基本不等式与绝对值不等式

基本不等式与绝对值不等式
基本不等式与绝对值不等式

教学过程

一、新课导入

前面我们已学过不等式的性质和证明方法,这一节我们再来研究算术平均数与几何平均数之间的关系及一些含有绝对值的不等式的证明问题.

二、复习预习

1.基本不等式的定理及推论.

2.如何运用基本不等式解决问题.

3.绝对值不等式的定理及推论.

4.如何运用绝对值不等式证明问题.

三、知识讲解

考点1 基本不等式

1.基本不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a . 2.定理:如果a,b 是正数,那么

).""(2

号时取当且仅当==≥+b a ab b

a 3.公式的等价变形:a

b ≤2

2

2b a +,ab ≤(2b a +)2.

4.若

b

a

a b +≥2(ab >0),当且仅当a =b 时取“=”号. 5.定理:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”). 6.推论:如果+∈R c b a ,,,那么3

3

abc c b a ≥++ (当且仅当c b a ==时取“=”). 7.关于“平均数”的概念

如果++∈>∈N n n R a a a n 且1,,,,21 则:n

a a a n

+++ 21叫做这n 个正数的算术平均数;n n a a a 21叫做这n 个正

数的几何平均数.

推广:

n

a a a n

+++ 21≥n n a a a 21n i R a N n i ≤≤∈∈+1,,*

语言表述:n 个正数的算术平均数不小于它们的几何平均数

考点2 绝对值不等式的定理及推论

1.定理:||||||||||b a b a b a +≤+≤-. 注意:

1? 左边可以“加强”同样成立,即||||||||||b a b a b a +≤+≤-.

2? 这个不等式俗称“三角不等式”—三角形中两边之和大于第三边,两边之差小于第三边. 3?a ,b 同号时右边取“=”,a ,b 异号时左边取“=”. 推论1:||21n a a a +++ ≤||||||21n a a a +++ . 推论2:||||||||||b a b a b a +≤-≤-.

四、例题精析

考点1基本不等式

例1 已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222.

【规范解答】 ∵ab b a 222>+

222b c bc +> ca a c 222>+

以上三式相加:ca bc ab c b a 222)(2222++>++ ∴ca bc ab c b a ++>++222.

【总结与反思】此题在证明过程中运用了基本不等式及不等式的性质,在证法上采用的是综合法.

例2已知a,b,c,d都是正数,求证:abcd

(≥

+

+.

)(

ab4

bd

ac

cd

)

【规范解答】

∵a,b,c,d 都是正数,∴ab >0,cd >0,ac >0,bd >0

0,2ab cd +≥>0.2

ac bd

+≥> 由不等式的性质定理4的推论1,得

()()

.4

ab cd ac bd abcd ++∴

即abcd bd ac cd ab 4))((≥++.

【总结与反思】用均值不等式证明题时,要注意为达到目标可先宏观,而后微观;均值不等式在运用时,常需先凑形后运用;均值不等式和不等式的基本性质联合起来证题是常用的行之有效的方法.

例3 已知a , b , c ∈R ,

求证:1?9)1

11)((≥++++c b a c b a

2?2

9

)111)(

(≥+++++++a c c b b a c b a 3?

2

3≥+++++b a c a c b c b a .

【规范解答】

证明:1?法一:33abc c b a ≥++, 3

1

3111abc

c b a ≥++, 两式相乘即得9)111)((≥++++c b a c b a . 法二:左边)()()(3c

b

b c c a a c b a a b c c b a b c b a a c b a ++++++=++++++++=

≥ 3 + 2 + 2 + 2 = 9. 2?∵

3

))()((2

3222a c c b b a a c c b b a +++≥+++++ 3

)

)()((1

3111a c c b b a a c c b b a +++≥+++++ 两式相乘即得29

)111)(

(≥+++++++a c c b b a c b a . 3?由上题:2

9

)111)(

(≥+++++++a c c b b a c b a ∴29

111≥++++++++

a c

b

c b a b a c 即

2

3≥+++++b a c a c b c b a . 【总结与反思】基本不等式的灵活运用.

例4 如图,为处理含有某种杂质的污水,要制造一个底宽2米的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B 孔流出,设箱体的长度为a米,高度为b米,已知流出的水中该杂质的质量份数与a、b的乘积ab成反比现有制箱材料60平方米,问a、b各为多少米时,经沉淀后流出的水中该杂质的质量份数最小(A、B孔面积忽略不计).

【规范解答】

设y 为流出的水中杂质的质量份数,由题意可知:4b +2ab +2a =60(a >0,b >0) ∴a +2b +ab =30 (a >0,b >0),∴b =a

a

+-230 (0<a <30) 由题设:y =ab

k

,其中k >0且k 是比例系数,依题只需ab 取最大值∴y =

264322302

+-+-=+-=a a k a a a k ab k =??????+++-264)2(34a a k ≥182

64)2(234k a a k =+?+- ∴当且仅当a +2=

2

64

+a 时取“=”号,即a =6,b =3时ab 有最大值18故当a =6米,b =3米时经沉淀后流出的水中杂质最少.

【总结与反思】均值不等式在实际问题中的应用相当广泛,解题过程为:(1)先构造定值;(2)出现关系式;(3)验证“=”号成立.

例5 求函数)0(,3

22>+=x x

x y 的最大值,下列解法是否正确?为什么?

解一: 33222432

12311232=??≥++=+

=x

x x x x x x x y ,∴3min 43=y 解二:x x

x x x y 623223222

=?≥+=当x x 322=即2123

=x 时, 633

min 324212322

12

62==?

=y .

【规范解答】

以上两种解法均有错误

解一错在取不到“=”,即不存在x 使得x

x x 2122==; 解二错在x 62

正确的解法是:

333222362

32932323232323232==??≥++=+

=x x x x x x x x y

当且仅当x x 2322

=即2

6

3

=x 时min =y 【总结与反思】基本不等式成立条件:一正、二定、三相等.

例6 若14<<-x ,求2

22

22-+-x x x 的最值.

【规范解答】])1(1

)1([21]11)1[(2111)1(21222222--+---=-+-=-+-?=-+-x x x x x x x x x

∵14<<-x ∴0)1(>--x ,

0)

1(1

>--x

从而2])

1(1

)1([≥--+

--x x ,

1])1(1)1([21-≤--+---x x 即1)2

22

2(

min 2-=-+-x x x . 【总结与反思】构造定值运用基本不等式求解.

例7 设+

∈R x 且12

2

2

=+y x ,求21y x +的最大值.

【规范解答】∵0>x

∴212

y x =+又2

321)2()221(22

22

=++=++y x y x ,

∴4

2

3)2321(212=?≤+y x

即 4

2

3)1(max 2=

+y x 【总结与反思】构造定值运用基本不等式求解.

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

第10课--绝对值不等式(经典例题练习、附答案)

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+ ②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; ◇知识梳理 1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >??= =?? 时, |()|f x a >?____________; |()|f x a - 例2. 解不等式125x x -++> 变式1:12x x a -++<有解,求a 的取值范围 变式2:212x x a -++<有解,求a 的取值范围 变式3:12x x a -++>恒成立,求a 的取值范围 ◇能力提升 1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

汇总不等式与绝对值不等式教案.doc

第三十一讲 含绝对值的不等式 回归课本 1.绝对值不等式的性质:(a ∈R ) (1)|a |≥0(当且仅当a =0时取“=”); (2)|a |≥±a ; (3)-|a |≤a ≤|a |; (4)|a 2|=|a |2=a 2; (5)|ab |=|a ||b |,|a b |=|a ||b | . 2.两数和差的绝对值的性质: |a |-|b |≤|a ±b |≤|a |+|b |. 特别注意此式,它是和差的绝对值与绝对值的和差性质.应用此式求某些函数的最值时一定要注意等号成立的条件. |a +b |=|a |+|b |?ab ≥0; |a -b |=|a |+|b |?ab ≤0; |a |-|b |=|a +b |?(a +b )b ≤0; |a |-|b |=|a -b |?(a -b )b ≥0. 3.解含绝对值不等式的思路:化去绝对值符号,转化为不含绝对值的不等式.解法如下: (1)|f (x )|<a (a >0)?-a <f (x )<a ; (2)|f (x )|>a (a >0)?f (x )<-a 或f (x )>a ; (3)|f (x )|<g (x )?-g (x )<f (x )<g (x ); (4)|f (x )|>g (x )?f (x )<-g (x )或f (x )>g (x ); (5)|f (x )|<|g (x )|?[f (x )]2<[g (x )]2. (6)含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数)的不等式,利用实数绝对值的几何意义求解较简便. 考点陪练 1.设ab >0,下面四个不等式中,正确的是( ) ①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |; ④|a +b |>|a |-|b |.

绝对值不等式练习题知识讲解

绝对值不等式练习题

绝对值的不等式 一、选择题(8分×6=48分) 1.不等式243x 的整数解的个数为 ( ) A 0B 1C 2D 大于2 2.函数22x x y 的定义域是 ( ) A ]2,2[B ),2[]2,(C ),1[]1,(D ) ,2[3.设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 ( ) A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 2 3 ,21 .b a D 4.若两实数y x,满足0xy ,那么总有 ( ) A y x y x B y x y x C y x y x D.x y y x 5.已知,b c a 且,0abc 则 ( ) A c b a B b c a C c b a D c b a 6.)(13)(R x x x f ,当b x 1有),,(4)(R b a a x f 则b a,满足 ( ) A 3a b B 3b a C 3a b D 3 b a 二、填空题(8分×2=16分) 7.不等式x x 512的解集是 8.不等式x x x x 11的解集是 三、解答题(18分×2=36分) 9.解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x

10.已知a x x x f |2||1|)(,(1)当5a 时,求)(x f 定义域; (2)若)(x f 的定义域为R ,求a 的取值范围。附加题:(10分×2=20分) 1.若不等式|1|75x x 与不等式022bx ax 同解,而k b x a x ||||的解集为非,求实数k 的取值范围 2.当10x 时,比较)1(log x a 与)1(log x a 的大小.)1,0(a a

含绝对值不等式的题型

含绝对值不等式题型 一、单绝对值问题 1.解下列不等式: (1).4321x x ->+; (2).|2||1|x x -<+; (3).4|23|7x <-≤: (4).|23|3x x ->; (5). 2x x +≥ 2. 不等式1|1|3x <+<的解集为( ). .A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)-- 3. 已知全集{12345}U =,,,,,集合{} 32A x Z x =∈-<,则U C A = ( ) .A {1234},,, .B {234},, .C {15}, .D {5} 4. 设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于 ( ) .A R .B {},0x x R x ∈≠ .C {}0 .D ? 5. 不等式2103x x -≤的解集为( ) .A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}5x x ≤ 6. 若x R ∈,则()()110x x -+>的解集是 ( ) .A {} 01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 7. 不等式()120x x ->的解集是( ) .A ()1 2,-∞ .B ()()1 2,00,-∞ .C ()12,+∞ .D ()120, 8. 不等式3529x ≤-<的解集是 ( ) .A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7- 9. 不等式211x x --<的解集是_______________. 10. 方程223x x x ++223x x x ++=的解集为___________,不等式22||x x x x -->的解集是_______

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

含绝对值的不等式解法练习题及答案

学习好资料欢迎下载 例 1不等式|8-3x|>0的解集是 [] A. B . R C. {x|x ≠88 }D.{ } 33 8 分析∵ |8-3x|>0,∴ 8-3x≠ 0,即x≠. 答选 C. 例 2绝对值大于 2 且不大于 5 的最小整数是 [] A . 3 B. 2 C.- 2 D.- 5 分析列出不等式. 解根据题意得2<|x|≤ 5. 从而- 5≤x<- 2 或 2< x≤ 5,其中最小整数为-5, 答选 D. 例 3 不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4< |3x- 1|≤ 7,即 4<3x- 1≤7 或- 7 ≤ 3x- 1<- 4解之得5 < x≤ 8 或- 2≤ x<- 1,即所求不等式解集为33 58 . {x| - 2≤ x<- 1或< x≤} 33 例 4已知集合 A = {x|2 < |6- 2x|< 5,x∈ N} ,求 A .分析转化为解绝对值不等式. 解∵ 2<|6- 2x|< 5 可化为 2< |2x- 6|<5 -5< 2x- 6< 5, 即 2x - 6> 2或 2x - 6<- 2, 1< 2x <11, 即 2x > 8或 2x< 4, 解之得 4< x<11 或 1 < x< 2.22 因为 x∈ N,所以 A = {0 ,1, 5} . 说明:注意元素的限制条件. 例 5实数a,b满足ab<0,那么 []

A . |a-b|< |a|+ |b| B. |a+ b|> |a- b| C. |a+ b|< |a- b| D. |a-b|< ||a|+ |b|| 分析根据符号法则及绝对值的意义. 解∵ a、b 异号, ∴|a+ b|< |a-b|. 答选C. 例 6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b的值为 [] A . a=1, b= 3 B. a=- 1, b= 3 C. a=- 1, b=- 3 1 3 D . a=2, b=2 分析解不等式后比较区间的端点. 解由题意知, b> 0,原不等式的解集为{x|a - b< x< a+ b} ,由于解集又为{x| - 1<x< 2} 所以比较可得. a- b=- 11 , b=3. ,解之得 a= a+ b= 222 答选 D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例 7 解关于x的不等式|2x-1|<2m-1(m∈R) 分析分类讨论. 解若 2m- 1≤ 0即m≤1 ,则 |2x- 1|< 2m- 1恒不成立,此时原不等 2式的解集为; 若 2m- 1> 0即 m>1 ,则- (2m- 1) < 2x- 1< 2m- 1,所以 1- m< 2 x< m. 综上所述得:当m≤1 时原不等式解集为;2 当 m>1 时,原不等式的解集为2 {x|1 - m< x<m} . 说明:分类讨论时要预先确定分类的标准. 例 8 解不等式3-|x| ≥ 1 .|x|+ 2 2 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母.

人教版高数选修4-5第1讲:不等式的性质与绝对值不等式(教师版)

不等式的性质与绝对值不等式 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点:掌握基本不等式的概念、性质;绝对值不等式及其解法; 教学难点: 理解绝对值不等式的解法 1、基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. 2、几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3、算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为 2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4、利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).

(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). 5、若0x >,则1 2x x +≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=” ) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 6、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) () ()()?? ? ??<-=>=0,0,00,a a a a a a 7、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0

绝对值不等式练习题

一、选择题(8分X 6=48分) 1.不等式3x -4 v2的整数解的个数为() A0 B1 C 2 D 大于2 2.函数y = Jx2 _|x| _2的定义域是() A[-2,2] B(-::,-2] [2, ::) C(-::,-1] [1, ::) D[2,::) 3.设不等式|x —a| v b的解集为{x| —1< x v 2},贝U a, b的值为() A. a = 1, b= 3 B . a=—1, b= 3 1 3 C . a = —1, b= —3 D .a , b — 2 2 4.若两实数x, y满足xy ::: 0 ,那么总有() Cx — yvx—y D. Ax + y2 —x ; (2)| x2—2x —6|<3 x 10.已知f(x) = ,;|x 1| |x -2| a , (1) 当a—5时,求f (x)定义域; (2)若f (x)的定义域为R,求a的取值范围。

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法 练习题及答案 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ]

A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.?? ?123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准. 例解不等式 -+≥.8 321 2 ||||x x

不等式和绝对值不等式

不等式的性质及绝对值不等式 1.求不等式|x+1|+|2x-1|>4的解集. 2.已知a,b∈R+,且a3-b3=a2-b2,求a+b的取值范围.3.[2013·邯郸一模] 已知函数f(x)=log2(|x-1|+|x+2|-a). (1)当a=7时,求函数f(x)的定义域; (2)若关于x的不等式f(x)≥3的解集是R,求a的取值范围.

4.[2013·辽宁卷] 已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值; (2)若??? ?f (x )-2f ????x 2≤k 恒成立,求k 的取值范围.

不等式的性质及绝对值不等式 1.[2013·浙大附中月考] 解不等式|log 2x -3|+|2x -8|≥9. 2.已知a ,b ,c ∈R +,且a +b +c =1,若M =????1a -1????1b -1????1c -1,求M 的取值范围. 3.[2013·长春调研] 已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.

4.[2013·课程标准卷] 已知函数f(x)=|x+a|+|x-2|. (1)当a=-3时,求不等式f(x)≥3的解集; (2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

1.(1)x ≤-1时,原不等式可化为-x -1-2x +1>4,解得x <-43,此时解为x <-43 ;(2)-14,解得x <-2,此时无解; (3)x ≥12时,原不等式可化为x +1+2x -1>4,解得x >43 . 综上原不等式的解集是??????x ? ?x <-43或x >43. 2.解:由a 3-b 3=a 2-b 2变形得a 2+ab +b 2=a +b ,整理得(a +b )2-(a +b )=ab , 而07, 不等式的解集是以下不等式组解集的并集. ? ????x ≥1,x -1+x +2>7或?????-27 或? ????x ≤-2,-x +1-x -2>7, 解得函数f (x )的定义域为(-∞,-4)∪(3,+∞). (2)不等式f (x )≥3,即|x -1|+|x +2|≥a +8, 因为x ∈R 时,恒有|x -1|+|x +2|≥|(x -1)-(x +2)|=3, 又|x -1|+|x +2|≥a +8解集是R , 所以a +8≤3,即a ≤-5. 所以a 的取值范围是(-∞,-5]. 4.解:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意. 当a >0时,-4a ≤x ≤2a ,又f (x )≤3的解集为{x |-2≤x ≤1},得a =2. (2)记h (x )=f (x )-2f ????x 2, 则h (x )=??? ??1,x ≤-1,-4x -3,-120. 即当x ≥8时,恒有log 2x +2x ≥20. 综上,原不等式的解集为{x |0

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

不等关系与绝对值不等式及习题

不等式和基本不等式 一.知识梳理 1.实数大小的比较方法 (1)作差法:a>b ?a-b>0,a>>?>b,那么bb. (2)性质2:如果a>b,b>c,那么a>c. (2)性质3:如果a>b,那么a+c>b+c. 推论:如果a>b,c>d,那么a+c>b+d. (4)性质4:如果a>b,c>0,那么ac>bc;,如果a>b,c<0,那么acb>0,c>d>0,那么ac>bd. 推论2:如果a>b>0,那么a 2>b 2. 推论3:如果a>b>0,那么a n >b n (n 为正整数). 推论4:如果a>b>0,那么n n b a 11? (n 为正整数). 3.含有绝对值不等式 (1)定理:对任意实数a 和b,有|a+b|≤|a|+|b|,其中等号成立的条件为ab ≥0. 说明:①定理中的b 以-b 代替,则有|a-b|≤|a|+|b|.,其中等号成立的条件为ab ≤0. ②对任意实数a 和b,有||a|-|b||≤|a ±b|≤|a|+|b|. (2)绝对值不等式的解法 解含有绝对值的不等式,关键在于利用绝对值的意义,设法去掉绝对值符号,把它转化为一个或几个普通不等式或不等式组,常用的方法有定义法、平方法、公式法等. 4.平均值不等式 定理1:对任意实数a,b,有a 2+b 2≥2ab(当且仅当a=b 时取“=”号). 定理 2;,,""), . +≥==a b a b a b 2 对任意两个正数有 当且仅当时取号即两个正数的算术平均值不小于它们的几何平均值 定理3:对任意三个正数a,b,c,有a 3+b 3+c 3≥3abc(当且仅当a=b=c 时取“=”号 ). :,,""), .++≥===a b c 4a b c a b c 3 定理对任意三个正数有 当且仅当时取号即三个正数的算术平均值不小于它们的几何平均值

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] 答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5分析列出不等式.|x|≤5.解根据题意得2<5,,其中最小整数为-5x<-2或2<x≤从而-5≤.选D答 .的解集为________不等式4<|1-3x|≤7例3 利用所学知识对不等式实施同解变形.分析 或-74<3x-1≤74解原不等式可化为<|3x-1|≤7,即 .,5x∈N},求A例4 已知集合A={x|2<|6-2x|<转化为解绝对值不等式.分析 可化为|6-2x|<5<解∵25<|2x-6|<2 ,1,5}.因为x∈N,所以A={0说明:注意元素的限制条件.ab<0,那么例5 实数a,b 满足[ ] |b|A.|a-b|<|a|+|a.|a+b|>-b|B|a+b|<|a-b|C.+|b||b|<||a||aD.-根据符号法则及绝对值的意义.分析 、ab异号,解∵b|.<∴ |a+b||a-.选答 C ba,的值为2}1b|x例6 设不等式-a|<的解集为{x|-<x<,则[ ] A.=3ba=1,3b1aB.=-,=3=-b,1=-a.C. 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x的不等式|2x-1|<2m-1(m∈R) 分析分类讨论. x<m.

{x|1-m<x<m}. 说明:分类讨论时要预先确定分类的标准. 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母. 解注意到分母|x|+2>0,所以原不等式转化为2(3-|x|)≥|x|+2,整理得 说明:分式不等式常常可以先判定一下 分子或者分母的符号,使过程简便. 例9 解不等式|6-|2x+1||>1. 分析以通过变形化简,把该不等式化归为|ax+b|<c或|ax+b|>c型的不等式来解. 解事实上原不等式可化为 6-|2x+1|>1 ① 或 6-|2x+1|<-1 ② 由①得|2x+1|<5,解之得-3<x<2; 由②得|2x+1|>7,解之得x>3或x<-4. 从而得到原不等式的解集为{x|x<-4或-3<x<2或x>3}. 说明:本题需要多次使用绝对值不等式的解题理论. 例10已知关于x的不等式|x+2|+|x-3|<a的解集是非空集合,则实数a的取值范围是 ________. 分析可以根据对|x+2|+|x-3|的意义的不同理解,获得多种方法. 解法一当x≤-2时,不等式化为-x-2-x+3<a即-2x+1<a有解,而-2x+1≥5, ∴a>5. 当-2<x≤3时,不等式化为x+2-x+3<a即a>5. a∴,5>1-2x而有解,a<1-2x即a<3-x+2+x是,不等式化为3>x当. >5. 综上所述:a>5时不等式有解,从而解集非空. 解法二 |x+2|+|x-3|表示数轴上的点到表示-2和3的两点的距离之和,显然最小值为3-(-2)=5.故可求a的取值范围为a>5. 解法三利用|m|+|n|>|m±n|得 |x+2|+|x-3|≥|(x+2)-(x-3)|=5. 所以a>5时不等式有解. 说明:通过多种解法锻炼思维的发散性. 例11 解不等式|x+1|>2-x. 分析一对2-x的取值分类讨论解之. 解法一原不等式等价于: 由②得x>2. 分析二利用绝对值的定义对|x+1|进行分类讨论解之.

相关文档
最新文档