气辅注塑成型

合集下载

气辅注塑的缺陷及解决方法

气辅注塑的缺陷及解决方法

气辅注塑的缺陷及解决方法一、引言气辅注塑是一种常用的塑料加工技术,通过注塑机将熔融的塑料材料注入模具中,利用注塑机的高压将塑料材料压实成型。

在这个过程中,气辅注塑存在一些缺陷,本文将重点讨论这些缺陷及其解决方法。

二、缺陷一:翘曲变形在气辅注塑过程中,塑料材料在注射模具中冷却固化,如果冷却速度不均匀或受到外力作用,就容易出现翘曲变形的情况。

这种翘曲变形不仅会影响产品的外观质量,还会导致产品尺寸不准确。

解决方法:1.优化模具设计,增加冷却系统,确保塑料材料能够均匀冷却,避免翘曲变形的发生。

2.调整注射工艺参数,控制注射温度和压力,使塑料材料充分流动,减少翘曲变形的可能性。

3.合理安排模具的开模顺序,避免产品在模具中停留时间过长,减少翘曲变形的机会。

三、缺陷二:气泡气辅注塑过程中,由于塑料材料的熔融状态和注射速度,有可能在产品内部产生气泡。

这些气泡不仅会影响产品的外观质量,还可能导致产品的强度下降。

解决方法:1.优化模具设计,增加通气孔,确保气体能够顺利排出,减少气泡的产生。

2.调整注射工艺参数,控制注射速度和压力,使塑料材料充分流动,减少气泡的形成。

3.采用真空辅助注塑技术,利用负压吸附气泡,确保产品的内部质量。

四、缺陷三:热缩变形在气辅注塑过程中,由于热胀冷缩的原理,塑料材料在冷却固化后会发生一定程度的热缩变形。

这种热缩变形不仅会影响产品的尺寸精度,还可能导致产品的装配困难。

解决方法:1.优化模具设计,增加冷却系统,加强对塑料材料的冷却,减少热缩变形。

2.调整注射工艺参数,控制注射温度和压力,使塑料材料充分流动,并在冷却过程中尽量减少热缩变形的发生。

3.采用后处理工艺,如热处理或压力调整,对产品进行形状稳定化处理,减少热缩变形的影响。

五、缺陷四:尺寸偏差在气辅注塑过程中,由于材料的收缩率和模具的磨损等因素,产品的尺寸往往会有一定的偏差。

这种尺寸偏差不仅会影响产品的装配性能,还可能导致产品无法正常工作。

气体辅助注塑工艺原理及优点.

气体辅助注塑工艺原理及优点.
气体辅助注塑工艺原理及优点
1 气体辅助注塑工艺原理 第一阶段 ;塑料注射:熔体进入型腔,遇到温 第二阶段;气体入射:惰性气体进入熔融的塑料,
度较低的模壁,形成一个较薄的凝固层。
推动中心未凝固的塑料进入尚未充满的型腔。
塑料熔体 熔体凝固层
热熔体
熔体凝固层
熔体流动前沿 尚未充满的型腔
第三阶段;气体入射结束:气体继续推动塑 料熔体流动直到熔体充满整个型腔。
射嘴进气方式,即使用专用的自封闭式或主动式气辅射嘴,在塑料注射结束后,将 高压气体依靠射嘴直接进入塑料内部,按气道形成一个延展的封闭空间-气腔并保持一 定压力,直至冷却,在模具打开之前,通过座台后退使射嘴与制品料道强行分离,使气 体排出制品。
图4自封闭气辅射嘴
图5主动式气辅射嘴 7
(2) 气针进气方式 气针进气方式即在模具的某个特定位置,安装排气装置-气针。当塑料注入型腔后,
2
气辅技术应用
气体辅助注射可以应用在除特别柔软的塑料以外的任何热塑性塑料和部分热 固性塑料。
根据气辅成型制品的结构形状不同,大致分为3类: (1).棒类制品,类似把手之类大壁厚制件; (2).板类制品,容易产生翘曲变形和局部表面收缩的大平面制件; (3).特殊制品,由传统注塑技术难以一次成型的特殊结构的制件。
(5).气道截面尺寸变化应平缓过渡,以免引起收缩不均。 (6).气道入口不应设置在外观面或制件承受机械外力处。
(7).进气口位置应接近浇口,以保证气体与熔体流动方向一致,但两者距离应>30mm, 以避免类制品
气辅注塑成型技术的主要应用之一就是板类制件的成型。因为气体总是沿 着阻力最小的方向前进,容易在较厚的部位进行穿透,因此,在板类制品设计时常 将加强筋作为气道,气道一般设在制品的边缘或壁的转角处。对制品的设计也就是 对加强筋和肋板的设计,即气道的设计。基本原则如下: (1).在设计制作加强筋时,应避免设计又细又密的加强筋。 (2).“手指”效应是大平面制件容易产生的主要问题。 (3).当制件仅由一个气针进气而形成多个加强筋或肋板(气道)时,气道不能形 成回 路。 (4).为避免熔体聚集产生凹陷,气道末端的外形应采用圆角过渡。 (5).采用多点进气时,气道之间的距离不能太近。 (6).气道布置尽量均匀,尽量延伸至制品末端。

气辅注塑加工工艺与一般注塑工艺

气辅注塑加工工艺与一般注塑工艺

气辅注塑加工工艺与一般注塑工艺气辅注塑加工工艺与一般注塑工艺气辅注塑加工工艺简介•气辅注塑加工工艺是一种新型的注塑加工方法。

•在传统注塑基础上,引入气辅装置,通过气体的辅助作用,实现更高效、更精确的注塑过程。

气辅注塑加工工艺的优势1.产品质量更高–气辅注塑加工工艺通过辅助气体的控制,可以更好地控制产品的密度和硬度,提高产品质量。

–与一般注塑相比,气辅注塑制品的表面质感更好,不易出现瑕疵和缺陷。

2.生产效率更高–气辅注塑加工工艺可以减少注塑周期,提高生产效率。

–气辅装置的运用使得材料更均匀地填充模具,降低了制品收缩率和成型周期。

3.节约原材料–气辅注塑加工工艺由于材料分布更均匀,减少了材料的浪费。

–相比较于一般注塑,气辅注塑制品在制造时所需的原材料用量更少。

4.环保节能–气辅注塑加工工艺不需要额外的加热或冷却设备,节约了能源。

–通过优化制程,减少了废品率,降低了对环境的负面影响。

气辅注塑加工工艺的应用领域•电子产品:手机壳、电池壳、硬盘壳等。

•汽车配件:车灯壳、仪表板、车门把手等。

•家居用品:儿童玩具、家具配件、文具等。

一般注塑工艺的特点与局限性•一般注塑工艺在制品的表面平整度和精度方面有一定的局限性。

•一般注塑制造过程中,因为材料无法完全填充到模具中的每个角落,易产生瑕疵和缺陷。

结语气辅注塑加工工艺相对于一般注塑工艺具有众多优势,无论是产品质量、生产效率还是原材料的节约都占有明显的优势。

在如今注塑加工行业日益竞争激烈的背景下,气辅注塑加工工艺的应用前景非常广阔。

希望本文能对读者对气辅注塑加工工艺与一般注塑工艺有更深入的了解。

气辅注塑加工工艺的工作原理1.注塑过程中,将塑料颗粒加热融化。

2.融化的塑料通过注塑机的螺杆被注入模具腔中。

3.气辅装置通过喷嘴向注入的塑料中喷入压缩空气。

4.压缩空气通过气门控制,辅助塑料充填模具,使得塑料更加均匀地填充到模具的每个角落。

5.注塑机冷却塑料,然后开模取出制品。

气辅注塑的工艺流程

气辅注塑的工艺流程

气辅注塑的工艺流程英文回答:Gas-Assisted Injection Molding (GAIM)。

Process Flow:1. Pre-Injection: The molten plastic is injected into the mold cavity, partially filling it.2. Gas Injection: A high-pressure inert gas (typically nitrogen or carbon dioxide) is injected into the molten plastic through strategically placed gas channels.3. Expansion: The gas expands inside the molten plastic, creating a hollow core or void.4. Packing and Cooling: The mold is closed and pressurized to pack the plastic around the gas core. Thepart cools and solidifies.5. Demolding: The part is ejected from the mold.Benefits of GAIM:Reduced material usage and weight.Improved part strength and stiffness.Reduced cycle time.Enhanced surface finish.Increased design flexibility.中文回答:气辅注塑成型工艺流程:1. 预注塑,将熔融塑料注入模腔,部分填充模腔。

2. 气体射入,通过放置在关键位置的气体通道,将高压惰性气体(通常为氮气或二氧化碳)注入熔融塑料中。

气辅注塑成型工艺

气辅注塑成型工艺

气辅注塑成型工艺这种成型工艺,对于很多工程师来说很陌生,因为平时大家接触的产品很少会用到这种成型工艺,包括我本人也是一样,直到我接触到一款产品,才慢慢了解,就是以下这个锅体。

锅体的把手部分,除了2个螺丝塞,整个把手是一个完整的塑胶件,且外观并没有缩水等缺陷,看下侧面和背面图。

咋一看,以为内部是实心的,实际上并不是,而是空心的,是利用了气体辅助注塑成型技术。

01气辅成型的原理气体辅助注塑系统,是把惰性气体(通常用氮气)经由分段压力控制系统直接注射入模腔内的塑化塑料里,使塑件内部膨胀而造成中空,但仍然保持产品表面的外形完整无缺。

气辅注塑成型可被认为是中空吹塑成型的变型,其过程是先向模具腔中注入经过准确计量的占模腔一定比例的塑胶熔体,这一过程称为“欠料注塑”,再直接往熔融塑胶中注入一定体积和压力的高压氮气,气体在塑胶熔体的包围下沿着阻力最小的方向扩散前进。

由于靠模壁部分的塑胶温度低,表面粘度高,而製作较厚部分中心塑胶熔体的温度高,粘度低,所以气体容易对中心塑胶熔体进行穿透和排空,在制件的厚部形成中空气道,而被气体所排空的熔融塑胶又被气体压力推向模具末端直至充满模具型腔,在冷却阶段压缩气体对塑胶熔体进行保压补缩。

待制品冷却凝固后再卸气,然后开模顶出。

以上气辅成型过程实际上分为四个阶段:熔体短射、气体注射、气体保压、气体排出和制件顶出。

02气辅成型的方法除了常规的欠料注塑成型法,还有:1.副腔成型法(也叫满料注塑法)2.型芯成型法3.熔体回流成型法上面的锅体的把手猜测是采用了副腔成型法(也叫满料注塑法):具体细节可参考下图:03气辅注塑成型与普通注塑成型的区别主要区别在于多了一套气辅设备:(1)普通注塑机(计料精度稍高些为好)。

(2)氮气控制系统,包括自封闭式气辅喷嘴。

(3)高压氮气发生器。

(4)工业氮气钢瓶以及提供增压动力的空气压缩机。

(5)为气体辅助注射设计制造的模具。

(6)气辅注塑气辅喷嘴喷嘴进气方式,即使用专用的自封闭式气辅喷嘴,在塑料注射结束后,将高压气体依靠喷嘴直接进入塑料内部,按气道形成一个延展的封闭空间—气腔并保持一定压力,直至冷却,在模具打开之前,通过座台后退使喷嘴与制品料道强行分离,使气体排出制品。

气体辅助注塑成型技术

气体辅助注塑成型技术

1气体辅助注塑成型是通过把高压气体引入到制件的厚壁部位,在注塑件内部产生中空截面,完全充填过程、实现气体保压、消除制品缩痕的一项新颖的塑料成型技术。

传统注塑工艺不能将厚壁和薄壁结合在一起成型,而且制件残余应力大,易翘曲变形,表面时有缩痕。

新发展的气辅技术通过把厚壁的内部掏空,成功地生产出厚壁、偏壁制品,而且制品外观表面性质优异,内应力低。

轻质高强。

现已开发成功气辅产品结构和模具设计包括浇注系统、进气方式和气道分布设计技术,气辅注塑工艺设计技术,气辅注塑工艺设计技术,气辅注塑过程计算机仿真技术,气辅注塑产品缺陷诊断与排除技术,气辅工艺专用料技术。

电视机、家电、汽车、家具、日常用品、办公用品、玩具等为塑料成型开辟了全新的应用领域,气辅注塑技术特别适用于管道状制品、厚壁、偏壁(不同厚度截面组成的制件)和大型扁平结构零件。

气体辅助装置:包括氮气发生和增压系统,压力控制单元和进气元件。

投资约40--200万元(视规模和对设备要求的档次不同而不同)。

气辅工艺能完全与传统注塑工艺(注塑成型机)衔接。

减轻制品重量(省料)可高40%,缩短成型周期(省时达30%,消除缩痕,提高成品率;降低注塑压力达60%,可用小吨位注塑机生产大制件,降低操作成本;模具寿命延长、制造成本降低,还可采用如粗根、厚筋、连接板等更稳固的结构,增加了模具设计自由度。

通常6-18个月可收回增加的设备成本(具体经济效益随制件而议)。

2气体辅助注塑系统,这个先进的系统和技术,是把氮气经由分段压力控制系统直接注射入模腔内的塑化塑料裹,使塑件内部膨胀而造成中空,但仍然保持产品表面的外形完整无缺。

应用气体辅助注塑技术,有以下优点:1)节省塑胶原料,节省率可高达50%。

2)缩短产品生产周期时间。

3)降低注塑机的锁模压力,可高达60%。

4)提高注塑机的工作寿命。

5)降低模腔内的压力,使模具的损耗减少和提高模具的工作寿命。

6)对某些塑胶产品,模具可采用铝质金属材料。

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介气体辅助注塑成型技术简介类型:气体辅助注塑成型是欧美近期发展出来的一种先进的注塑工艺,它的工作流程是首先向模腔内进行树脂的欠料注射,然后利用精确的自动化控制系统,把经过高压压缩的氮气导入熔融物料当中,使塑件内部膨胀而造成中空,气体沿着阻力{TodayHot}最小方向流向制品的低压和高温区域。

当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面,这些置换出来的物料充填制品的其余部分。

当填充过程完成以后,由气体继续提供保压压力,解决物料冷却过程中体积收缩的问题。

气体辅助注塑成型优点为什么人们对于气体辅助注射成型的兴趣如此之大呢?其主要的原因在于这种方法出现时所许诺的种种优点。

成型者希望以低制造成本生产高质量的产品。

在不降低质量的前提下用现代注塑机和成型技术可以缩短生产周期。

通过使用气体辅助注射成型的方法,制品质量得到提高,而且降低了模具的成本。

使用气体辅助注射成型技术时,它的优点和费用的节约是非常显着的。

1、减少产品变形:低的注射压力使内应力降低,使翘曲变形降到最低;2、减少锁模压力:低的注射压力使合模力降低,可以使用小吨位机台;3、提高产品精度:低的残余应力同样提高了尺寸公差和产品的稳定性;4、减少塑胶原料:成品的肉厚部分是中空的,减少塑料最多可达40%;5、缩短成型周期:与实心制品相比成型周期缩短,不到发泡成型一半;6、提高设计自由:气体辅助注射成型使结构完整性和设计自由度提高;7、厚薄一次成型:对一些壁厚差异大的制品通过气辅技术可一次成型;8、提高模具寿命:降低模腔内压力,使模具损耗减少,提高工作寿命;9、降低模具成本:减少射入点,气道取代热流道从而使模具成本降低;10、消除凹陷缩水:沿筋板和根部气道增加了刚度,不必考虑缩痕问题。

第一阶段:按照一般的注塑成型工艺把一定量的熔融塑胶注射入模穴;第二阶段:在熔融塑胶尚未充满模腔之前,将高压氮气射入模穴的中央;第三阶段:高压气体推动制品中央尚未冷却的熔融塑胶,一直到模穴末端,最后{HotTag}填满模腔;第四阶段:塑胶件的中空部分继续保持高压,压力迫使塑料向外紧贴模具,直到冷却下来;第五阶段:塑料制品冷却定型后,排除制品内部的高压气体,然后开模取出制品。

气体辅助注塑工艺简介

气体辅助注塑工艺简介

气体辅助注塑工艺简介1.气体辅助注塑目前所指的气体辅助注塑:是指将氮气注射入产品内,使产品内部形成中空。

模具打开前,控制器会将塑胶工件内的氮气释放回大气中。

2.气辅注塑成形工艺的优势1)低射胶、低锁模力;2)压力分布均匀、收缩均匀、残余应力低、不易翘曲,尺寸稳定;3)消除凹陷,型面再现性高;4)省塑料,可用强度及价格更低的塑料;5)可用强度和价格更低的模具金属;6)厚薄件一体成型,减少模具及装配线数目;7)可用较厚的筋,角板等补强件,提高制品刚性,使得制件公称厚度得以变薄。

8)增强设计自由度。

3.气辅射胶控制工艺1)短射工艺,即胶料未完全充满型腔时,继之以氮气注射;2)满射工艺,塑胶熔体充满型腔之后,停止注射,继之以氮气注射。

短射工艺的特点:在气辅注塑中,塑胶注射取决于胶件形状及胶料性能,在以下条件才可进行短射。

1)胶件必须有独立完整的气体通道,即气流在穿透胶件时,无分支气道可走。

2)气体通道中多余胶料有足够的溢流空间。

3)胶料流动性优良,粘度不可太低,尽量避免使用含破坏高分子键的填充物的胶料。

4)胶料导热度较低,有可较长时间保持熔融状态的能力。

满射工艺特点:胶件射胶完成,通过气体代替啤机,防止胶件收缩。

其优点在于,啤机保压是以射胶量及压力来防止胶件收缩,气辅保压,则以气体穿透塑胶收缩后的空间,防止胶件表层埸陷。

4.气辅压力分析:现我们看以下气辅压力与啤机压力的对比:1)气辅压力a)低气压800psi=56.34kg/cm2b)中气压1500psi=105.63 kg/cm2c)高气压2500psi=176.06kg/cm22)啤机压力a)100 TON注塑最大压力188Mpa=1917 kg/cm2b)280 TON注塑最大压力150Mpa=1530 kg/cm2c)650TON注塑最大压力153Mpa=1560 kg/cm2从以上压力对比可知,氮气压力只相当于普通啤机注塑压力的十分之一,甚至更少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气辅技术的适用材料
大部分热塑性塑料(增强或不增强的)可以使用气体辅助注射 成型技术, 在某种情况下也可用于热固性塑料, 如下表 所示。
适用于气体辅助注塑成型的材料
为控制气道的形成和避免气体“吹破”, 塑料应有一定的熔体强度, 像聚 氨脂等非常柔软的塑料就不适用。PA 和PBT 类型的易结晶塑料尤其适 用于气辅注塑。气辅注塑最常用的塑料是PA6、PA66 及PP(通常是玻璃 纤维增强的)。
(1)能对端点加压; (2)预防凹痕; (3)代替机械保压; (4)减低锁模力; (5)无须采用较厚部份; (6)减少应力变形:外气注塑可以减少塑料内部用以补偿体 积收缩的运动,使物料承受的模塑应力减少,减少塑件成型 后变形的机会; (7)减少模塑件重量和周期时间; (8)扩大设计的范围:由于可以对肋条和辐板加压,使得这 些设计更易加入,提高了模塑件的坚固度,也扩大了设计的 范围; (9)使质量控制更加容易:对表面加压,使表面的任何变形 都可以见到 而在有需要时还可作质量控制。
( 1) 管状和棒状零件, 如门把手、吊环、吊钩、扶手、导轨、衣架等。这 是因为管状设计使现存的厚截面适于产生气体管道,利用气体的穿透作用 形成中空, 消除表面成型缺陷。节省材料和缩短成型周期。 ( 2) 大型平板类零件, 如桌面、车门板、仪表盘等。利用加强筋作为气体 穿透的气道, 消除了加强筋和零件内部残余应力带来的翘曲变形、熔体 堆积处塌陷等表面缺陷, 增加了强度/ 刚度对质量的比值, 同时可因大幅 度降低锁模力而降低注射机的吨位要求。 ( 3) 形状复杂、薄厚不均、采用传统注射技术会产生缩痕和污点等缺陷 的复杂零件, 如汽车车身、保险杠、家电外壳等。复杂件可看作是棒状 件板类件的有机组合。
冷却气体形成的过程是:常温气体通过一个腔室,在其 中被液氮冷却。 这种冷却气体辅助成型技术的主要优势在于: •当冷却气体穿透熔体时,在模腔内会产生塞流效应,塞流 产生的残余壁厚比传统气体辅助成型要小; •冷却气体也防止了制件内部起泡,并能产生较光滑的内表 面。
实现冷却气体气辅成型技术的设 备,主要是在传统气辅成型的注气系 统中增加一个液氮热交换器,其安装 在和气体注射系统平行的位置,但要 尽可能地靠近气体注嘴。这样,来自 压力生成系统的气体进入液氮热交换 器后,气体温度立即被降低至预先设 定的低温(根据具体的工艺要求而定), 然后冷却气体通过气体喷嘴进入模腔。 冷却不会改变气体压力。
气体辅助注塑成型
注塑成型原理
注塑机利用塑胶加热到一定温度后,能熔融成液体的性质, 把熔融液体用高压注射到密闭的模腔內,经过冷却定型,开 模后顶出得到所需的塑体产品。
注塑成型新技术的发展动向
气辅注塑成型技术 多组分注塑成型技术 粉末注塑成型技术 微孔发泡注塑成型 微注塑成型技术
气体辅助注塑工艺原理
气辅注塑成型技术
气辅注塑成型技术
近年来,气体辅助注塑成型技术发展迅速,出现了 一些创新性技术,如:
•多腔控制气辅成型技术 •冷却气体气辅技术 •气辅共注成型技术
•外部气辅注塑技术
•振动气辅技术
多腔控制气辅成型技术(PEP气辅技术)
传统气体辅助方法,应用于多腔模具中是比较困难的,特别 是在各个模腔尺寸不同的时候,其原因在于要控制输送至每个 模腔的熔体量存在困难,且难于控制气体流道或塑件内部中空 区的截面面积。 为解决这些问题,英国Cinpres气体注射(CGI)有限公司开 发出新型塑料驱除工艺(PEP)。它利用了由气体本身所形成的 模压和专用的切断阀,能够多次准确控制每个模腔内的材料更 换。
液体氮气热交换器
气辅共注成型技术
聚合物共注成型技术,即是同时或者先后向模腔内注入 不同的聚合物熔体,形成多层结构的一种成型技术。而气辅 共注成型技术,是将聚合物共注成型技术与气辅技术相结合 而得到的一种新工艺。与共注成型工艺相比多了一个注气过 程;相对气辅成型而言,则多了一个多层结构的形成过程。
气辅共注成型的过程主要包括3个阶段: (1)共注射阶段 此阶段与一般共注成型工艺类似,只是在形成表/内 层结构后,当表层和内层所注入的材料总量占型腔总体积 一定比例时,即停止注射熔体,此过程可谓气辅过程的 “欠料注射”,只是注入两种以上的熔体。这个阶段与共 注和气辅技术都不同; (2)气辅注射阶段 气体对内层熔体进行穿透;随气体的推进,被气体 “排挤”的内层熔体又带动表层熔体向前流动; (3)保压冷却,释压脱模,获得制品 为了实现聚合物的气辅共注成型,必须对原有共注成 型设备进行改造,即在共注成型设备的基础上增加一套气 辅系。
气辅注塑成型技术
气体辅助注塑成型技术(Gas—assisted InjectionMolding Technology)是自往复式螺杆注射机问世以来,注塑成型技 术最重要的发展之一。它通过高压气体在注塑制件内部产生 中空截面,利用气体积压,减少制品残余内应力,消除制品 表面缩痕,减少用料,显示传统注塑成型无法比拟的优越性。 一般气体辅助注塑成型的过程是:先向模具型腔中注入经过 准确计量的塑料熔体,再直接注入压缩气体;气体在塑料熔 体的包围下沿阻力最小的方向扩散前进,对塑料熔体进行穿 透和排空,作为动力推动塑料熔体充满模具型腔并对塑料熔 体进行保压,待制品冷却凝固后再开模顶出。
外部气体辅助成型技术的工艺原理:
当塑料熔融料由喷嘴注射并流经气体注入位置时,气体随即 注入(但是,这与反向压力注塑不同,在反向压力注塑工艺 中,模腔在注入塑料前就已加压)。外气注塑要达到预定的 效果,就必须控制注入模内的气体,对压力阶段和压力增加 的速率要求有极为准确的控制。
外部气体辅助成型技术的特点:
多腔控制气辅成型的工艺过程如下图所示:
(a)注嘴阀打开,PEP阀关闭,熔体进入并充满模腔;
(b)注嘴阀闭合,注气开始;
(c)气体穿透熔体形成中空,PEP阀打开,熔体进入次级模腔; (d)料筒进料开始下次循环。
多腔控制气辅成型的特点:
1. 不需严格控制短注量,这样可以消除滞留痕迹,模具表面质 量也会更好;
2. 可以更大程度地穿透,从而降低壁厚,缩短冷却时间;
3. PEP气辅成型技术不是利用阀来控制进入次级模腔的熔体溢 流量(PEP工艺在开阀之前就引入了气体),而是通过控制气 体注射的时间来达到控制溢流量的目的。
冷却气体气辅技术
在气辅成型过程中,尽管气体辅助成型降低了塑件的壁 厚,但在工艺过程中,冷却阶段在成型周期中所占比例最大。 当气体(氮气)将塑件穿透时,其冷却作用是非常小的。如果 制品在脱模时冷却不够充分,则内部残余热量会形成表面再 结晶,从而导致制品质量降低或者变形,严重的时候制品内 部会出现气泡。 为避免以上情况的发生,可以采取延长模具冷却时间或 使用次级冷却装置的措施,但会增加成本。冷却气体辅助成 型技术便是针对以上的问题而出现的一种新的气辅成型方法。 在冷却气体辅助成型工艺中,气体通常被冷却至-20℃~ 80℃。
(3)在模腔周围设计的特殊空气流道内引入振动的气体,从
模壁外部振动熔体,有利于改善其黏弹性能,平衡复合模 腔内熔体的流动。
气辅成型技术的优缺点
一、气ห้องสมุดไป่ตู้成型技术的优点
所需注射压力小; 制品翘曲变形小; 可消除缩痕, 提高表面质量; 可用于成型壁厚差异较大的制品; 可在不增加制品重量的情况下, 通过气体加强筋增加制 品截面惯性矩,从而增加制品的刚度和强度。 对一般制品可通过气体的穿透减轻重量, 缩短成型周。
振动气体辅助注射成型设备示意图
振动的气体在辅助注射成型中主要有3种作用:
(1)在熔体内部引入振动的气体,推动熔体充满整个模腔。 振动的气体可以使熔体黏弹性减小,填充时有更好的流动 和取向;
(2)在注射熔体前沿(即模腔中)引入振动的气体,这样可以改
进熔体填充过程机理,消除缩痕以及其他由于流动性不好 而造成的缺陷隐患;
外部气体辅助成型技术
外部气体(辅助)注塑(External gas moulding;EGM)是与 传统的内部气体注塑不同的一种气体辅助注塑方法。 其不同之处在于不是像传统方法那样将气体注入塑料内 以形成中空的部位或管道;而是将气体通过气嘴注入与塑料 相邻的模腔表面局部密封位置中,故称之为“外气注塑”。 从工艺的角度来看,(内部)气体辅助注塑将注射过程中 保压阶段的作用降低至最小,或者可以说是取消了保压过程, 因为保压的作用已由气体注射完成了。外气注塑提供的是一 种对塑料在模具内冷却时施加压力的方法,它并不是在塑料 内部完全密闭的管道中对塑料加压,而是将压力施加于制件 的外表面上。
振动气辅技术
一般的气体辅助注射成型属于非动态成型工艺。而振动气体 辅助注射成型工艺最大的改进地方便是引入一定振频振幅的振 动波,使常规气体辅助注射成型时注入的“稳态气体”,变为 具有一定振动强度的“动态气体”,从而利用气体作为媒介将 振动力场引入到气辅注射成型的充模、保压和冷却过程中,使 其成为动态的成型工艺。
二、气辅成型技术的缺点
需要增加供气装置和进气喷嘴, 增加了设备投资; 对注塑机的注射量和注射压力的精度要求有所提高;
制品的注入气体的表面与未注入气体的表面会产生不
同的光泽; 制品质量对模壁温度、保压时间等工艺参数更加敏。
气辅技术的主要应用
气辅技术可应用于各种塑料制品上, 如电视机或音箱外壳、 汽车塑料制品、家具、浴室、厨具、家庭电器和日常用品 各类型塑胶盒和玩具等等, 主要体现为以下几大类:
相关文档
最新文档