于磁体重力;由以上分析可知,磁体受到的摩擦力先向左后向右,桌面对磁体的弹力始终大于磁体的重力,故A、B、D错误,C正确.方法点拨安培力作用下通电导体运动情况的判定方法电流元法分割为电流元安培力方向⃗⃗⃗⃗⃗ 整段导体所受合力方向⃗⃗⃗⃗⃗ 运动方向特殊位置法特殊位置⃗⃗⃗⃗⃗ 安培力方向⃗⃗⃗⃗⃗ 运动方向等效法环形电流⇌小磁针条形磁铁⇌通电螺线管⇌多个环形电流结论法同向电流相互吸引,异向电流相互排斥,两个不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势转换研究对象法先分析通电直导线所受的安培力,再用牛顿第三定律,确定磁体受通电直导线的作用力考点3安培力作用下的平衡和加速问题安培力作用下导体的平衡和加速问题的分析思路5画出下列图中通电导线的平面受力分析图.(假设导轨光滑)图甲图乙图丙图丁答案命题点1安培力作用下的平衡问题10.如图甲所示,两光滑平行金属导轨间的距离为L,金属导轨所在的平面与水平面夹角为θ,导体棒ab与导轨垂直并接触良好,其质量为m,长度为L,通过的电流为I,重力加速度为g.沿导体棒ab中电流方向观察,侧视图如图乙所示,为使导体棒ab保持静止,需加一匀强磁场,若磁场方向垂直于导轨平面向上,求磁感应强度B1的大小.图甲图乙图丙答案mgsinθIL解析对导体棒ab受力分析如图所示.根据平衡条件可得mg sinθ=B1IL.解得B1=mgsinθIL命题拓展情境变化,设问拓展(1)若题中磁场方向改为竖直向上,如图丙所示,求磁感应强度B2的大小;(2)若只改变磁场,且磁场的方向始终与导体棒ab垂直,欲使导体棒ab保持静止,求磁场方向变化的最大范围.(2)从水平向左变化到与导轨平面平行向上(不包含沿导轨平面向答案(1)mgtanθIL上这个方向)图1解析(1)对导体棒ab受力分析如图1所示.根据平衡条件可得mg tanθ=B2IL.解得B2=mgtanθIL(2)使导体棒ab保持静止状态,需F合=0,即三力平衡,安培力与另外两个力的合力等大反向,如图2所示,因为导体棒ab的重力与导轨平面对其的支持力的合力方向在α角范围内(垂直于导轨平面方向取不到),故安培力的方向在α'角范围内(垂直于导轨平面方向取不到).根据左手定则,可知磁场方向可以在α″角范围内(沿导轨平面向上方向取不到)变动,所以磁场方向可从水平向左变化到与导轨平面平行向上(沿导轨平面向上方向取不到).命题点2安培力作用下的加速问题11.[多选]电磁轨道炮工作原理可简化为如图所示(俯视图).两条平行的水平轨道被固定在水平面上,炮弹(安装于导体杆ab上)由静止向右做匀加速直线运动,到达轨道最右端刚好达到预定发射速度v ,储能装置储存的能量恰好释放完毕.已知轨道宽度为d ,长度为L ,磁场方向竖直向下,炮弹和导体杆ab 的总质量为m ,运动过程中导体杆始终与轨道垂直且接触良好,所受阻力为重力的k (k <1)倍,储能装置输出的电流为I ,重力加速度为g ,不计一切电阻、忽略电路的自感.下列说法正确的是( BCD )A.电流方向由b 到aB.磁感应强度的大小为mv 2+2Lkmg2LIdC.整个过程通过导体杆ab 的电荷量为2IL vD.储能装置刚开始储存的能量为kmgL +12mv 2解析 导体杆ab 向右做匀加速直线运动,受到的安培力向右,利用左手定则可判断出流过导体杆ab 的电流方向由a 到b ,故A 错误;导体杆ab 向右做匀加速直线运动,根据速度—位移公式可得2aL =v 2,根据牛顿第二定律可得F 安-kmg =ma ,又F 安=BId ,联立解得B =mv 2+2Lkmg 2LId ,故B 正确;根据运动学公式可得t =v a =2Lv ,根据电荷量的计算公式可得q=It =2IL v,故C 正确;因为不计一切电阻、忽略电路的自感,根据能量守恒可知,储能装置刚开始储存的能量为E =kmgL +12mv 2,故D 正确. 命题点3 安培力与动量定理的综合应用问题12.如图所示,质量为m ,长为L 的金属棒MN ,通过两根柔软的轻质导线悬挂于a 、b 两点,a 、b 间接有电压为U 、电容为C 的电容器,整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中,接通S ,电容器瞬间完全放电后又断开S ,已知重力加速度为g .求MN 能摆起的最大高度.答案B 2C 2U 2L 22m 2g解析 金属棒MN 之所以摆起,是由于电容器放电时,金属棒所受安培力对金属棒产生一个水平冲量,I 冲=B I L ·Δt =BLq (式中q 是电容器的放电量)设电容器放电结束时,金属棒的速度为v ,则在放电过程中,由动量定理得 B I L ·Δt =mv ①CU =I ·Δt ②设MN 摆起的最大高度为h ,则在上摆过程中,由机械能守恒定律得12mv 2=mgh ③联立①②③解得h=B 2C2U2L2 2m2g.1.[安培力+受力分析/2021江苏]在光滑水平桌面上将长为πL的软导线两端固定,固定点的距离为2L,导线通有电流I,处于磁感应强度大小为B、方向竖直向下的匀强磁场中,导线中的张力为(A)A.BILB.2BILC.πBILD.2πBIL解析软导线在安培力与两固定点拉力的作用下处于平衡状态,张紧后的形状为一半圆,如图所示,由于软导线在磁场中的有效长度为2L,故受到的安培力F=2BIL,则两固定点对软导线的拉力均为T=F2=BIL,因此软导线中张力T'=T=BIL,A正确,B、C、D错误.2.[磁感应强度叠加+安培定则/2021福建/多选]如图,四条相互平行的细长直导线垂直坐标系xOy平面,导线与坐标平面的交点为a、b、c、d四点.已知a、b、c、d为正方形的四个顶点,正方形中心位于坐标原点O,e为cd的中点且在y轴上;四条导线中的电流大小相等,其中过a点的导线的电流方向垂直坐标平面向里,其余导线的电流方向垂直坐标平面向外,则(BD)A.O点的磁感应强度为0B.O点的磁感应强度方向由O指向cC.e点的磁感应强度方向沿y轴正方向D.e点的磁感应强度方向沿y轴负方向解析由安培定则可知,通电直导线b、c在O点产生磁场的磁感应强度大小相等、方向相反,相互抵消;通电直导线a、d在O点产生的磁场方向均垂直ad连线指向c,故O点的磁感应强度不为零,方向由O指向c,选项A错误,B正确.通电直导线c、d在e点产生磁场的磁感应强度大小相等、方向相反,相互抵消;通电直导线a、b在e点产生磁场的磁感应强度大小相等、方向分别垂直ae连线和be连线,二者的合磁场方向沿y轴负方向,故选项C错误,D正确.3.[左手定则+动力学临界问题/2022湖北/多选]如图所示,两平行导轨在同一水平面内.一导体棒垂直放在导轨上,棒与导轨间的动摩擦因数恒定.整个装置置于匀强磁场中,磁感应强度大小恒定,方向与金属棒垂直、与水平向右方向的夹角θ可调.导体棒沿导轨向右运动,现给导体棒通以图示方向的恒定电流,适当调整磁场方向,可以使导体棒沿导轨做匀加速运动或匀减速运动.已知导体棒加速时,加速度的最大值为√33g;减速时,加速度的最大值为√3g,其中g为重力加速度大小.下列说法正确的是(BC)A.棒与导轨间的动摩擦因数为√36B.棒与导轨间的动摩擦因数为√33C.加速阶段加速度大小最大时,磁场方向斜向下,θ=60°D.减速阶段加速度大小最大时,磁场方向斜向上,θ=150°解析设安培力的大小为F,当导体棒加速且安培力方向朝右上时,导体棒的加速度才有可能最大,导体棒受力图如图甲所示,根据牛顿第二定律得F cos φ-f1=ma1,F sin φ+N1=mg,而f1=μN1,整理得F( cos φ+μ sin φ)-μmg=ma1,加速度的最大值为a1max=F√1+μ2m -μg=√33g.当导体棒减速且安培力方向朝左下时,导体棒的加速度才有可能最大,导体棒受力图如图乙所示,根据牛顿第二定律得F cos β+f2=ma2,N2=F sin β+mg,而f2=μN2,整理得F( cos β+μ sin β)+μmg=ma2,加速度的最大值为a2max=F√1+μ2m +μg=√3g.联立解得μ=√33,所以选项B正确,A错误.加速阶段加速度大小最大时,φ=30°,根据左手定则可知磁场方向斜向下,θ=60°,即选项C正确.减速阶段加速度大小最大时,β=30°,根据左手定则可知磁场方向斜向上,θ=120°,即选项D 错误.图甲图乙4.[电磁感应中的动力学+能量/2023北京]2022年,我国阶段性建成并成功运行了“电磁撬”,创造了大质量电磁推进技术的世界最高速度纪录.一种两级导轨式电磁推进的原理如图所示.两平行长直金属导轨固定在水平面上,导轨间垂直安放金属棒.金属棒可沿导轨无摩擦滑行,且始终与导轨接触良好.电流从一导轨流入,经过金属棒,再从另一导轨流回,图中电源未画出.导轨电流在两导轨间产生的磁场可视为匀强磁场,磁感应强度B与电流i的关系式为B=ki(k为常量).金属棒被该磁场力推动.当金属棒由第一级区域进入第二级区域时,回路中的电流由I变为2I.已知两导轨内侧间距为L,每一级区域中金属棒被推进的距离均为s,金属棒的质量为m.求:(1)金属棒经过第一级区域时受到安培力的大小F.(2)金属棒经过第一、二级区域的加速度大小之比a1∶a2.(3)金属棒从静止开始经过两级区域推进后的速度大小v.答案(1)F=kI2L(2)a1∶a2=1∶4(3)v=√10kI2Lsm解析(1)第一级区域中的磁感应强度为B1=kI,金属棒受到的安培力大小为F=B1IL=kI2L(2)金属棒在导轨上运动,安培力提供加速度,金属棒在第一级区域中,根据牛顿第二定律有F=ma1金属棒在第二级区域中所受的安培力为F'=k·2I·2I·L根据牛顿第二定律可知F'=ma2解得a1∶a2=1∶4(3)金属棒从静止开始加速,根据动能定理可知mv2Fs+F's=12.解得v=√10kI2Lsm1.如图,在薄金属圆筒表面上通以与其轴线平行、分布均匀的恒定电流时,该圆筒的形变趋势为(C)A.沿轴线上下压缩B.沿轴线上下拉伸C.沿半径向内收缩D.沿半径向外膨胀解析同向电流之间相互吸引,所以圆筒有沿半径向内收缩的趋势,C正确.2.一水平放置的橡胶圆盘上带有大量均匀分布的正电荷,圆盘所在平面内放置有一通有恒定电流的直导线,电流方向如图所示.当圆盘绕其中心O顺时针转动时,通电直导线所受安培力的方向(B)A.指向圆盘B.背离圆盘C.垂直于圆盘所在平面向里D.垂直于圆盘所在平面向外解析橡胶圆盘绕其中心O顺时针转动时,在橡胶圆盘上会形成若干个同心顺时针环形电流,所有的等效环形电流在直导线处的磁场方向都是垂直于圆盘所在平面向外的,根据左手定则,伸出左手,手心向下,四指指向直导线电流方向,则大拇指指向右侧,即通电直导线所受安培力的方向为背离圆盘,A、C、D错误,B正确.3.[情境创新/2024甘肃张掖模拟]某电动机原理如图所示,条形磁铁竖直固定在圆柱形水银槽中心,N极向上.一根金属杆斜插在水银中,杆的上端与固定在水银槽圆心正上方的铰链相连.电源负极与金属杆上端相连,与电源正极连接的导线插入水银中.从上往下看,金属杆(D)A.在金属杆和导线所在平面内绕铰链向上摆动B.在金属杆和导线所在平面内绕铰链向下摆动C.绕铰链和磁铁连线顺时针转动D.绕铰链和磁铁连线逆时针转动解析电源、金属杆、导线和水银组成闭合电路,金属杆中有斜向上方的电流,金属杆处的磁感线方向斜向上,根据左手定则可知,图示位置金属杆受垂直纸面向里的安培力,从上往下看,金属杆将绕铰链和磁铁连线逆时针转动,故D正确,A、B、C错误.4.[2024贵阳摸底考试]如图所示,a、b、c是三根平行长直导线的截面,通过它们的电流大小都相等,a、c中电流方向垂直纸面向里,b中电流方向垂直纸面向外,且aO=bO=cO.若直导线a在O点产生的磁感应强度大小为B0,则此时O点的磁感应强度大小应为(B)A.3B0B.√5B0C.√2B0D.B0。

几组特殊形状永磁体的磁场及梯度COMSOL分析

几组特殊形状永磁体的磁场及梯度COMSOL分析

几组特殊形状永磁体的磁场及梯度COMSOL分析宋浩;黄彦;邓志扬;朱泉水【摘要】利用COMSOL“静磁场,无电流”的应用模式给出了相对放置的永磁条、具有磁回路结构的磁轭磁极、环形磁体的磁场分布图,并分析了这3组磁体的磁场和梯度情况,更关注于均匀磁场和恒梯度磁场的分布情况.【期刊名称】《大学物理实验》【年(卷),期】2013(026)004【总页数】5页(P3-7)【关键词】永磁体;磁场;磁场梯度;COMSOL【作者】宋浩;黄彦;邓志扬;朱泉水【作者单位】南昌航空大学,江西南昌330063;南昌航空大学,江西南昌330063;南昌航空大学,江西南昌330063;南昌航空大学,江西南昌330063【正文语种】中文【中图分类】O4-39;O441.5在电磁学中,通电直导线、环形线圈(如亥姆赫兹线圈)以及通电螺线管等可以定量地计算出它们的周围空间的磁场大小及分布,并有十分形象的图形表示。

但是特殊形状的磁体及组合的静磁场分布的定量计算是十分复杂的,因此也无法准确而形象地描绘出磁场分布图[1]。

在实际的应用研究中,往往要构造一些特殊形状和组合的永磁体达到科学研究实验和工业应用所需磁场分布要求,比如科学史上著名的原子空间取向量子化实验——史特恩—盖拉赫实验[2]、工业应用较为广泛的磁悬浮陀螺[3,4]。

尽管工程电磁场计算提供了各种数值计算方法,方便程度和功能与目前计算机的有限元模拟软件如ANSYS、ANSOFT Maxwell、COMSOL等仍无法比拟。

因为COMSOL Multiphysics具有优秀的多物理场耦合功能,且目前利用此软件在静磁场分布公开发表的文献较少,文章中特列举了几组形状比较特殊的永磁体及其组合,利用COMSOL模拟它们周围空间磁场分布并分析磁场梯度的变化。

以下模型都是在COMSOL的“磁场,无电流”的应用模式下进行模拟的。

它的外部环境条件为:温度T=293.15K,绝对压力PA=1atm。

方形磁体的空间磁场分布

方形磁体的空间磁场分布

方形磁体的空间磁场分布空间磁场分布是物理学和电学中非常重要的概念,通过对不同物体的空间磁场分布的研究,我们可以深入理解大自然中物质的微观结构和它们之间的相互作用。

本文将就方形磁体的空间磁场分布进行详细的研究,以便更好地理解其形成的原因,并且为更多的实际应用奠定基础。

方形磁体是一种由方形金属材料制成的磁体,其中含有持续的磁性。

当这些金属材料被适当地置于外部磁场中时,方形磁体会产生空间磁场分布,它也可以用来研究磁场的分布。

方形磁体的空间磁场分布解析式可以由以下参数来描述:其外围边界的长度和宽度,以及方形磁体的厚度。

根据定义,在外部磁场的影响下,方形磁体的磁场分布可以用三维空间的磁体来表示。

在空间磁场分布的计算过程中,首先要确定方形磁体内部磁场B_i的具体分布,这可以通过直接电流模式(DCM)、矢量场模式(VFM)以及线性元模式(LMM)等方式来完成。

由于方形磁体的外部磁场B_o 的分布是与其内部磁场B_i的分布互相影响的,所以要用迭代计算的方法求解B_o的具体分布,从而得出最终的空间磁场分布解析式。

此外,还可以使用有限元法(FEM)来模拟计算方形磁体的空间磁场分布,这种方法需要将物体抽象成若干个有限元,然后借助一定的数值运算技术来求解空间磁场分布解析式。

这种方法好处在于它可以帮助我们更有效地计算出方形磁体的空间磁场分布,并且可以得出比迭代计算更精确的结果。

在实际应用方面,方形磁体的磁场分布可以用于制造磁控制装置,这种装置可以用来控制机械设备、电子设备等多种应用,从而节省人力和物力,加快生产速度和工作效率。

同时,方形磁体也可以用于制造磁传感器,磁传感器可以用来检测外部磁场的强度和方向,从而可以实现自动控制等功能。

总之,通过对方形磁体的空间磁场分布的深入研究,可以更好地理解其形成的原因,并为更多的实际应用奠定基础。

借助DCM、VFM、LMM等方式,我们可以计算出方形磁体内部磁场B_i的具体分布,然后借助迭代求解的方法计算B_o的具体分布,最终得出方形磁体的空间磁场分布解析式。

直线电流等6种磁场的磁感线分布演示

直线电流等6种磁场的磁感线分布演示

效 ⑷地磁场的水平分量总是由南指向北,竖直分量在南
半球是垂直于地面向上,在北半球是垂直于地面向下
要求记住5个地方的磁场方向
**地球的磁场特点(与条形磁铁等效)
地磁场的水平分量总 是由南指向北,而竖 直分量在南半球是垂 直于地面向上,在北 半球是垂直于地面向 下。见图。
地理北极
注意:以下各图都是从外太空 观察地表的结果。
电 方向就是螺线管内部的磁感线的方向。也 流 就是说,大拇指指向通电螺线管的北极。
b
a
c
e
d
螺线管内外 向左视平面图 向右视平面图 小磁针指向
**(6)地球的磁场
地地 理理 北南 极极
—— ——
可以等效成一个上南下北的条形磁铁 可以等效成一个上南下北的条形磁铁
磁磁 场场 的的 南北 极极
链链 接接 一二
下面就来认识了解6种典型的磁感线分布情况。
要求认识以下六种磁场的磁感线
⑴条形磁铁、 ⑵蹄形磁铁、 ⑶通电直导线、 ⑷通电圆环、 ⑸通电螺线管、 ⑹地球的磁场。
(1)条形磁铁(可与通电螺线管等效)
链接1、条形磁铁周围的磁场线 链接2、条形磁铁周围的小磁铁
磁感线的特点总结如下:
1、磁铁外部的磁感线是从磁铁的北极出来,进入磁 铁的南极的;磁铁内部的磁感线是从磁铁的南极指向 北极的。2、内外形成闭合曲线。3、磁铁内部集中 了所有的磁感线,因而磁铁内部的磁场是最强的。
提出问题
• 生活中两磁铁没有直接接触,却有相互 作用力,它们间的相互作用是靠什么来实 现的呢?
• 磁体 磁场 磁体
1、磁场的概念:磁场是由磁体或 电流产生的一种特殊物质。
2、磁场的来源:
磁体周围空间存在磁场 电流周围空间也存在磁场

磁体周围的磁场分布

磁体周围的磁场分布

磁体周围的磁场分布
磁体周围的磁场方向和大小与该点位置有关,当地球表面接近赤道时,由于地理南北极是相反的,所以磁体在该点附近的磁场分布是南强北弱.因此我们说在北半球,一般情况下磁针指示北方;而在南半球则相反.根据磁场中磁力线是闭合曲线这一特点可知:磁针N 极受到磁场力作用,使得磁针N 极指向地理南端;同理, S 极受到磁场力作用,使得磁针S 极指向地理北端.所以,我们把磁体的N 极叫做地理北极, S 极叫做地理南极.故答案为:北强南弱;地理北极;地理南极;地理北极;地理南极.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方形磁体的空间磁场分布
磁体作为一种重要的物理现象,在许多领域具有重要的作用,其中方形磁体是比较重要的一种,因此关于方形磁体的空间磁场分布是一个重要的研究课题。

本文将针对方形磁体的空间磁场分布做一个探讨。

方形磁体是指一个方形截面的磁体,其特征是磁体中心和磁力线的平面分布。

本文主要讨论其空间磁场分布,以便于更好地了解方形磁体的结构特征。

考虑一个方形磁体,其空间磁场分布如下:磁场分布图2-1所示,由空间磁场分布可以看出,其磁场分布在空间上主要是由两个部分组成,分别是磁场一般沿着磁体中心分布,以及磁力线分布沿着磁体表面分布。

首先,磁体中心分布的磁场大小随着距离的增加而减小,表现为一个类似于椭圆形的曲线,可以推断,离磁体中心越近,磁场越大。

其次,磁力线分布沿磁体表面的磁场分布大小随着距离的增加而やてというノットゆ。

磁场分布图2-2所示,从磁场分布图中可以看出,磁力线分布沿磁体表面要比磁体中心分布的磁场要大,也就是说,离磁体表面越近,磁场越大。

此外,从磁场分布图2-2可以看出,磁力线分布沿磁体表面是有规律分布的,其中最强磁场不在正对磁体中心处,而是位于正对磁体边缘处,也就是说,磁体表面上离最强磁体越近,该处磁场越大;反之,离最强的磁场空间越远,该处磁场越小。

上述为方形磁体的空间磁场分布简单概述,可以看出,在磁体中心和表面上,磁场的分布特征有所不同,因此在研究方形磁体的结构特征时,可以从空间磁场分布部分来考虑。

以上就是有关方形磁体的空间磁场分布的探讨,通过分析不同空间磁场分布特征,可以更准确地了解方形磁体的结构特征,以此来更好地利用方形磁体的性质,实现更多应用。

综上所述,方形磁体的空间磁场分布是一个重要的研究课题,它是认识方形磁体结构特点的前提,为此,重要的是要把握在磁体中心和表面处不同空间磁场分布特征。

最后,期待未来在深入研究方形磁体的空间磁场分布的基础上,能有更多应用研究,实现充分利用方形磁体特征来满足许多应用需要。

相关文档
最新文档