《点集拓扑讲义》第一章集合论初步学习笔记
完整word版点集拓扑讲义学习笔记

度量空间与连续映射2章第它们的定义域和值域从数学分析中已经熟知单变量和多变量的连续函数,都是欧氏空间(直线,平面或空间等等)或是其中的一部分.在这一章中我们将连续首先将连续函数的定义域和值域主要特征抽象出来用以定义度量空间,然函数的主要特征抽象出来用以定义度量空间之间的连续映射(参见§2.1).随给出拓扑空间和拓扑空间之间的连续映射(参见§2.2).后将两者再度抽象,后再逐步提出拓扑空间中的一些基本问题如邻域,闭包,内部,边界,基和子基,序列等等.度量空间与连续映射§2.1本节重点:掌握拓扑学中度量的概念及度量空间中的连续映射的概念.注意区别:数学分析中度量、连续映射的概念与本节中度量、连续映射的概念.应细细体会证明的方法.注意,在本节的证明中,R→Rf:首先让我们回忆一下在数学分析中学习过的连续函数的定义.函数,使>00,存在实数δ∈R称为在点处是连续的,如果对于任意实数ε>|x-得对于任何x∈R,当|f(x)-f()|<ε.在这个定义中只涉及时|<δ,有两个实数之间的距离(即两个实数之差的绝对值)这个概念;为了验证一个函而与实数的数在某点处的连续性往往只要用到关于上述距离的最基本的性质,其它性质无关,关于多元函数的连续性情形也完全类似.以下,我们从这一考.察出发,抽象出度量和度量空间的概念,z∈X,,xy是一个集合,定义2.1.1 设Xρ:X×X→R.如果对于任何有页40 共** 页1 第(1)(正定性),ρ(x,y)≥0并且ρ(x,y)=0当且仅当x=y;(2)(对称性)ρ(x,y)=ρ(y,x);(3)(三角不等式)ρ(x,z)≤ρ(x,y)+ρ(y,z)则称ρ是集合X的一个度量.如果ρ是集合X的一个度量,称(X,ρ)是一个度量空间,或称X是一个对于ρ而言的度量空间.有时,或者度量ρ早有约定,或者在行文中已作交代,不提它不至于引起混淆,这时我们称X是一个度量空间.此外,对于任意两点x,y ∈X,实数ρ(x,y)称为从点x到点y的距离.着重理解:度量的本质是什么?例2.1.1 实数空间R.对于实数集合R,定义ρ:R×R→R如下:对于任意x,y∈R,令ρ(x,y)=|x-y|.容易验证ρ是R的一个度量,因此偶对(R,ρ)是一个度量空间.这个度量空间特别地称为实数空间或直线.这里定义的度量ρ,称为R 的通常度量,并且常常略而不提,迳称R为实数空间.(今后我们说实数空间,均指具有通常度量的实数空间.)维欧氏空间.例2.1.2 n对于实数集合R的n重笛卡儿积=R×R×…×R()x=×→R如下:对于任意ρ定义,: y=,令)=y xρ(,页40 共* 页2 第是的一个度量,因此偶容易验证(详见课本本节最后部分的附录)ρ,ρ)是一个度量空间.(这个度量空间特别地称为n维欧氏空间.对这里定,称为义的度量ρ的通常度量,并且常常略而不提,迳称为n维欧氏空间.2维欧氏空间通常称为欧氏平面或平面.(今后说通常度量,均指满足这种公式的度量)例2.1.3 Hilbert空间H.记H为平方收敛的所有实数序列构成的集合,即)|<∞} = {x=(H定义ρ如下:对于任意=()∈H),yx =((x,y)= 令ρ(即验证<∞)以及验证ρ是说明这个定义是合理的H的一个度量,均请参见课本本节最后部分的附录.偶对(H,ρ)是一个度量空间.这个度量空间特别地称为Hilbert空间.这里定义的度量ρ称为H的通常度量,并且常常略而不提,迳称H为Hilbert 空间.例2.1.4 离散的度量空间.设(X,ρ)是一个度量空间.称(X,ρ)是离散的,或者称ρ是X x∈X,存在一个实数>0使得ρ(的一个离散度量,如果对于每一个x,y) y∈X,x≠y,成立.>对于任何页40 共** 页3 第例如我们假定X是一个集合,定义ρ:X×X→R使得对于任何x,y∈X,有(x,y)=ρ容易验证ρ是X的一个离散的度量,因此度量空间(X,ρ)是离散的.通过这几个例子,可知,度量也是一种映射,但它的象空间是实数.离散的度量空间或许是我们以前未曾接触过的一类空间,但今后会发现它的性质是简单的.定义2.1.2 设(X,ρ)是一个度量空间,x∈X.对于任意给定的实数ε>0,集合{y∈X|ρ(x,y)<ε}),或,称为一个以x为中心以ε为半径的球形邻记作B(x,ε域,简称为x的一个球形邻域,有时也称为x的一个ε邻域.此处的球形邻域是球状的吗?定理2.1.1 度量空间(X,ρ)的球形邻域具有以下基本性质:(1)每一点x∈X,至少有一个球形邻域,并且点x属于它的每一个球形邻域;(2)对于点x∈X的任意两个球形邻域,存在x的一个球形邻域同时包含于两者;(3) 如果y∈X属于x∈X的某一个球形邻域,则y有一个球形邻域包含于x的那个球形邻域.证明:(1)设x∈X.对于每一个实数ε>0,B(x,ε)是x的一个球形邻域,所以x至少有一个球形邻域;由于ρ(x,x)=0,所以x属于它的每一个球形邻域.页40 共* 页4 第,)是x∈XB(x (2)如果B(x的两个球形邻域,任意选取实,)和数}min{ ,则易见有ε>0,使得ε<,)∩B(x,))B (x,εB(x 即B(x,ε)满足要求.).显然.>0.如果xρ(,yz∈B,(3)设y∈B(xε=).令ε-,),则(y )<xy,)+ρ)+ρ(y,x=ε(((z,x)≤ρz,yρ,y)ε).这证明B(εB(x,).,所以z∈B(x定义2.1.3 设A是度量空间X的一个子集.如果A中的每一个点都有一个球形邻域包含于A(即对于每一个a∈A,存在实数ε>0使得B(a,ε)A,则称A是度量空间X中的一个开集.注意:此处的开集仅是度量空间的开集.例2.1.5 实数空间R中的开区间都是开集.设a,b∈R,a<b.我们说开区间(a,b)={x∈R|a<x<b}是R中的一个开集.这是因为如果x∈(a,b),若令ε=min{x-a,b-x},则有B(x,ε)(a,b).也同样容易证明无限的开区间(a,∞)={x∈R|x>a},(-∞,b)={x∈R|x<b}(-∞,∞)=R都是R中的开集.然而闭区间[a,b]={x∈R|a≤x≤b}页40 共** 页5 第却不是R中的开集.因为对于a∈[a,b]而言,任何ε>0,B(x,ε)[a,b]都不成立.类似地,半开半闭的区间(a,b]={x∈R|a<x≤b},[a,b)={x∈R|a≤x<b}无限的闭区问[a,∞)={x∈R|x≥a},(-∞,b]={x∈R|x≤b}都不是R中的开集.定理2.1.2 度量空间X中的开集具有以下性质:本身和空集都是开集;X (1)集合(2)任意两个开集的交是一个开集;(3)任意一个开集族(即由开集构成的族)的并是一个开集.证明根据定理2.1.1(1)X中的每一个元素x都有一个球形邻域,这个球形邻域当然包含在X 满足开集的条件;空集X中不包含任何一个点,也自然地可以认为中,所以它满足开集的条件.的一个球形邻x如果x∈U∩V,则存在U设和V是X中的两个开集.(2).根据V,的一个球形邻域B(x)包含于域B(x,)包含于U,也存在x ,(xε)同时包含于BB(2),x有一个球形邻域(x,)和B定理2.1.1,),因此(x,)U∩V B(x,B(x,)∩B(xε)由于U∩V中的每一点都有一个球形邻域包含于U∩V,因此U∩V是一个开集.页40 共* 页6 第中的开集构成的子集族.如果,则存在是一个由X3)设*Α(A有一个球形邻域包含于是一个开集,所以由于∈*x使得,显x∈然这个球形邻域也包含于中的一个开集..这证明是X此外,根据定理2.1.1(3)可见,每一个球形邻域都是开集.球形邻域与开集有何联系?为了讨论问题的方便,我们将球形邻域的概念稍稍作一点推广.定义2.1.4 设x是度量空间X中的一个点,U是X的一个子集.如果存在一个开集V满足条件:x∈VU,则称U是点x的一个邻域.下面这个定理为邻域的定义提供了一个等价的说法,并且表明从球形邻域推广为邻域是自然的事情.定理2.1.3 设x是度量空间X中的一个点.则X的子集U是x的一个邻域的充分必要条件是x有某一个球形邻域包含于U.证明如果U是点x的一个邻域,根据邻域的定义存在开集V使得x∈VU,又根据开集的定义,x有一个球形邻域包含于V,从而这个球形邻域也就包含于U.这证明U满足定理的条件.反之,如果U满足定理中的条件,由于球形邻域都是开集,因此U是x的邻域.现在我们把数学分析中的连续函数的概念推广为度量空间之间的连续映射.页40 共** 页7 第f(如果对于)是两个度量空间,f:X→Y,∈X以及定义2.1.5 设X和Y (ε),,存在δ的某一个球形邻域B),的任何一个球形邻域B(f(),),则称映射在点处是连续的.(),δ)),εB(使得f(Bf(如果映射f在X的每一个点x∈X处连续,则称f是一个连续映射.以上的这个定义是数学分析中函数连续性定义的纯粹形式推广.因为如果在点f处连续,可以说成:和Y设ρ中的度量,则和分别是度量空间X对于任意给定的实数ε>0,存在实数δ>0使得对于任何x∈X只要ρ(x,x∈B (,δ)便有)<δ(即f(f(x)∈B(.(即(f(x),f())ε)).<ε),下面的这个定理是把度量空间和度量空间之间的连续映射的概念推广为拓扑空间和拓扑空间之间的连续映射的出发点.以及∈X.X→Y则下述条件Y是两个度量空间,f:和定理2.1.4 设X:和(*2)*(1)和(2)分别等价于条件(1))f处是连续的;在点(1的每一个邻域的原象是的一个邻域;(1)*f( )(2)f是连续的;(2)*Y中的每一个开集的原象是X中的一个开集.()的一个邻域.根令U为f成立.1)蕴涵()*:设(1)1证明条件(),ε)包含于B(fU(.由于f)有一个球形邻域2.1.3据定理,f(处是连续的,所以在点有一个球形邻域((BfBεB(fB)),δ((),).然而,(()使得,δf 页40 共* 页8 第),所以(),εU)()是)B),这证明((U(U的一个邻域.,δ(f1)*成立.任意给定)的一个邻条件(1)*蕴涵(1).设条件(,根据定理2.1.3是(的一个邻域.f(),ε域B(εf(),),)则(B )包含于δ(,有一个球形邻域B ().f),ε(B((f(B在点处连续.因此,δ))B(f(),ε).这证明f中的一个开集,为Y*.设条件(2)成立.令V2条件()蕴涵(2)是一个开集,所Vx)∈V.由于).对于每一个x∈U,我们有f(U(=VxU是1)*,)的一个邻域.由于以V是f(xf在每一点处都连续,故根据(由U=∪x∈UUx.U.易见Ux的一个邻域.于是有包含x的某一个开集Ux使得 U是一个开集.都是开集,根据定理2.1.2,于每一个Ux)的x是f(2)*成立,对于任意x∈X,设U条件(2)*蕴涵(2).设(根.U)((的一个开集x)V U.从而Vx∈)f一个邻域,即存在包含(x的一个邻域,对于U据条件(2)*,(V)是一个开集,所以)是x(是任意选取的,所以处连续.由于点x在点*成立,于是fx)而言,条件(1 f是一个连续映射.从这个定理可以看出:度量空间之间的一个映射是否是连续的,或者在某一点处是否是连续的,本质上只与度量空间中的开集有关(注意,邻域是通过开集定义的).这就导致我们甩开度量这个概念,参照度量空间中开集的基本)建立拓扑空间和拓扑空间之间的连续映射的概念性质(定理2.1.2作业:P47 1.2.3.4.页40 共** 页9 第拓扑空间与连续映射§2.2:本节重点. 并在此空间上建立起来的连续映射的概念拓扑与拓扑空间的概念,: 注意区别. 拓扑空间的开集与度量空间开集的异同;连续映射概念的异同现在我们遵循前一节末尾提到的思路,即从开集及其基本性质(定理 2.1.2)出发来建立拓扑空间的概念.ττ满足如下X是一个集合,定义2.2.1 设X的一个子集族.如果是条件:τ∈(;lX),Tτ;(2)若A,B∈A∩B∈,则(3)若τ是X的一个拓扑.则称ττ)是一个拓扑空间,或X如果,是集合X的一个拓扑,则称偶对(τT是一个相对于拓扑而言的拓扑空间;此外称集合的每一个元素都叫做Xττ.即:A∈A是开集.)或(开集XX拓扑空间(,)中的一个(此定义与度量空间的开集的性质一样吗?留给大家思考)经过简单的归纳立即可见,以上定义中的条件(2)蕴涵着:有限多个开集的交仍是开集,条件(3)蕴涵着:任意多个开集的并仍是开集.页40 共* 页10 第现在首先将度量空间纳入拓扑空间的范畴.中的所有开集构为由ρ)是一个度量空间·令定义X2.2.2 设(X,的一个拓扑.我们称2.1.2)是,(X 为成的集族.根据定理,X的X由.此外我们约定:如果没有另外的说明,我们提到度度量ρ诱导出来的拓扑)的拓扑时,指的就是拓扑;在称度量空间(X,X,ρρ)为拓扑量空间(空间时,指的就是拓扑空间(X,)空),HilbertR因此,实数空间,n维欧氏空间(特别,欧氏平面间H都可以叫做拓扑空间,它们各自的拓扑便是由例2.1.1,例2.1.2和例2.1.3中定义的各自的度量所诱导出来的拓扑.例2.2.1 平庸空间.TT是X,}.容易验证,设X是一个集合.令的一个拓扑,称之为 ={X T)为一个平庸空间.在平庸空间(;并且我们称拓扑空间(X,X,的X平庸拓扑T)中,有且仅有两个开集,即X本身和空集.例2.2.2 离散空间.TP(X),即由XX是一个集合.令 =的所有子集构成的族.容易验证,设TT)为一X;并且我们称拓扑空间(,的一个拓扑,称之为X的离散拓扑是X T)中,X的每一个子集都是开集.在离散空间(X,个离散空间.T ={,{a},{a,b},{a,{a,bc}.令,b,c}}.=2.2.3 例设X TT)是一个拓扑空间.这个拓扑X的一个拓扑,因此(,容易验证,是X空间既不是平庸空间又不是离散空间.页40 共** 页11 第例2.2.4 有限补空间.设X是一个集合.首先我们重申:当我们考虑的问题中的基础集自明时,我们并不每次提起.因此在后文中对于X的每一个子集A,它的补集X-A我们写为.令X|T ={U 的一个有限子集}∪{是X}T是X的一个拓扑:先验证;另外,根据定义便有∈T.)X∈T (因为 =)(1T如果A和B之中有一个是空集,则A∩B∈T,假定A(2)设A,B∈和B T .的一个有限子集,所以A∩B∈是都不是空集.这时X,显然有)设(3.令,则如果X任意选取.这时是设的一个有限子集,所以P是X的一个拓扑,称之为3),X的有限补拓根据上述(1),(2)和(P)称为一个有限补空间.,扑.拓扑空间(X例2.2.5 可数补空间.设X是一个集合.令T 的一个可数子集}∪{X}={U X|是T 是X2.2.4通过与例中完全类似的做法容易验证(请读者自证)的一个T )称为一个可数补空间.,的可数补拓扑.拓扑空间(拓扑,称之为XX页40 共* 页12 第一个令人关心的问题是拓扑空间是否真的要比度量空间的范围更广一点?换句话就是问:是否每一个拓扑空间的拓扑都可以由某一个度量诱导出来?P使)是一个拓扑空间.如果存在X的一个度量设(X,ρ定义2.2.3PP)是一个ρ诱导出来的拓扑可度量化空,则称(得拓扑X,即是由度量间.根据这个定义,前述问题即是:是否每一个拓扑空间都是可度量化空间?每一个只含有限个点的度量空间作为拓扑可以看出,和从§2.1中的习题23空间都是离散空间.然而一个平庸空间如果含有多于一个点的话,它肯定不是中给出的那个空间只含有三个点,2.2.3离散空间,因此它不是可度量化的;例拓扑空间是比可度量空间的但不是离散空间,也不是可度量化的.由此可见,进一步的问题是满足一些什么条件的拓扑空间是可度量化的?这范围要广泛.是点集拓扑学中的重要问题之一,以后我们将专门讨论.现在我们来将度量空间之间的连续映射的概念推广为拓扑空间之间的连续映射.U定义2.2.4 是两个拓扑空间,f:X→Y.如果中每一个开集Y设X和Y的一个连续映射,或简称Xf是中的一个开集,则称X到Y(的原象U)是映射f连续.按这种方式定义拓扑空间之间的连续映射,明显是受到了§2.1中的定理2.1.4的启发.并且那个定理也保证了:当X和Y是两个度量空间时,如果f:X→Y是从度量空间X到度量空间Y的一个连续映射,那么它也是从拓扑空间X到拓扑空间Y的一个连续映射,反之亦然.(按照约定,涉及的拓扑当然都是指诱导拓扑)页40 共** 页13 第但所指出的却是连续映射的最重要的下面的这个定理尽管证明十分容易,性质.都是拓扑空间.则,Y和ZX定理2.2.1 设是一个连续映射;1:X→X)恒同映射:(也是连续映射.和g:Y→Z都是连续映射,则gof:X→Z(2)如果f:X→Y l连续.),所以证明()设2f:X→Y,g:Y →Z都是连续映射(连续.这证明gof如在线性代数中我们考在数学科学的许多学科中都要涉及两类基本对象.虑线性空间和线性变换,在群论中我们考虑群和同态,在集合论中我们考虑集合和映射,在不同的几何学中考虑各自的图形和各自的变换等等.并且对于后群论中的同构,者都要提出一类来予以重视,例如线性代数中的(线性)同构,集合论中的—一映射,以及初等几何学中的刚体运动(即平移加旋转)等等.我们现在已经提出了两类基本对象,即拓扑空间和连续映射.下面将从连续映射中挑出重要的一类来给予特别的关注.是一个—一映射,f:X→Y Y设X和是两个拓扑空间.如果2.2.5 定义和f是一个同胚映射或同胚.都是连续的,则称:Y→X并且f定理2.2.2 设X都是拓扑空间.则Y和Z,:X→X)恒同映射(1是一个同胚;)如果f:X→Y(:Y→X也是一个同胚;2是一个同胚,则页40 共* 页14 第:X→Z也是一个同胚.:Y→Z都是同胚,则gof(3)如果f:X→Y和g 2.2.1,定理证明以下证明中所涉及的根据,可参见定理.5.4..53和定理1.l是一个—一映射,并且(l是同胚.),都是连续的,从而是一个—一映射,并且f和)设f:X→Y是一个同胚.因此f都(2也都是连续的,也是一个—一映射并且是连续的.于是和所以也是一个同胚.,f都是—一映射,并且因此f和gf)设:X→Y和g:Y→Z都是同胚.(3和且gof射,并—因此gof也是一映,g续和都是连的. gof是一个同胚.都是连续的.所以:X→Y,则f和Y是两个拓扑空间.如果存在一个同胚设定义2.2.6 X .同胚于YX是同胚的,或称X与Y同胚,或称X称拓扑空间与拓扑空间Y 粗略地说,同胚的两个空间实际上便是两个具有相同拓扑结构的空间.都是拓扑空间.则和Z设X,Y定理2.2.3X同胚;1)X与(同胚;Y与X同胚,则(2)如来X与Y Z同胚.同胚,则与ZX与同胚,)如果(3X与YY 2.2.2直接得到.证明从定理在任意给定的一个由拓扑空间组成的族中,我们可以说:根据定理2.2.3,因而同胚关系将这个拓扑空两个拓扑空间是否同胚这一关系是一个等价关系.间族分为互不相交的等价类,使得属于同一类的拓扑空间彼此同胚,属于不同类的拓扑空间彼此不同胚.页40 共** 页15 第,如果为某一个拓扑空间所具有,则必为与其同胚P拓扑空间的某种性质.换言之,拓拓扑不变性质的任何一个拓扑空间所具有,则称此性质P是一个扑不变性质即为同胚的拓扑空间所共有的性质.拓扑学的中心任务便是研究拓扑不变性质.至此我们已经做完了将数学分析中我们熟知的欧氏空间和欧氏空间之间的连续函数的概念,经由度量空间和度量空间之间的连续映射,一直抽象为拓扑空间和拓扑空间之间的连续映射这样一个在数学的历史上经过了很长的一在数学的发展过程中对所研究的问题不断地加以抽象这段时期才完成的工作.种做法是屡见不鲜的,但每一次的抽象都是把握住旧的研究对象(或其中的某也正因为如此,是一个去粗取精的过程.一个方面)的精粹而进行的一次提升,新的概念和理论往往有更多的包容.一方面它使我们对“空间”和“连续”有更为纯正拓扑学无疑也是如此,的认识,另一方面也包含了无法列入以往的理论中的新的研究对象(特别是许多无法作为度量空间处理的映射空间).这一切读者在学习的过程中必然会不断地加深体会.作业:P55 2,5,6,8,9,10§2.3 邻域与邻域系本节重点:掌握邻域的概念及邻域的性质;掌握连续映射的两种定义;掌握证明开集与邻域的证明方法(今后证明开集常用定理2.3.1).页40 共* 页16 第我们在数学分析中定义映射的连续性是从“局部”到“整体”的,也就是说先定义映射在某一点处的连续性,然后再定义这个映射本身的连续性.然而对于拓扑空间的映射而言,先定义映射本身的连续性更为方便,所以我们先在§2.2中做好了;现在轮到给出映射在某一点处的连续性的定义了.在定理2.1.4中我们已经发现,为此只要有一个适当的称之为“邻域”的概念,而在§2.1中定义度量空间的邻域时又只用到“开集”.因此我们先在拓扑空间中建立邻域的概念然后再给出映射在某一点处的连续性的概念,这些概念的给出一点也不会使我们感到突然.P)是一个拓扑空间,x∈X.如果U是X的一个子集,定义2.3.1 设(X,P使得x∈VU,则称U满足条件:存在一个开集V∈是点x的一个邻域.点x的所有邻域构成的x的子集族称为点x的邻域系.易见,如果U是包含着点x的一个开集,那么它一定是x的一个邻域,于是我们称U是点x的一个开邻域.首先注意,当我们把一个度量空间看作拓扑空间时(这时,空间的拓扑是由度量诱导出来的拓扑),一个集合是否是某一个点的邻域,无论是按§2.1中的定义或者是按这里的定义,都是一回事.定理2.3.1 拓扑空间X的一个子集U是开集的充分必要条件是U是它的每一点的邻域,即只要x∈U,U便是x的一个邻域.是空集,以下证明充分性.如果U证明定理中条件的必要性是明显的. U ≠.根据定理中的条件,当然U是一个开集.下设使得故U=,根据拓扑的定义,U是一个开集.定理2.3.2概括了邻域系的基本性质.页40 共** 页17 第是一个拓扑空间.记为点x∈XX的邻域系.则:定理2.3.2 设U∈x∈X,;并且如果≠,则(1)对于任何x∈U;U ∩V∈,V∈ U,则;(2)如果V∈并且U; V (3)如果,则U∈V∈满足条件:(a)VU和,则存在(b) (4)如果对于任何U∈ V ∈.y∈V,有P且由定义,∴X∈证明(1),∴,≠如果 X,X∈,则x∈UU∈PP和使得∈则存在设2()U,V∈.U.和∈ T,∴U∩V∈成立.从而我们有, U∈,并且设3()P.V满足条件已经满足条件(a),根4()设U∈.令V∈据定理2.3.1,它也满足条件(b).以下定理表明,我们完全可以从邻域系的概念出发来建立拓扑空间理论,这种做法在点集拓扑发展的早期常被采用.这种做法也许显得自然一点,但不如现在流行的从开集概念出发定义拓扑来得简洁.定理2.3.3 设X是一个集合.又设对于每一点x∈X指定了x的一个子集族,并且它们满足定理2.3.2中的条件(1)~(4).则x有惟一的一P子集族x ∈X,个拓扑T使得对于每一点在拓扑空间恰是点x(X,)中的邻域系.(证明略)页40 共* 页18 第现在我们来将度量空间之间的连续映射在一点处的连续性的概念推广到拓扑空间之间的映射中去.定义2.3.2 设X和Y是两个拓扑空间,f:X→Y,x∈X.如果的原象(U)是Ux∈X的一个邻域,则称映射ff(x)∈Y的每一个邻域是一个在点x处连续的映射,或简称映射f在点x处连续.与连续映射的情形一样,按这种方式定义拓扑空间之间的映射在某一点处的连续性也明显地是受到了§2.1中的定理2.1.4的启发.并且该定理也保证了:当X 和Y是两个度量空间时,如果f: X→Y是从度量空间X到度量空间Y的一个映射,它在某一点x∈X处连续,那么它也是从拓扑空间X到拓扑空间Y的一个在点x处连续的映射;反之亦然.这里我们也有与定理2.2.l类似的定理.定理2.3.4 设X,Y和Z都是拓扑空间.则)恒同映射:X→X在每一点x∈X(1处连续;(2)如果f:X→Y在点x∈X处连续,g:Y→Z在点f(x)处连续,则gof:X→Z在x处连续.证明请读者自己补上.以下定理则建立了“局部的”连续性概念和“整体的”连续性概念之间的联系.定理2.3.5 设X和Y是两个拓扑空间,f:X→Y.则映射f连续当且仅当对于每一点x∈X,映射f在点x处连续.证明必要性:设映射f连续,这证明f在点X处连续.页40 共** 页19 第x处连续.充分性:设对于每一点x∈X,映射f在点f连续.这就证明了作业: ,掌握证明一个映射是否连续的方法.掌握证明一个子集是邻域的方法§2.4 导集,闭集,闭包本节重点:熟练掌握凝聚点、导集、闭集、闭包的概念;区别一个点属于导集或闭包的概念上的不同;掌握一个点属于导集或闭集或闭包的充要条件;掌握用“闭集”叙述的连续映射的充要条件.如果在一个拓扑空间中给定了一个子集,那么拓扑空间中的每一个点相对于这个子集而言“处境”各自不同,因此可以对它们进行分类处理.定义2.4.1 设X是一个拓扑空间,AX.如果点x∈X的每一个邻域U ,则称点xx中异于的点,即U∩(A-{x}是集合)≠A的一个凝聚中都有A点或极限点.集合A的所有凝聚点构成的集合称为A的导集,记作d(A).如=,)U ∩(A-{x}使得即存在x果x∈A并且不是A的凝聚点,x的一个邻域U 的一个孤立点.为Ax则称):(牢记即页40 共* 页20 第在上述定义之中,凝聚点、导集、以及孤立点的定义无一例外地都依赖于它所在的拓扑空间的那个给定的拓扑.因此,当你在讨论问题时涉及了多个拓扑而又谈到某个凝聚点时,你必须明确你所谈的凝聚点是相对于哪个拓扑而言,不容许产生任何混淆.由于我们将要定义的许多概念绝大多数都是依赖于给定拓扑的,因此类似于这里谈到的问题今后几乎时时都会发生,我们不每次都作类似的注释,而请读者自己留心.某些读者可能已经在诸如欧氏空间中接触过刚刚定义的这些概念,但绝不要以为对欧氏空间有效的性质,例如欧氏空间中凝聚点的性质,对一般的拓扑空间都有效.以下两个例子可以帮助读者澄清某些不正确的潜在印象.例2.4.1 离散空间中集合的凝聚点和导集.设X是一个离散空间,A是X中的一个任意子集.由于X中的每一个单点集都是开集,因此如果x∈X,则X有一个邻域{x},使得,以上论证说明,集合A没有任何一个凝聚点,)=. d(A从而A的导集是空集,即2.4.2 例平庸空间中集合的凝聚点和导集.是X中的一个任意子集.我们分三种情形讨论:设X是一个平庸空间,A A显然没有任何一个凝聚点,亦即第1种情形:.这时A=.(可以参见定理2.4.1中第(d(A)l=)条的证明.)。
《点集拓扑讲义》第一章集合论初步学习笔记

《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基木知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。
这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著.即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基木知识,以及其中的四则运算,大小的比较(<和W),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早己熟悉的方式去使用,而不另作逻辑上的处理.§1.1集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类.集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员.集合也可以没有元素.例如平方等于2的有理数的集合,既大于1 又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称之为空集,记作0・此外,由一个元素构成的集合,我们常称为单点集.集合的表示法:(1)用文句来描述一个集合由哪些元素构成(像前面所作的那样), 是定义集合的一个重要方式.(2)描述法:我们还通过以下的方式来定义集合:记号匕|关于x的一个命题P}表示使花括号中竖线后而的那个命题P成立的所有元素x构成的集合.例如,集合{* X为实数,并且0<Xl}即通常所谓开区间(0, 1).在运用集合这种定义方式时有时允许一些变通,例如集合{戏以是实数}便是集合{刃丿=/,其中%是实数}的简略表示,不难明口这个集合实际上是由全体非负实数构成的.集合表示方式中的竖线“丨”也可用冒号“:”或分号”来代替.(3)列举法:也常将一个集合的所有元素列举出来再加上花括号以表示这个集合.例如表示由元素 TJ构成的集合.如果确实不至于发生混淆,在用列举的办法表示集合时容许某种省略.例如,有时我们可以用{1, 2, 3,・・・}表示全体正整数构成的集合,用{1, 3, 5,…}表示全体正奇数相成的集合.但我们并不鼓励这种做法,因为后而的规律不是很清楚,容易产生误解.我们再三提请读者注意:不管你用任何一种方式定义集合,最重要的是不允许产生歧义,也就是说你所定义的集合的元素应当是完全确定的.在本书中,我们用:乙表示全体正整数构成的集合,称为正整数集;Z表示全体整数构成的集合,称为整数集;Q表示全体有理数构成的集合,称为有理数集;R表示全体实数构成的集合,称为实数集;并且假定读者熟知这些集合.以下是一些常用的记号:e:表示元素与集合的关系,如:xex , xe{x}等G表示集合与集合的关系,如:AUB (等价于(这个记号即是通常数学课木中的匚)二:表示与上述相反的含义.表示两个集合相等,女口:A二B (等价于以下的这个定理等价于形式逻辑中的相应命题,从直觉着去看也是自明的.定理1.1.1设A, B, C都是集合,贝!J(1)A=A;(2)^A=B,则B=A;(3)^A=B, B=C,则A=C.定理1. 1.2设A, B, C都是集合,则(1)A";(2)若AuB, BUA,则A=B;(3)若AUB, BUC,则A".证明(1)显然.(2)AUB 意即:若xWA,贝iJxGB;BS意即:若xGB,则xWA.这两者合起来正好就是A=B的意思.(3)xGA.由于AUB,故xGB;又由于B UC,从而x^C.综上所述,如果xeA就有xec.此意即AUC.因为空集0不含任何元素,所以它包含于每一个集合之中.由此我们可以得出结论:空集是惟一的.设A, B是两个集合.如果AUB,我们则称A为B的子集;如果A是B的子集,但A又不等于B,即AUB, AHB,也就是说A 的每一个元素都是B的元素,但B中至少有一个元素不是A的元素,这时,我们称A为B的真子集.我们常常需要讨论以集合作为元素的集合,并且为了强调这一特点,这类集合常称为集族.例如,缶{⑴,{1,2}, {1,2,3}}是一个集族. 它的三个元素分别为:{1}, {1,2}, {1,2, 3}及d设X是一个集合,我们常用尸(X)表示X的所有子集构成的集族, 称为集合X的幕集.例如,集合{1, 2}的幕集是P{⑴,{1, 2},⑵,0}.木章中所介绍的集合论是所谓“朴素的”集合论.在这种集合论中,“集合”和“元素”等基本概念均不加定义而被认作是自明的.正因为如此,历史上曾经产生过一些悖论.而对于绝大多数读者来说了解朴素的集合己是足够的了,只是要求他们在运用的时候保持适当的谨慎,以免导致逻辑矛盾•例如,我们应当知道一个集合本身不能是这个集合一个元素.即:若A是集合则AWA不成立.这一点是容易理解的.例如,由一些学生组成的一个班级决不会是这个班级里的一名学生.因此,我们不能说“所有集合构成的集合”,因为如果有这样一个“集合”的话,它本身既是一个集合,就应当是这个“所有集合构成的集合”的一个元素了.也因此,我们应当能够了解一个元素a和仅含一个元素a的单点集4}是两回事,尽管我们有时为了行文的简便而在记号上忽略这个区别.作业:掌握集合、元素的概念、表示法熟练区分“G”与“U”的意义§1.2集合的基本运算在这一节中我们介绍集合的并、交、差三种基本运算,这三种运算的基本规律,以及它们与集合的包含关系之间的基本关联.定义1.2. 1设A与B是两个集合.集合{x|xeA或xWB}称为集合A与集合B的并集或并,记作AUB, 读为A并B.集合{x|x eA且xWB}称为集合A与集合B的交集或交,记作AAB, 读为A交B.若AQB二0,则称集合A与集合B无交或不相交;反之,若AQBH0,则称集合A与集合B有(非空的)交.集合{x|xeA且x吃B}称为集合A与集合B的差集,记作A\B或A -B,读为A差B,或A减B.关于集合的并、交、差三种运算之间,有以下的基本规律.定理1.2.1设A, B, C都是集合.则以下等式成立:(1)幕等律AUA=AADA=A(2)交换律AUB=BUA AnB=BnA(3)结合律(AUB) UC=AU (BUC)(AAB) nc=An (BAC)(4)分配律(APB) UC=(AUC) Cl (BUC)(AUB) nc=(Anc)u (Bnc)(5)DeMongan 律A-(BUC)= ( (A-B) A (A-C)A-((BnC) = (A-B)U(A-C)集合的并、交、差三种运算与集合间的包含关系之间有着以下基本关联.定理1.2.2设A, B是两个集合.下列三个条件等价:(1)A UB;(2)AnB=A;(3)AUB=B・定义1.2.2设X是一个基础集.对于X的任何一个子集A,我们称X-A 为A (相对于基础集X而言)的补集或余集记作占.我们应当提醒读者,补集占的定义与基础集的选取有关.所以在研究某一个问题时,若用到补集这个概念,在整个工作过程中基础集必须保持不变.定理1.2.3设X是一个基础集.若A, B为X的子集,则Au0=A,Ar^0 = 0,AuX = X,Ar^X =AAuA = X,Ar\A r = 0}{AuBy =A r\B,XAr\B')' = A以上证明均只须用到集合的各种定义,此处不证,略去. 作业:熟记这两节的各种公式.掌握证明两个集合A二B与AUB的基本方法KugO冷亡虫,=疋B(/ = E o 且 u R A B u 力)§1.3关系我们从前在数学的各种科目中学过诸如函数、次序、运算,以及等价等种种概念,它们的一个共同的特点在于给出了某些给定集合的元素之间的某种联系.为了明确地定义它们,我们先定义“关系”,而为了定义关系,又必需先有两个集合的笛卡儿积这个概念.定义1.3. 1设X和Y是两个集合.集合{ (x, y) |xex, yey}称为X与Y的笛卡儿积,记作XXY,读为X叉乘Y.其中(x, y)是一个有序偶,x称为(x, y)的第一个坐标,y称为(x, y)的第二个坐标.X称为XXY的第一个坐标集,Y称为XXY的第二个坐标集•集合X与自身的笛卡儿积XXX称为X的2重(笛卡儿)积,通常简单记作胪.有点儿不幸的是我们用于有序偶的记号和用于“开区间”的记号是一样的,有时容易混淆.因此在可能发生混淆的情形下应当加以说明,以避免误解.给定两个集合,通过取它们的笛卡儿积以得到一个新的集合,这个办法对于读者并不陌生.以前学过的数学中通过实数集合构作复数集合,通过直线构作平面时,用的都是这个办法.我们应当注意,一般说来集合X与集合Y的笛卡儿积XXY完全不同于集合Y与集合X的笛卡儿积YXX.定义1. 3. 3设X,Y是两个集合•如果R是X与Y的笛卡儿积XXY 的一个子集,即RUXXY,则称R是从X到Y的一个关系.定义1. 3.4设R是从集合X到集合Y的一个关系,即RCXXY.如果(x, y) WR,则我们称x与y是R相关的,并且记作xRy・如果AUX, 则Y的子集{yWY|存在xeA使得xRy}称为集合A对于关系R而言的象集,或者简单地称为集合A的象集,或者称为集合A的R象,并且记作R (A) , R (X)称为关系R的值域.关系的概念是十分广泛的.读者很快便会看到,以前在另外的数学学科中学过的函数(映射),等价,序,运算等等概念都是关系的特例.这里有两个特别简单的从集合X到集合Y的关系,一个是XXY 本身,另一个是空集(1).请读者自己对它们进行简单的考查.定义1. 3.5设R是从集合X到集合Y的一个关系,即RCXXY.这时笛卡儿积YXX的子集{ (y, x) eYXX|xRy}是从集合Y到集合X的一个关系,我们称它为关系R的逆,并且记作尺一】.如果BUY, X的子集氏"(B)是集合B的氏一】象,我们也常称它为集合B对于关系R而言的原象,或者集合B的R原象.特别,关系氏" 的值域氏"(Y)也称为关系R的定义域.定义1. 3.6设R是从某个X到集合Y的一个关系,即RuXX Y, S 是从集合y到集合Z的一个关系,即SuYX乙集合{ (x, z) exXY 存在yGY使得xRy并且ySz}是笛卡儿积XXZ的一个子集,即从集合X到集合Z的一个关系,此关系称为关系R与关系S的复合或积,记作SoR.定理1.3.1设R是从集合X到集合Y的一个关系,S是从集合Y 到集合Z的一个关系,T是从集合Z到集合U的一个关系.贝!J:(1)(L)J 二R证明(略)定理1.3.2设R是从集合X到集合Y的一个关系,S是从某个Y 到集合Z的一个关系.则对于X的任意两个子集A和B,我们有:(1)R (AUB) =R (A) UR (B);(2)R (AAB) UR (A) AR (B);(3)(SoR) (A) =S(R(A)).证明(略)在本节的最后我们要提到有限个集合的笛卡儿积的概念,它是两个集合的笛卡儿积的概念的简单推广.定义1. 3. 7 设瓦耳必是n>l个集合.集合I x i e X、® € X2e X x")称为舟‘兀*•••** 的笛卡儿积,并且记作或者[]益其中(心心…石为有次序的n元素组,勺(i=l, 2, —n)称为n 元素组(忑旳…心)的第i个坐标,X i (i = l, 2,…, n)称为笛卡儿积乂\莫2”••召的第i个坐标集.n>l个集合X的笛卡儿积XXXX-XX常简单地记作炉n个集合的笛卡儿积的概念读者必然也不会感到陌生,在线性代数中n维欧氏空间作为集合而言就是n个直线(作为集合而言)的笛卡儿积.需要提醒读者的是,如果你在给定的n个集合中交换了集合的次序,一般说来得到的笛卡儿积会是完全不同的集合.至今我们并未定义“0个集合的笛卡儿积”,此事将来再以某种方式补充・(参见§9.1) 作业:理解“关系”的概念,掌握“关系”与“映射”的异同,“映射” 与“函数”的异同.(映射要求象惟一,关系没要求.函数要求定义域与值域是数域,而映射不一定)掌握运算乘积的概念与性质掌握集合的笛卡儿积中元素的形式§1.4等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.定义1. 4. 1设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{(x, x) |xex}称为恒同关系,或恒同,对角线,记作△ (X)或△・定义1.4.2设R是集合X中的一个关系.关系R称为自反的,如果厶(X) CR,即对于任何xex,有xRx;关系R称为对称的,如果恥L , 即对于任何x, yex,如果xRy则yRx;关系R称为反对称的,如果RnR-1 =0,即对于任何x, yex, xRy和yRx不能同时成立;关系R 称为传递的,如果RoRUR,即对丁-任何x, y, zGX,如果xRy, yRz, 则有xRz.集合X中的一个关系如果同时是自反、对称和传递的,则称为集合X中的一个等价关系.容易验证集合X中的恒同关系△ (X)是自反、对称、传递的,因此是X中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“相等关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B"(X), A=B}从定理1.1.1中可见,它是自反、对称、传递的,因此是尸(X) 中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“包含关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B" (X), AuB}根据定理1.1.2可见,它是自反的、传递的,但容易知道它不是对称的,因此不是尸(X)中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“真子集关系”可以理解为集合尸(X) X尸(X)的子集{(A, B) |A, BW尸(X), A U B,AHB}根据定理1.1.3可见,它是反对称的,传递的,但它不是自反的, 因而不是尸(X)中的一个等价关系.实数集合R中有一个通常的小于关系<,即RXR的子集{ (x, y) |x, yGR, x<y}容易验证关系<是反对称的,传递的,但不是自反的.设p是一个素数,我们在整数集合Z中定义一个关系三p如下:=?-{ (x, y) WZXZ]存在nGZ 使得x —y 二np}关系J常称为模P等价关系,容易验证模P等价关系J是自反的, 对称的,传递的,因此是z中的一个等价关系.定义1. 4.3设R是集合X中的一个等价关系.集合X中的两个点x, y,如果满足条件:xRy,则称x与y是R等价的,或简称为等价的; 对于每一个xeX,集合X的子集:{yWXlxRy}称为x的R等价类或等价类,常记作【心或[x],并且任何一个yG【心都称为R等价类【心的一个代表元素;集族{t^l xeX}称为集合X相对于等价关系R而言的商集,记作X/R.我们考虑整数集合Z中的模2等价关系勺,易见,1巳3和2巳8.因此1与3是勺等价的,2和8也是三2等价的.整数2所属的等价类是所有偶数构成的集合,每一个偶数都可以叫做这个等价类的一个代表元素.此外易见,商集Z/三2有且仅有两个元素:一个是所有奇数构成的集合,另一个是所有偶数构成的集合.下面这个定理说明,给定了一个等价关系,等于说给定了一个分类的原则,把一个非空集合分割成一些非空的两两无交的等价类,使得这集合的每一个元素都在某一个等价类中.定理1.4.1设R是非空集合X中的一个等价关系.贝!(1)如果xex,则xW【心,因而【刃宀;(2)对于任意x, yGX,或者MlwAL,或者证明(1)设xex,由于R是自反的,所以xRx,因此*丘闪匚・・・【刃上工0・(3)对于任意x, yWX,如果,设zW[x]C[y].此时有zRx,且zRy.由于R是对称的,所以xRz・又由于R是传递的,所以xRy・对于任何一个t e【刃丘,有t Rx,由上述xRy和R的传递性可见tRy, 即tel-xh.这证明MbuAL同理可证【刃上ukk.因此【刃2【词上(注意:要证或者…或者…,应从以下入手:否定掉一个,去证另一个)在初等数论中我们早就知道整数模(素数)P的等价关系J将整数集合Z分为互不相交的等价类,每一个等价类记作[刘去,称为整数X的模P同余类.让我们再回忆一下在解析几何学中定义自由向量的过程:首先将固定向量定义为平面(或n维欧氏空间)中的有序偶;然后在全体固定向量构成的集合(暂时记为X)中定义一个关系〜,使得两个固定向量x和y 〜相关(即x〜y)当且仅当x能通过平而(或n维欧氏空间)的一个平移与y重合.容易验证这个关系〜是X中的一个等价关系.每一个~等价类便称为一个自由向量.作业:熟练掌握等价关系,等价类的概念.掌握商集的概念.明确商集的构成§1.5映射数学分析中的函数概念,群论中的同态概念,线性代数中的线性变换概念等等都是读者所熟知的概念.这些概念的精确定义事实上都有赖于本节中所讨论的映射概念.定义1. 5. 1设F是从集合X到集合Y的一个关系.如果对于每一个x WX存在惟一的一个y丘Y使得xFy,则称F是从X到Y的一个映射, 并且记作F: X-Y.换言之,F是一个映射,如果对于每一个xex:(1)存在yWY,使得xFy;(2)如果对于H必GY有^^和入绥,则HT2.定义1. 5.2设X和Y是两个集合,F: X-Y(读做F是从X到Y的一个映射).对于每一个xex,使得xFy的唯一的那个yGY称为x的象或值,记作F (x);对于每一个yGY,如果xex使得xFy (即y是x的象),则称x是y的一个原象(注意:yeY可以没有原象,也可以有不止一个原象).由于映射本身便是关系,因此,如果F是从集合X到集合Y的一个映射,那么:(1)对于任何AUX,象F (A)有定义,并且F(A) = {F(x) xeA}(2)对于任何BUY,原象F- (B)有定义,并且厂】(B) ={xex F(x)eB} (y±意:厂匕)与严(g)的异同,前者不一定有意义,而后者总存在;前者表示元素,后者表示集合)(3)如果Z也是一个集合并且G: Y-Z,则关系的复合GoF作为一个从X到Z的关系有定义;(4)尺一】作为从Y到X的一个关系有定义,但一般说来应"不是一个从Y到X的映射(这要看F是否是一一映射);(5) F的定义域有定义,并且它就是X;(意味着X中的每个元素都必须有象)(6) F的值域有定义,并且它就是F (X)・(F(X)不一定充满Y)定理1.5.1设X, Y和Z都是集合.如果F: X-Y和G: Y-乙则SF: X-Z;并且对于任何xGX,有GoF(X)=G(F(x))(这实际上是映射的积的本质)证明(略)(但要理解上式等号左右两边的不同含义,前者是两个映射的积(也是一个映射)作用在x上,后者是F先作用在x上,然后G 再作用在F (x)±).今后我们常用小写字母f, g, h,……表示映射.定理1. 5.2设X和Y是两个集合,f:X~Y・如果A, BUY 则(1)r1(AUB)=广" (A)U厂(B);(2)(AAB)=广" (A)nr1(B);(3)(A-B)=厂(A)-了' (B)・简言之,映射的原象保持集合的并,交,差运算.证明(略)・定义1. 5.3设X和Y是两个集合,X-Y.如果Y中的每一个点都有原象(即f的值域为Y,亦即f (X)二Y),则称f是一个满射,或者称f为一个从X到Y上的映射;如果X中不同的点的象是Y中不同的点(即对于任何如果心工乃,则有八1"了(心),则称f 是一个单射;如果f既是一个单射又是一个满射,则称f为一个既单且满的映射,或者一一映射.如果f (X)是一个单点集,则称f是一个常值映射,并且当f(X)二{y}时,我们也说f是一个取常值y的映射.易见,集合X中的恒同关系△ (X)是从X到X的一个一一映射,我们也常称之为(集合X上的)恒同映射或恒同,有时也称之为单位映射,并且也常用记号“或i: X-X来表示它.根据定义易见,对于任何xex,有i (x)=x.概言之,恒同映射便是把每一个点映为这个点自身的映射.由于下面的这个定理,一一映射也称为可逆映射.定理1. 5.3设X和Y是两个集合.又设f:X-Y.如果f是一个一一映射,则厂便是一个从Y到X的映射(因此我们可以写广:Y-X),并且是既单且满的.此外我们还有:广'n和"厂=妆证明(略)定理1. 5.4设X, Y和Z都是集合,f:XfY, g: Y-Z.如果f 和g都是单射,则gof:X~Z也是单射;如果f和g都是满射,则g。
《点集拓扑学》第一章2

定义3 设 f : X Y . 如果 f(X)=Y, 则称f是一个满射, 或者称f为从X到Y上的映射;如果对于X中任意互异 的两点x1,x2一定有 f ( x1 ) f ( x2 ) ,则称f是一个单射; 如果f既是单射又是满射,则称f是一个一一映射. 如果f(X)是一个单元素集,则称f是一个常值映射.
当 f ( X ) {y0 } 时,称 f 是一个取常值 y0 的映射.
定理3 设X和Y是两个集合,又设 f : X Y , 如果f是个一一映射,则其逆关系便是从Y到X的映射 因此可以写成 f 1 : Y X ,并且也是一一映射,此外
f
1
f iX ,
ff
1
iY
根据上面的定理3,一一映射又称为可逆映射.
R( A ) R( A ),
J J
R( A ) R( A )
J J
定理 4 设 X 和 Y 是两个集合, f : X Y ,则对于 集合 Y 的任何一个非空子集族 {B | J } ,有
f 1 ( B ) f 1 ( B ),
p {( x, [ x]~ ) | x X } X X ~
§1.6 集族及其运算
重点:集族的交与并的理解
难点:集族交与并的理解
定义 1 设 X 是全集,集族{ A J } P( X ) ,指标集 J 集
合
{x | 存在 J 使得x A }
称为集族 {A }J 的并集,记作 J A ; 集合
J J
J
J
(4)De Morgan(德摩根)定律
A ( A ) ( A A ) , A ( A ) ( A A )
《点集拓扑讲义》集合论初步学习笔记

点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。
这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著.文档收集自网络,仅用于个人学习即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基本知识,以及其中的四则运算,大小的比较(V和w),和实数理论中关于实数的完备性的论断何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早已熟悉的方式去使用,而不另作逻辑上的处理.文档收集自网络,仅用于个人学习§1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学1 / 24生的集合”,“所有整数的集合”等等.集合也常称为集,族,类. 文档收集自网络,仅用于个人学习集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员. 文档收集自网络,仅用于个人学习集合也可以没有元素.例如平方等于2的有理数的集合,既大于1 又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称之为空集,记作.此外,由一个元素构成的集合,我们常称为单点集.文档收集自网络,仅用于个人学习集合的表示法:(1)用文句来描述一个集合由哪些元素构成(像前面所作的那样),是定义集合的一个重要方式.(2)描述法:我们还通过以下的方式来定义集合:记号{x|关于x的一个命题P}表示使花括号中竖线后面的那个命题P成立的所有元素x构成的集合.例如,集合{x|x为实数,并且0V X V1}即通常所谓开区间(0,1).在运用集合这种定义方式时有时允许一些变通,例如集合{「二是实数}便是集合「「「,其中x是实数}的简略表示,不难明白这个集合实际上是由全体非负实数构成的.集合表示方式中的竖线“ |”也可用冒号“:”或分号“;”来代替. 文档收集自网络,仅用于个人学习(3)列举法:也常将一个集合的所有元素列举出来再加上花括号以表示这个集合.例如{:〔、}表示由元素\ 构成的集合.如果确实不至于发生混淆,在用列举的办法表示集合时容许某种省略. 例如,有时我们可以用{1 , 2, 3,…}表示全体正整数构成的集合,用{1 , 3,厶,…}表示全体正奇数相成的集合.但我们并不鼓励这种做法,因为后面的规律不是很清楚,容易产生误解.我们再三提请读者注意:不管你用任何一种方式定义集合,最重要的是不允许产生歧义,也就是说你所定义的集合的元素应当是完全确定的. 文档收集自网络,仅用于个人学习在本书中,我们用:「表示全体正整数构成的集合,称为正整数集;Z表示全体整数构成的集合,称为整数集;Q表示全体有理数构成的集合,称为有理数集;R表示全体实数构成的集合,称为实数集;并且假定读者熟知这些集合.以下是一些常用的记号:€ :表示元素与集合的关系,如:x € X,x € {x}等一:表示集合与集合的关系,如:A_B (等价于宀「丄(这个记号即是通常数学课本中的—)-:表示与上述相反的含义.3 / 24=:表示两个集合相等,如:A=B (等价于—一 :)以下的这个定理等价于形式逻辑中的相应命题,从直觉着去看也是自明的.定理1.1.1 设A, B, C都是集合,则(I ) A= A;(2)若A= B,则B= A;(3)若A= B, B=C 则A= C.定理1.1.2 设A, B, C都是集合,则(I ) A_A;(2)若A_B, B_A,贝S A= B;(3)若A_B, B_C,贝S A_C.证明(I )显然.(2)A_B意即:若x€ A,贝S x€ B;B_ A意即:若x€ B,则x€ A.这两者合起来正好就是A= B的意思.(3)x € A.由于A_ B,故x € B;又由于B _C,从而x€ C.综上所述,如果x€A就有x€ C.此意即A—C.因为空集二不含任何元素,所以它包含于每一个集合之中.由此我们可以得出结论:空集是惟一的.设A, B是两个集合.如果A—B,我们则称A为B的子集;5 / 24如果A是B的子集,但A又不等于B,即A_B, A M B,也就是说A的每一个元素都是B的元素,但B中至少有一个元素不是A的元素,这时,我们称A为B的真子集. 文档收集自网络,仅用于个人学习我们常常需要讨论以集合作为元素的集合,并且为了强调这一特点,这类集合常称为集族.例如,A二{{1},{1,2},{1,2,3}} 是一个集族.它的三个元素分别为:{1},{1,2},{1,2,3} 及二. 文档收集自网络,仅用于个人学习设X是一个集合,我们常用P(X)表示X的所有子集构成的集族,称为集合X的幕集.例如,集合{1,2}的幕集是P={{1},{1,2},{2}, : }.文档收集自网络,仅用于个人学习本章中所介绍的集合论是所谓“朴素的”集合论.在这种集合论中,“集合”和“元素”等基本概念均不加定义而被认作是自明的. 正因为如此,历史上曾经产生过一些悖论.而对于绝大多数读者来说了解朴素的集合已是足够的了,只是要求他们在运用的时候保持适当的谨慎,以免导致逻辑矛盾.例如,我们应当知道一个集合本身不能是这个集合一个元素.即:若A是集合则A€A不成立.这一点是容易理解的.例如,由一些学生组成的一个班级决不会是这个班级里的一名学生.因此,我们不能说“所有集合构成的集合”,因为如果有这样一个“集合”的话,它本身既是一个集合,就应当是这个“所有集合构成的集合”的一个元素了.也因此,我们应当能够了解一个元素a和仅含一个元素a的单点集{a}是两回事,尽管我们有时为了行文的简便而在记号上忽略这个区别. 文档收集自网络,仅用于个人学习作业:掌握集合、元素的概念、表示法熟练区分“€”与“ 的意义§ 1.2 集合的基本运算在这一节中我们介绍集合的并、交、差三种基本运算,这三种运算的基本规律,以及它们与集合的包含关系之间的基本关联. 文档收集自网络,仅用于个人学习定义1.2.1 设A与B是两个集合.集合{x|x €A或x€ B}称为集合A与集合B的并集或并,记作AUB 读为A并B.集合{x|x €A且x€ B}称为集合A与集合B的交集或交,记作A A B, 读为A交B.若A A B二二,则称集合A与集合B无交或不相交;反之,若A AB M二,则称集合A与集合B有(非空的)交. 文档收集自网络,仅用于个人学习集合{x|x €人且x^B}称为集合A与集合B的差集,记作A\B或A —B,读为A差B,或A减B.关于集合的并、交、差三种运算之间,有以下的基本规律.定理1.2.1 设A, B, C都是集合.则以下等式成立:(1)幕等律A U A= A7 / 24A n A=A(2)交换律A U B=B UA A n B=Bn A(3)结合律(A U B) U C= A U (B U C)(A n B) n C= A n (B n C)(4)分配律(A n B) U C= (A U C)n (B U C)(A U B) n C= (A n C)U (B n C)(5)DeMonganf聿A-(BUC)二((A- B) n (A-C)A-((B n C)= (A-B)U(A-C)集合的并、交、差三种运算与集合间的包含关系之间有着以下基本关联.定理1.2.2 设A, B是两个集合.下列三个条件等价:(I ) A_B;(2)A n B= A;(3)A U B= B.定义1.2.2 设X是一个基础集.对于X的任何一个子集A,我们称X-A为A (相对于基础集X而言)的补集或余集记作匸. 文档收集自网络,仅用于个人学习我们应当提醒读者,补集匚的定义与基础集的选取有关.所以在研究某一个问题时,若用到补集这个概念,在整个工作过程中基础集必须保持不变. 文档收集自网络,仅用于个人学习定理123 设X是一个基础集.若A, B为X的子集,则A\J A = XMrUSSM = =A以上证明均只须用到集合的各种定义,此处不证,略去.作业:熟记这两节的各种公式掌握证明两个集合A=B与A_ B的基本方法AuE 0 Yxexe B(£= B O 虫匸匸A)§ 1.3 关系我们从前在数学的各种科目中学过诸如函数、次序、运算,以及等价等种种概念,它们的一个共同的特点在于给出了某些给定集合的元素之间的某种联系.为了明确地定义它们,我们先定义“关系”,而为了定义关系,又必需先有两个集合的笛卡儿积这个概念. 文档收集自网络,仅用于个人学习定义1.3.1 设X和Y是两个集合.集合{ (x,y)|x € X,y€ Y}9 / 24称为X与丫的笛卡儿积,记作X X Y,读为X叉乘Y.其中(x , y)是一个有序偶,x称为(x, y)的第一个坐标,y称为(x, y)的第二个坐标.X 称为X XY的第一个坐标集,丫称为X XY的第二个坐标集.集合X与自身的笛卡儿积X XX称为X的2重(笛卡儿)积,通常简单记作[.文档收集自网络,仅用于个人学习有点儿不幸的是我们用于有序偶的记号和用于“开区间”的记号是一样的,有时容易混淆.因此在可能发生混淆的情形下应当加以说明,以避免误解. 文档收集自网络,仅用于个人学习给定两个集合,通过取它们的笛卡儿积以得到一个新的集合,这个办法对于读者并不陌生.以前学过的数学中通过实数集合构作复数集合,通过直线构作平面时,用的都是这个办法. 文档收集自网络,仅用于个人学习我们应当注意,一般说来集合X与集合丫的笛卡儿积X XY完全不同于集合丫与集合X的笛卡儿积Y X X.定义133 设X,Y是两个集合.如果R是X与丫的笛卡儿积X XY 的一个子集,即R—X X 丫,则称R是从X到丫的一个关系. 文档收集自网络,仅用于个人学习定义1.3.4 设R是从集合X到集合丫的一个关系,即R- X X Y.如果(x , y)€ R,则我们称x与y是R相关的,并且记作xRy.如果A_X,则丫的子集文档收集自网络,仅用于个人学习{y € Y|存在x€A使得xRy}称为集合A对于关系R而言的象集,或者简单地称为集合A的象集,或者称为集合A的R象,并且记作R( A), R( X)称为关系R的值域.文档收集自网络,仅用于个人学习关系的概念是十分广泛的.读者很快便会看到,以前在另外的数学学科中学过的函数(映射),等价,序,运算等等概念都是关系的特例.这里有两个特别简单的从集合X到集合丫的关系,一个是X XY 本身,另一个是空集二请读者自己对它们进行简单的考查. 文档收集自网络,仅用于个人学习定义135 设R是从集合X到集合丫的一个关系,即R_X X 丫这时笛卡儿积Y XX的子集{ (y,X)€ Y X X|xRy}是从集合Y到集合X的一个关系,我们称它为关系R的逆,并且记作如果B_Y,X的子集丄」(B)是集合B的.「象,我们也常称它为集合B对于关系R而言的原象,或者集合B的R原象.特别,关系£ ' 的值域;-(Y)也称为关系R的定义域. 文档收集自网络,仅用于个人学习定义136 设R是从某个X到集合Y的一个关系,即R- X X Y,S 是从集合y到集合Z的一个关系,即S_Y X乙集合{ (x,z)€ X X Y| 存在y€Y 使得xRy并且ySz}是笛卡儿积X XZ的一个子集,即从集合X到集合Z的一个关系,此关系称为关系R与关系S的复合或积,记作S R.文档收集自网络,仅用于个人学习11 /24定理1.3.1 设R是从集合X到集合Y的一个关系,S是从集合Y 到集合Z的一个关系,T是从集合Z到集合U的一个关系.贝心文当收集自网络,仅用于个人学习(1) = R(2) (5 o/?)-1=R-}O S A证明(略)定理132 设R是从集合X到集合Y的一个关系,S是从某个Y到集合Z的一个关系.则对于X的任意两个子集A和B,我们有:文档收集自网络,仅用于个人学习(1)R (A U B)= R (A)U R ( B);(2)R (A A B) _ R (A)A R (B);(3)( SR)( A)= S(R(A)).证明(略)在本节的最后我们要提到有限个集合的笛卡儿积的概念,它是两个集合的笛卡儿积的概念的简单推广.定义137 设忙是n > 1个集合.集合{(*1周■咼)丨*1 €才[內E Ai E "J称为為・爲3“扎的笛卡儿积,并且记作亠二=;或者"」其中J丄」为有次序的n元素组,I(i=1,2,…n)称为n元素组:二-的第i个坐标,…(i = 1,2,…,n)称为笛卡儿积二……的第i个坐标集. 文档收集自网络,仅用于个人学习n> 1个集合X的笛卡儿积X X X X…XX常简单地记作n 个集合的笛卡儿积的概念读者必然也不会感到陌生,在线性代数中n 维欧氏空间作为集合而言就是n 个直线(作为集合而言)的笛卡儿积.文档收集自网络,仅用于个人学习需要提醒读者的是,如果你在给定的n 个集合中交换了集合的次序,一般说来得到的笛卡儿积会是完全不同的集合.至今我们并未定义“0个集合的笛卡儿积”,此事将来再以某种方式补充.(参见§ 9.1)文档收集自网络,仅用于个人学习作业:理解“关系”的概念, 掌握“关系”与“映射”的异同,“映射” 与“函数”的异同.(映射要求象惟一,关系没要求.函数要求定义域与值域是数域, 而映射不一定)文档收集自网络,仅用于个人学习掌握运算乘积的概念与性质掌握集合的笛卡儿积中元素的形式§1.4 等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.文档收集自网络,仅用于个人学习13 /24定义1.4.1 设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{ (x, x) |x € X}称为恒同关系,或恒同,对角线,记作△( X)或△. 文档收集自网络,仅用于个人学习定义142 设R是集合X中的一个关系.关系R称为自反的,如果厶(X) _R,即对于任何x€ X,有xRx;关系R称为对称的,如果, 即对于任何x, y € X,如果xRy则yRx;关系R称为反对称的,如果丄:厂-」,即对于任何x, y € X, xRy和yRx不能同时成立;关系R 称为传递的,如果R「R_R,即对于任何x, y, z€ X,如果xRy, yRz, 贝y有xRz.文档收集自网络,仅用于个人学习集合X中的一个关系如果同时是自反、对称和传递的,则称为集合X 中的一个等价关系.容易验证集合X中的恒同关系△( X)是自反、对称、传递的,因此是X中的一个等价关系.集合X的幕集RX)中两个元素(即集合X的两个子集)之间的“相等关系”可以理解为集合RX) x RX)的子集文档收集自网络,仅用于个人学习{ (A, B) |A , B€ RX) , A=B}从定理1.1.1中可见,它是自反、对称、传递的,因此是P (X) 中的一个等价关系.集合X的幕集RX)中两个元素(即集合X的两个子集)之间的“包含关系”可以理解为集合P(X)x P(X)的子集文档收集自网络,仅用于个人学习{ (A, B) |A , B€ P (X) , A_B}根据定理1.1.2可见,它是自反的、传递的,但容易知道它不是对称的,因此不是RX)中的一个等价关系. 文档收集自网络,仅用于个人学习集合X的幕集RX)中两个元素(即集合X的两个子集)之间的“真子集关系”可以理解为集合P(X) x P(X)的子集文档收集自网络,仅用于个人学习{(A , B)|A , B€ P(X) , A_B,A M B}根据定理1.1.3可见,它是反对称的,传递的,但它不是自反的,因而不是P(X)中的一个等价关系.实数集合R中有一个通常的小于关系V,即R XR的子集{ (x,y) |x,y€ R, x V y}容易验证关系V是反对称的,传递的,但不是自反的.设p是一个素数,我们在整数集合Z中定义一个关系三p如下:-={ (X,y)€ Z x Z|存在n€Z 使得x-y=np}关系常称为模p等价关系,容易验证模p等价关系;是自反的,对称的,传递的,因此是Z中的一个等价关系.定义143 设R是集合X中的一个等价关系.集合X中的两个点x,y,如果满足条件:xRy,则称x与y是R等价的,或简称为等价的;对于每一个x€ X,集合X的子集:{y € X|xRy}称为x的R等价类或等价类,常记作或[x],并且任何一个y €都称为R等价类的一个代表元商集,记作X/ R. 文档收集自网络,仅用于个人学习素;集族{ x€ X}称为集合X相对于等价关系R而言的商集,记作X/ R. 文档收集自网络,仅用于个人学习我们考虑整数集合Z中的模2等价关系1,易见,1^3和2【8.因此1与3是【等价的,2和8也是1等价的.整数2所属的等价类是所有偶数构成的集合,每一个偶数都可以叫做这个等价类的一个代表元素.此外易见,商集Z/三1有且仅有两个元素:一个是所有奇数构成的集合,另一个是所有偶数构成的集合. 文档收集自网络,仅用于个人学习下面这个定理说明,给定了一个等价关系,等于说给定了一个分类的原则,把一个非空集合分割成一些非空的两两无交的等价类,使得这集合的每一个元素都在某一个等价类中.文档收集自网络,仅用于个人学习定理1.4.1 设R是非空集合X中的一个等价关系.贝心(1)如果x € X,则x € ,因而1厂「;(2)对于任意x,y€ X,或者〔山』儿,或者[心门[/]汀0证明(1)设x€ X,由于R是自反的,所以xRx,因此x€,二工J .文档收集自网络,仅用于个人学习(3)对于任意x,y € X,如果,设z € [x] A [y].此时有zRx,且zRy.由于R是对称的,所以xRz.又由于R是传递的,所以xRy.文档收集自网络,仅用于个人学习对于任何一个t €「丄,有tRx,由上述xRy和R的传递性可见tRy,即t € " 一:.这证明二_、5.同理可证二_—因此-^ =?(注意:要证或者…或者…,应从以下入手:否定掉一个,去证另一个)17 / 24在初等数论中我们早就知道整数模(素数)p的等价关系J将整数集合Z分为互不相交的等价类,每一个等价类记作,称为整数x的模p同余类. 文档收集自网络,仅用于个人学习让我们再回忆一下在解析几何学中定义自由向量的过程:首先将固定向量定义为平面(或n维欧氏空间)中的有序偶;然后在全体固定向量构成的集合(暂时记为X)中定义一个关系~,使得两个固定向量x和y~相关(即x~y)当且仅当x能通过平面(或n维欧氏空间)的一个平移与y重合.容易验证这个关系〜是X中的一个等价关系.每一个~等价类便称为一个自由向量. 文档收集自网络,仅用于个人学习作业:熟练掌握等价关系,等价类的概念.掌握商集的概念.明确商集的构成§ 1.5 映射数学分析中的函数概念,群论中的同态概念,线性代数中的线性变换概念等等都是读者所熟知的概念.这些概念的精确定义事实上都有赖于本节中所讨论的映射概念. 文档收集自网络,仅用于个人学习定义1.5.1 设F是从集合X到集合Y的一个关系.如果对于每一个x€X存在惟一的一个y €Y使得xFy,则称F是从X到Y的一个映射,并且记作F: X-Y.换言之,F是一个映射,如果对于每一个x€ X:文档收集自网络,仅用于个人学习(1)存在y € Y,使得xFy;(2)如果对于€Y有二L和”1 ,则■' _.定义1.5.2 设X和Y是两个集合,F: X-Y(读做F是从X到Y的一个映射).对于每一个x€ X,使得xFy的唯一的那个y€Y称为x的象或值,记作F (x);对于每一个y€ Y,如果x€X使得xFy (即y是x的象),则称x是y的一个原象(注意:y€Y可以没有原象,也可以有不止一个原象). 文档收集自网络,仅用于个人学习由于映射本身便是关系,因此,如果F是从集合X到集合丫的一个映射,那么:(1)对于任何A_X,象F (A)有定义,并且F(A)={F(x)|x € A}(2)对于任何B —Y,原象「’(B)有定义,并且J (B) ={x € X|F(x) € B}(注意::(x)与J ({x})的异同,前者不一定有意义,而后者总存在;前者表示兀素,后者表示集合)文档收集自网络,仅用于个人学习(3)如果Z也是一个集合并且G: Y-乙则关系的复合GF作为一个从X到Z的关系有定义;(4)F :作为从丫到X的一个关系有定义,但一般说来F :不是一个从丫到X的映射(这要看F是否是---- 映射);19 / 24(5)F的定义域有定义,并且它就是X;(意味着X中的每个元素都必须有象)(6)F的值域有定义,并且它就是F(X). (F(X)不一定充满Y)定理1.5.1 设X, Y和Z都是集合.如果F: X-Y和G: Y-乙则GF: X- Z;并且对于任何x€ X,有文档收集自网络,仅用于个人学习GF (x)= G(F(x))(这实际上是映射的积的本质)证明(略)(但要理解上式等号左右两边的不同含义,前者是两个映射的积(也是一个映射)作用在x上,后者是F先作用在x上,然后G 再作用在F(x)上).文档收集自网络,仅用于个人学习今后我们常用小写字母f, g, h,……表示映射.定理1.5.2 设X和Y是两个集合,f:X -Y.如果A, B_Y 则(1)八(A U B)= 一八(A)U 一…(B);(2)八(A A B)= 一八(A)门一…(B);J1 -1 /~1 /-I(3)一(A-B)=_ (A) -一(B).简言之,映射的原象保持集合的并,交,差运算.证明(略).定义1.5.3 设X和Y是两个集合,X Y.如果Y中的每一个点都有原象(即f的值域为Y,亦即f (X) =Y),则称f是一个满射,或者称f为一个从X 到丫上的映射;如果X中不同的点的象是Y中不同的点(即对于任何I ■:■,如果「I,则有■ '1 ■/ ,则称f是一个单射;如果f既是一个单射又是一个满射,则称f为一个既单且满的映射,或者—映射. 文档收集自网络,仅用于个人学习如果f (X)是一个单点集,则称f是一个常值映射,并且当f (X) ={y}时,我们也说f是一个取常值y的映射. 文档收集自网络,仅用于个人学习易见,集合X中的恒同关系△( X)是从X到X的一个一一映射,我们也常称之为(集合X上的)恒同映射或恒同,有时也称之为单位映射,并且也常用记号 '或i : X-X来表示它.根据定义易见,对于任何x€ X,有i(x)二x .概言之,恒同映射便是把每一个点映为这个点自身的映射. 文档收集自网络,仅用于个人学习由于下面的这个定理,一一映射也称为可逆映射.定理1.5.3 设X和Y是两个集合.又设f:X -Y.如果f是一个一一映射,则一八便是一个从丫到X的映射(因此我们可以写/ : Y—X),并且是既单且满的.此外我们还有:文档收集自网络,仅用于个人学习=和门厂F证明(略)定理1.5.4 设X,丫和Z都是集合,f:X -Y,g: Y-乙如果f 和g都是单射,则gof:X —Z也是单射;如果f和g都是满射,则g - f:X -Z也是满射.因此,如果f和g都是一一映射,则gf:X -Z也是一一映射. 文档收集自网络,仅用于个人学习这个定理的证明留给读者.21 / 24定义1.5.4 设X和Y是两个集合,A是X的一个子集.映射f:X -Y 和g: A-Y如果满足条件g _f即对于任何a€A有f (a) =g (a), 则称g是f的限制,也称f是g的一个扩张,记作「特别地,恒同映射耳:X-X在X的子集A上的限制々\A: A-X称为内射.这时I我们有对于任何a € A,妆A(a)=a . 文档收集自网络,仅用于个人学习将映射定义作为一种特别的关系,从理论上来说是十分清晰的.这样做的本意在于使得在我们的理论系统中除了“集合”和“元素”不再有任何未经定义的对象.如果每一次定义一个映射都要将这个映射写成它的定义域与值域的笛卡儿积的一个子集,这毕竟是件麻烦事;因此我们在定义映射时宁愿采用我们从前惯用的办法:为定义域中的每一个点指定值域中的一个点作为它的象.以下我们定义往后经常要用到的两个映射作为例子. 文档收集自网络,仅用于个人学习定义1.5.5 设是n>0个集合,1<i <n.从笛卡儿积負一二七…:到它的第i个坐标集…的投射(或称第i个投射)’!: X^ …定义为对于每一一个■■ - ■- - ■'? —-1 _ -i i 文档收集自网络,仅用于个人学习定义1.5.6 设R是集合X中的一个等价关系.从集合X到它的商集X/R的自然投射:p:X-X/R定义为对于每一个x € X,p (x) = A .文档收集自网络,仅用于个人学习作业:熟练掌握本节的所有定义与定理;注意定理132(2)与定理1.5.2的区别;熟练记忆P23习题1.2与定理1.5.2 .§ 1.6 集族及其运算设r是一个集合.如果对于每一个丫€『,指定了一个集合A, 我们就说给定了一个有标集族上,或者在不至于引起混淆的情形下干脆说给定了一个集族丄儿「,同时r称为(有标)集族的指标集. 文档收集自网络,仅用于个人学习定理1.6.2 设」…•是一个非空的有标集族,A是一个集合.则(1)对于任何,(2)分配律:(3)DeMorgan律:£-(% 召)=斗)证明(略)如果集族二儿「满足条件:对于每一个丫€ r,二都是某一个集合X 的子集,这时我们称这个集族为集合X的一个子集族.以下的两个定理讨论关系和映射与集族运算之间的关联.23 / 24。
拓扑学

x, y X , xRy 和 yRx不能同时成立,则称关系R为非 对称的; 如果 R R R ,即对于任何 x, y, z X ,如果 xRy, yRz,则 xRz ,则称关系R是传递的.
(3)由于 z S R(A) 当且仅当存在 x A 使得 xS Rz, 当且仅当存在 x A 使得 (存在 y Y 使得 xRy, ySz ), 当且仅当存在 y R(A) 使得 ySA . (4)设 y R(A) R(B) ,即 y R( A), yR(B) . 因此存在 x A ,使得 xRy . 此时假设 x B,由于 xRy,因此 y R(B) ,这与 yR(B) 矛盾,因此 xB, 因此存在 x A B, xRy ,因此 y R(A B),R(A) R(B) R(A B).
D {x | x A 而且(x B或x C)}
E ,{x | (x A 而且x B)或x C}
F {x | x A 而且(x B xC)}
, ,
§1.2 关系,等价关系
❖ 重点:熟悉关系像,逆关系,复合关系和 等价关系的性质
❖ 难点:对命题演算知识的欠缺将影响性质 证明的严谨性
定义1.2.1 设X,Y是两个集合,如果 R X Y,即R是X 与Y的笛卡尔积 X Y的一个子集,则称R是从X到Y的 一个关系. 定义1.2.2 设R是从集合X到集合Y的一个关系,即
8. 设A,B,C,D是全集X的子集,试判断下列命题的正确性.若正确,给出证明, 若不正确,给出反例.
① A (A B) B
② A (B A) A B
③ A (B ) (A C) ⑤ (A B) (A B) A,(A B) (A B)
定义1.1.2 给定集合A,B,由A与B的全部元素
构成的集合叫做A与B的并集,记作 A B. 用描述法表示是: A B {x | x A, 或x B}
点集拓扑讲义知识点总结

点集拓扑讲义知识点总结一、拓扑空间基本概念1.1 集合和拓扑空间在点集拓扑学中,最基本的两个概念就是集合和拓扑空间。
集合是元素的无序集合,而拓扑空间是一个集合,其中定义了一种称为拓扑结构的特定结构。
这个结构用来描述集合中元素的“接近”或“相邻”的概念。
1.2 拓扑结构拓扑结构定义了哪些子集被认为是开集,从而为集合赋予了拓扑性质。
具体来说,给定一个集合X,如果满足以下条件:(1)空集和X本身是开集;(2)任意开集的任意并集仍然是开集;(3)有限个开集的任意交集仍然是开集。
那么这个集合X连同其定义的拓扑结构称为一个拓扑空间。
1.3 开集和闭集在拓扑空间中,开集和闭集是两个非常重要的概念。
开集是指每个点都包含在集合内部的集合,闭集则是指包含了其边界的集合。
开集和闭集的性质和运算是拓扑学中的基础。
1.4 拓扑空间的连通性拓扑空间的连通性描述了空间内部的连通性质,一个拓扑空间如果不是两个不相交开集的并,则称为连通的。
连通性质是描述空间整体结构的一种重要方式。
二、拓扑空间的结构和性质2.1 度量空间和拓扑空间度量空间是一种拥有度量的拓扑空间,度量是一种满足一系列性质的函数,用来度量空间中两点之间的距离。
度量空间可以定义一种称为度量拓扑的拓扑结构,这种拓扑结构给出了空间中点的“接近”概念。
2.2 Hausdorff空间Hausdorff空间是指任意两个不同的点都存在不相交的邻域的拓扑空间。
这种空间具有较强的分离性质,能够更好地描述空间中点的位置关系。
2.3 紧空间在拓扑学中,紧空间是指任何开覆盖都存在有限子覆盖的空间。
紧空间具有重要的性质,例如有限覆盖性质和闭性性质,这些性质在分析和拓扑学的研究中有着重要的应用。
2.4 连通空间连通空间是指空间中不存在非空且既开又闭的子集的空间。
换句话说,连通空间是指空间中的点在拓扑上是连续的,没有间断。
这是拓扑空间中另一个极为重要的性质。
2.5 分离性和局部性在拓扑学中,还存在一些描述拓扑空间性质的分离性和局部性定理,包括T0空间、T1空间、T2空间等概念。
点集拓扑学第1章朴素集合论
p : X X R such that p ( x ) [ x ]R
31
定义:设 X X和 和Y Y 是两个集合, 是两个集合,A A是 是X X 定义:设 定义:设 X 和 Y 是两个集合,A 是 X g :: A A Y Y f : X Y , g 的一个子集, f : X Y , 的一个子集, 的一个子集,f : X Y , g : A Y f ( a ) g ( a ) a A 若对于 有 ,则 f ( a ) g ( a ) 若对于 有 ,则 若对于 a A 有 f (a) g (a) ,则 称g g是 是f f 的限制,也称 的限制,也称 f f是 是g g 的一个 的一个 称 称 g 是 f 的限制,也称 f 是 g 的一个 g f | 扩张,记作 g f | A 扩张,记作 A 扩张,记作 g f | A :X X X X 在 恒同映射 iiX 在X X的子集 的子集A A上的 上的 X: 恒同映射 恒同映射 iX : X X 在X的子集A上的 :A A X X 称为内射 限制 iiX 称为内射.. X ||A A: 限制 限制 i | : A X 称为内射.
20
X { a , b } X { {a a,,b b} } X
记为 P ( X )
集合的基本运算
幂 等 律
A A A , A A A
交 换律
A B B A , A B B A
分 配 律
( A B) C ( A C ) ( B C ) ( A B) C ( A C ) ( B C )
如果 A, B Y 则
(1) f ( A B) f ( A) f ( B) (2) f ( A B) f ( A) f ( B) (3) f ( A B) f ( A) f ( B)
点集拓扑学(1)(10)(7)(1)
《点集拓扑》~畅想系列本文作者:鲍祥平注明:(拓扑学的语言表达准确性很重要),这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。
本文灵感来源主要有这些作者或老师:张德学,张祖景,熊金城。
由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。
点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后研究的那些不变性和不变量,比如连通性,可数性,分离性等。
其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。
这些都和弹性变形下的拓扑不变性有关,这种弹性变形指的是拓扑学中的同柸关系,相近点变相近点的连续概念。
拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。
由于点集拓扑学发展较晚,里面很多理论,观点都不是很成熟,本文遵循客观规律,对点集拓扑学做部分更改,水平有限。
第一章:关系与映射第一节集合及其运算集合论的发展历程:集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。
朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识和总结,在数学理论中得到了广泛的运用。
集合的定义:① 公认定义:具有共同归属的对象的全体称为集合,对象又可以理解为个体或者集合中的元素。
(集合的归属性指的是元素满足该集合的要求),我把该定义中的属性改成了归属,一个定义必须文字表达要准确,属性和归属性是两个完全不同的概念,这里用归属性比较恰当。
例如:三个没有共同属性的正交向量,,组成的集合{},,,很显然只能用归属性定义集合,否者就会有矛盾,产生悖论。
② 个人(本人)定义:我们在各种或者所有对象中按照某种要求进行抽样,把抽出的对象集中起来作为一个群体来研究,因此把所有符合或者满足要求的具有相同归属性的个体称为集合。
拓扑学
B A
, .
6. 设A,B都是集合,证明:若 A B ,则 B (B A) A .
7. 设某一个全集已经给定,证明
① A B A B
② A B (A B) B A (A B)
③ 若 A B X,并且 A B ,则 A B, B A
④ ( A1 B1) ( A2 B2 ) A1 A2 (B1 B2 )
8. 设A,B,C,D是全集X的子集,试判断下列命题的正确性பைடு நூலகம்若正确,给出证明, 若不正确,给出反例.
① A (A B) B
② A (B A) A B
③ A (B C) (A B) (A C)
④ A (B C) (A B) (A C) ⑤ (A B) (A B) A,(A B) (A B)
点集拓扑学
主讲人:吴洪博
第一章 集合论初步
❖§1.1 集 合 ❖§1.2 关系,等价关系 ❖§1.3 映 射 ❖§1.4 集族及其运算 ❖§1.5 可数集,不可数集 ❖§1.6 基 数
§1.1 集 合
❖ 重点:熟悉有关集合的等式和性质 ❖ 难点:有关集合的有限笛卡尔积的等式和性质
❖ 集合一词,我们在高中阶段已经接触过,在那里, 集合是指具有某种属性的对象的全体.在这里,我们 仍采用对集合的这种直观的描述性定义,以后我们 还将经常遇到像这样直观的描述性定义或一些直观 的结论.虽然这样做逻辑性差一些,不及公理集合论 的严密性,但这样做却是我们易于理解和接受的, 不致使读者陷入逻辑困惑之中,从而尽快地进入拓 朴学基础的学习程序.
D {x | x A 而且(x B或x C)}
E ,{x | (x A 而且x B)或x C}
F {x | x A 而且(x B xC)}
《点集拓扑学》第一章1解析
R1 {( y, x) Y X | xRy, x X , y Y }
是从集合Y到集合X的一个关系,我们称它为关系R的
1 yR x 当且仅当 xRy. 逆,因此
定义4 设R是从集合X到集合Y的一个关系,S是从
集合Y到集合Z的一个关系,即 R X Y , S Y Z .
定义4 给定集合A、B,把由属于A而不属于B 的元素构成的集合叫做A与B的差集,记作 A B .
如果 A B, 称 B A 为A在B中的补集,记作 A. 而此时可称B为全集,全集在一个问题中是事先 指定的或者是不言自明的.
观察图我们不难得出下面的等式:
A B ( A B) B ( A B) ( A B) ( B A)
A C B D ( A B) D B (C D)
(A-B)×(C-D)
§1.3 1.4 关系,等价关系
• 重点:熟悉关系像,逆关系,复合关系和
等价关系的性质 • 难点:对命题演算知识的欠缺将影响性质 证明的严谨性
定义1 设X,Y是两个集合,如果 R X Y ,即R是X 与Y的笛卡尔积 X Y的一个子集,则称R是从X到Y的 一个关系. 定义2 设R是从集合X到集合Y的一个关系,即
.
定理1 设R是从集合X到集合Y的一个关系,S是
从集合Y到集合Z的一个关系,T是从集合Z到集合U的
一个关系,则 (1)
( R 1 ) 1 R
(2) (S R) 1 R 1 S 1 (3)
T (S R) (T S ) R
定理2 设R是从集合X到集合Y的一个关系,S是从 集合Y到集合Z的一个关系,则对于X中的任意两个子集 A和B,我们有:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。
这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著.即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基本知识,以及其中的四则运算,大小的比较(<和≤),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早已熟悉的方式去使用,而不另作逻辑上的处理.§1.1集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类.集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员.集合也可以没有元素.例如平方等于2的有理数的集合,既大于1又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称之为空集,记作.此外,由一个元素构成的集合,我们常称为单点集.集合的表示法:(1)用文句来描述一个集合由哪些元素构成(像前面所作的那样),是定义集合的一个重要方式.(2)描述法:我们还通过以下的方式来定义集合:记号{x|关于x的一个命题P}表示使花括号中竖线后面的那个命题P成立的所有元素x构成的集合.例如,集合{x|x为实数,并且0<x<1}即通常所谓开区间(0,1).在运用集合这种定义方式时有时允许一些变通,例如集合{是实数}便是集合{,其中x是实数}的简略表示,不难明白这个集合实际上是由全体非负实数构成的.集合表示方式中的竖线“|”也可用冒号“:”或分号“;”来代替.(3)列举法:也常将一个集合的所有元素列举出来再加上花括号以表示这个集合.例如{}表示由元素构成的集合.如果确实不至于发生混淆,在用列举的办法表示集合时容许某种省略.例如,有时我们可以用{1,2,3,…}表示全体正整数构成的集合,用{1,3,5,…}表示全体正奇数相成的集合.但我们并不鼓励这种做法,因为后面的规律不是很清楚,容易产生误解.我们再三提请读者注意:不管你用任何一种方式定义集合,最重要的是不允许产生歧义,也就是说你所定义的集合的元素应当是完全确定的.在本书中,我们用:表示全体正整数构成的集合,称为正整数集;Z表示全体整数构成的集合,称为整数集;Q表示全体有理数构成的集合,称为有理数集;R表示全体实数构成的集合,称为实数集;并且假定读者熟知这些集合.以下是一些常用的记号:∈:表示元素与集合的关系,如:x∈X ,x∈{x}等:表示集合与集合的关系,如:A B (等价于)(这个记号即是通常数学课本中的):表示与上述相反的含义.=:表示两个集合相等,如:A=B(等价于)以下的这个定理等价于形式逻辑中的相应命题,从直觉着去看也是自明的.定理1.1.1 设A,B,C都是集合,则(l)A=A;(2)若A=B,则B=A;(3)若A=B,B=C,则A=C.定理1.1.2 设A,B,C都是集合,则(l)A A;(2)若A B,B A,则A=B;(3)若A B,B C,则A C.证明(l)显然.(2)A B意即:若x∈A,则x∈B;B A意即:若x∈B,则x∈A.这两者合起来正好就是A=B的意思.(3)x∈A.由于A B,故x∈B;又由于 B C,从而x∈C.综上所述,如果x∈A就有x∈C.此意即A C.因为空集不含任何元素,所以它包含于每一个集合之中.由此我们可以得出结论:空集是惟一的.设A,B是两个集合.如果A B,我们则称A为B的子集;如果A是B的子集,但A又不等于B,即A B,A≠B,也就是说A 的每一个元素都是B的元素,但B中至少有一个元素不是A的元素,这时,我们称A为B的真子集.我们常常需要讨论以集合作为元素的集合,并且为了强调这一特点,这类集合常称为集族.例如,A={{1},{1,2},{1,2,3}}是一个集族.它的三个元素分别为:{1},{1,2},{1,2,3}及.设X是一个集合,我们常用P(X)表示X的所有子集构成的集族,称为集合X的幂集.例如,集合{1,2}的幂集是P={{1},{1,2},{2},}.本章中所介绍的集合论是所谓“朴素的”集合论.在这种集合论中,“集合”和“元素”等基本概念均不加定义而被认作是自明的.正因为如此,历史上曾经产生过一些悖论.而对于绝大多数读者来说了解朴素的集合已是足够的了,只是要求他们在运用的时候保持适当的谨慎,以免导致逻辑矛盾.例如,我们应当知道一个集合本身不能是这个集合一个元素.即:若A是集合则A∈A不成立.这一点是容易理解的.例如,由一些学生组成的一个班级决不会是这个班级里的一名学生.因此,我们不能说“所有集合构成的集合”,因为如果有这样一个“集合”的话,它本身既是一个集合,就应当是这个“所有集合构成的集合”的一个元素了.也因此,我们应当能够了解一个元素a和仅含一个元素a的单点集{a}是两回事,尽管我们有时为了行文的简便而在记号上忽略这个区别.作业:掌握集合、元素的概念、表示法熟练区分“∈”与“”的意义§1.2集合的基本运算在这一节中我们介绍集合的并、交、差三种基本运算,这三种运算的基本规律,以及它们与集合的包含关系之间的基本关联.定义1.2.1 设A与B是两个集合.集合{x|x∈A或x∈B}称为集合A与集合B的并集或并,记作AUB,读为A并B.集合{x|x∈A且x∈B}称为集合A与集合B的交集或交,记作A∩B,读为A交B.若A∩B=,则称集合A与集合B无交或不相交;反之,若A∩B≠,则称集合A与集合B有(非空的)交.集合{x|x∈A且x B}称为集合A与集合B的差集,记作A\B或A -B,读为A差B,或A减B.关于集合的并、交、差三种运算之间,有以下的基本规律.定理1.2.1 设A,B,C都是集合.则以下等式成立:(1)幂等律A∪A=AA∩A=A(2)交换律A∪B=B∪AA∩B=B∩A(3)结合律(A∪B)∪C=A∪(B∪C)(A∩B)∩C=A∩(B∩C)(4)分配律(A∩B)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(A∩C)∪(B∩C)(5)DeMongan律A-(BUC)=((A-B)∩(A-C)A-((B∩C)=(A-B)U(A-C)集合的并、交、差三种运算与集合间的包含关系之间有着以下基本关联.定理1.2.2 设A,B是两个集合.下列三个条件等价:(l)A B;(2)A∩B=A;(3)A∪B=B.定义1.2.2 设X是一个基础集.对于X的任何一个子集A,我们称X-A为A(相对于基础集X而言)的补集或余集记作.我们应当提醒读者,补集的定义与基础集的选取有关.所以在研究某一个问题时,若用到补集这个概念,在整个工作过程中基础集必须保持不变.定理1.2.3 设X是一个基础集.若A,B为X的子集,则以上证明均只须用到集合的各种定义,此处不证,略去.作业:熟记这两节的各种公式.掌握证明两个集合A=B与A B的基本方法()§1.3关系我们从前在数学的各种科目中学过诸如函数、次序、运算,以及等价等种种概念,它们的一个共同的特点在于给出了某些给定集合的元素之间的某种联系.为了明确地定义它们,我们先定义“关系”,而为了定义关系,又必需先有两个集合的笛卡儿积这个概念.定义1.3.1 设X和Y是两个集合.集合{(x,y)|x∈X,y∈Y}称为X与Y的笛卡儿积,记作X×Y,读为X叉乘Y.其中(x,y)是一个有序偶,x称为(x,y)的第一个坐标,y称为(x,y)的第二个坐标.X称为X×Y的第一个坐标集,Y称为X×Y的第二个坐标集.集合X与自身的笛卡儿积X×X称为X的2重(笛卡儿)积,通常简单记作.有点儿不幸的是我们用于有序偶的记号和用于“开区间”的记号是一样的,有时容易混淆.因此在可能发生混淆的情形下应当加以说明,以避免误解.给定两个集合,通过取它们的笛卡儿积以得到一个新的集合,这个办法对于读者并不陌生.以前学过的数学中通过实数集合构作复数集合,通过直线构作平面时,用的都是这个办法.我们应当注意,一般说来集合X与集合Y的笛卡儿积X×Y完全不同于集合Y与集合X的笛卡儿积Y×X.定义1.3.3 设X,Y是两个集合.如果R是X与Y的笛卡儿积X×Y的一个子集,即R X×Y,则称R是从X到Y的一个关系.定义1.3.4 设R是从集合X到集合Y的一个关系,即R X×Y.如果(x,y)∈R,则我们称x与y是R相关的,并且记作xRy.如果A X,则Y的子集{y∈Y|存在x∈A使得xRy}称为集合A对于关系R而言的象集,或者简单地称为集合A的象集,或者称为集合A的R象,并且记作R(A),R(X)称为关系R的值域.关系的概念是十分广泛的.读者很快便会看到,以前在另外的数学学科中学过的函数(映射),等价,序,运算等等概念都是关系的特例.这里有两个特别简单的从集合X到集合Y的关系,一个是X×Y本身,另一个是空集.请读者自己对它们进行简单的考查.定义1.3.5 设R是从集合X到集合Y的一个关系,即R X×Y.这时笛卡儿积Y×X的子集{(y,x)∈Y×X|xRy}是从集合Y到集合X的一个关系,我们称它为关系R的逆,并且记作.如果B Y,X的子集(B)是集合B的象,我们也常称它为集合B对于关系R而言的原象,或者集合B的R原象.特别,关系的值域(Y)也称为关系R的定义域.定义1.3.6 设R是从某个X到集合Y的一个关系,即R X×Y,S 是从集合y到集合Z的一个关系,即S Y×Z.集合{(x,z)∈X×Y|存在y∈Y使得xRy并且ySz}是笛卡儿积X×Z的一个子集,即从集合X到集合Z的一个关系,此关系称为关系R与关系S的复合或积,记作S R.定理1.3.1 设R是从集合X到集合Y的一个关系,S是从集合Y 到集合Z的一个关系,T是从集合Z到集合U的一个关系.则:证明(略)定理1.3.2 设R是从集合X到集合Y的一个关系,S是从某个Y 到集合Z的一个关系.则对于X的任意两个子集A和B,我们有:(1)R(A∪B)=R(A)∪R(B);(2)R(A∩B)R(A)∩R(B);(3)(S R)(A)=S(R(A)).证明(略)在本节的最后我们要提到有限个集合的笛卡儿积的概念,它是两个集合的笛卡儿积的概念的简单推广.定义 1.3.7设是n>1个集合.集合称为的笛卡儿积,并且记作或者其中为有次序的n元素组,(i=1,2,…n)称为n元素组的第i个坐标,(i=1,2,…,n)称为笛卡儿积的第i个坐标集.n>1个集合X的笛卡儿积X×X×…×X常简单地记作n个集合的笛卡儿积的概念读者必然也不会感到陌生,在线性代数中n维欧氏空间作为集合而言就是n个直线(作为集合而言)的笛卡儿积.需要提醒读者的是,如果你在给定的n个集合中交换了集合的次序,一般说来得到的笛卡儿积会是完全不同的集合.至今我们并未定义“0个集合的笛卡儿积”,此事将来再以某种方式补充.(参见§9.1)作业:理解“关系”的概念,掌握“关系”与“映射”的异同,“映射”与“函数”的异同.(映射要求象惟一,关系没要求.函数要求定义域与值域是数域,而映射不一定)掌握运算乘积的概念与性质掌握集合的笛卡儿积中元素的形式§1.4等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.定义1.4.1 设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{(x,x)|x∈X}称为恒同关系,或恒同,对角线,记作△(X)或△.定义1.4.2 设R是集合X中的一个关系.关系R称为自反的,如果△(X)R,即对于任何x∈X,有xRx;关系R称为对称的,如果,即对于任何x,y∈X,如果xRy则yRx;关系R称为反对称的,如果,即对于任何x,y∈X,xRy和yRx不能同时成立;关系R 称为传递的,如果R R R,即对于任何x,y,z∈X,如果xRy,yRz,则有xRz.集合X中的一个关系如果同时是自反、对称和传递的,则称为集合X中的一个等价关系.容易验证集合X中的恒同关系△(X)是自反、对称、传递的,因此是X中的一个等价关系.集合X的幂集P(X)中两个元素(即集合X的两个子集)之间的“相等关系”可以理解为集合P(X)×P(X)的子集{(A,B)|A,B∈P(X),A=B}从定理1.1.l中可见,它是自反、对称、传递的,因此是P(X)中的一个等价关系.集合X的幂集P(X)中两个元素(即集合X的两个子集)之间的“包含关系”可以理解为集合P(X)×P(X)的子集{(A,B)|A,B∈P (X),A B}根据定理 1.1.2可见,它是自反的、传递的,但容易知道它不是对称的,因此不是P(X)中的一个等价关系.集合X的幂集P(X)中两个元素(即集合X的两个子集)之间的“真子集关系”可以理解为集合P(X)×P(X)的子集{(A,B)|A,B∈P(X),A B,A≠B}根据定理 1.1.3可见,它是反对称的,传递的,但它不是自反的,因而不是P(X)中的一个等价关系.实数集合R中有一个通常的小于关系<,即R×R的子集{(x,y)|x,y∈R,x<y}容易验证关系<是反对称的,传递的,但不是自反的.设p是一个素数,我们在整数集合Z中定义一个关系≡p如下:={(x,y)∈Z×Z|存在n∈Z使得x-y=np}关系常称为模p等价关系,容易验证模p等价关系是自反的,对称的,传递的,因此是Z中的一个等价关系.定义1.4.3 设R是集合X中的一个等价关系.集合X中的两个点x,y,如果满足条件:xRy,则称x与y是R等价的,或简称为等价的;对于每一个x∈X,集合X的子集:{y∈X|xRy}称为x的R等价类或等价类,常记作或[x],并且任何一个y∈都称为R等价类的一个代表元素;集族{| x∈X}称为集合X相对于等价关系R而言的商集,记作X/R.我们考虑整数集合Z中的模2等价关系,易见,13和28.因此1与3是等价的,2和8也是等价的.整数2所属的等价类是所有偶数构成的集合,每一个偶数都可以叫做这个等价类的一个代表元素.此外易见,商集Z/有且仅有两个元素:一个是所有奇数构成的集合,另一个是所有偶数构成的集合.下面这个定理说明,给定了一个等价关系,等于说给定了一个分类的原则,把一个非空集合分割成一些非空的两两无交的等价类,使得这集合的每一个元素都在某一个等价类中.定理1.4.1 设R是非空集合X中的一个等价关系.则:(1)如果x∈X,则x∈,因而;(2)对于任意x,y∈X,或者=,或者证明(1)设x∈X,由于R是自反的,所以xRx,因此x∈,∴≠.(3)对于任意x,y∈X,如果,设z∈[x]∩[y].此时有zRx,且zRy.由于R是对称的,所以xRz.又由于R是传递的,所以xRy.对于任何一个t∈,有tRx,由上述xRy和R的传递性可见tRy,即t∈.这证明同理可证.因此=(注意:要证或者…或者…,应从以下入手:否定掉一个,去证另一个)在初等数论中我们早就知道整数模(素数)p的等价关系将整数集合Z分为互不相交的等价类,每一个等价类记作,称为整数x的模p同余类.让我们再回忆一下在解析几何学中定义自由向量的过程:首先将固定向量定义为平面(或n维欧氏空间)中的有序偶;然后在全体固定向量构成的集合(暂时记为X)中定义一个关系~,使得两个固定向量x和y~相关(即x~y)当且仅当x能通过平面(或n维欧氏空间)的一个平移与y重合.容易验证这个关系~是X中的一个等价关系.每一个~等价类便称为一个自由向量.作业:熟练掌握等价关系,等价类的概念.掌握商集的概念.明确商集的构成§1.5映射数学分析中的函数概念,群论中的同态概念,线性代数中的线性变换概念等等都是读者所熟知的概念.这些概念的精确定义事实上都有赖于本节中所讨论的映射概念.定义1.5.1 设F是从集合X到集合Y的一个关系.如果对于每一个x∈X存在惟一的一个y∈Y使得xFy,则称F是从X到Y的一个映射,并且记作F:X→Y.换言之,F是一个映射,如果对于每一个x∈X:(1)存在y∈Y,使得xFy;(2)如果对于∈Y有和,则.定义1.5.2 设X和Y是两个集合,F:X→Y(读做F是从X到Y的一个映射).对于每一个x∈X,使得xFy的唯一的那个y∈Y称为x的象或值,记作F(x);对于每一个y∈Y,如果x∈X使得xFy(即y是x的象),则称x是y的一个原象(注意:y∈Y可以没有原象,也可以有不止一个原象).由于映射本身便是关系,因此,如果F是从集合X到集合Y的一个映射,那么:(1)对于任何A X,象F(A)有定义,并且F(A)={F(x)|x∈A}(2)对于任何B Y,原象(B)有定义,并且(B)={x∈X|F(x)∈B}(注意:(x)与 ({x})的异同,前者不一定有意义,而后者总存在;前者表示元素,后者表示集合)(3)如果Z也是一个集合并且G:Y→Z,则关系的复合G F作为一个从X到Z的关系有定义;(4)作为从Y到X的一个关系有定义,但一般说来不是一个从Y到X的映射(这要看F是否是一一映射);(5)F的定义域有定义,并且它就是X;(意味着X中的每个元素都必须有象)(6)F的值域有定义,并且它就是F(X).(F(X)不一定充满Y) 定理1.5.1 设X,Y和Z都是集合.如果F:X→Y和G:Y→Z,则G F:X→Z;并且对于任何x∈X,有G F(x)=G(F(x))(这实际上是映射的积的本质)证明(略)(但要理解上式等号左右两边的不同含义,前者是两个映射的积(也是一个映射)作用在x上,后者是F先作用在x上,然后G 再作用在F(x)上).今后我们常用小写字母f,g,h,……表示映射.定理1.5.2 设X和Y是两个集合,f:X→Y.如果A,B Y 则(1)(A∪B)=(A)∪(B);(2)(A∩B)=(A)∩(B);(3)(A-B)=(A)-(B).简言之,映射的原象保持集合的并,交,差运算.证明(略).定义1.5.3 设X和Y是两个集合,X→Y.如果Y中的每一个点都有原象(即f的值域为Y,亦即f(X)=Y),则称f是一个满射,或者称f为一个从X到Y上的映射;如果X中不同的点的象是Y中不同的点(即对于任何,如果,则有,则称f 是一个单射;如果f既是一个单射又是一个满射,则称f为一个既单且满的映射,或者一一映射.如果f(X)是一个单点集,则称f是一个常值映射,并且当f(X)={y}时,我们也说f是一个取常值y的映射.易见,集合X中的恒同关系△(X)是从X到X的一个一一映射,我们也常称之为(集合X上的)恒同映射或恒同,有时也称之为单位映射,并且也常用记号或i:X→X来表示它.根据定义易见,对于任何x∈X,有i(x)=x.概言之,恒同映射便是把每一个点映为这个点自身的映射.由于下面的这个定理,一一映射也称为可逆映射.定理1.5.3 设X和Y是两个集合.又设f:X→Y.如果f是一个一一映射,则便是一个从Y到X的映射(因此我们可以写:Y→X),并且是既单且满的.此外我们还有:和证明(略)定理1.5.4 设X,Y和Z都是集合,f:X→Y,g:Y→Z.如果f 和g都是单射,则gof:X→Z也是单射;如果f和g都是满射,则gf:X→Z也是满射.因此,如果f和g都是一一映射,则g f:X→Z也是一一映射.这个定理的证明留给读者.定义1.5.4 设X和Y是两个集合,A是X的一个子集.映射f:X→Y和g:A→Y如果满足条件g f即对于任何a∈A有f(a)=g(a),则称g是f的限制,也称f是g的一个扩张,记作.特别地,恒同映射:X→X在X的子集A上的限制:A→X称为内射.这时我们有对于任何a∈A,(a)=a.将映射定义作为一种特别的关系,从理论上来说是十分清晰的.这样做的本意在于使得在我们的理论系统中除了“集合”和“元素”不再有任何未经定义的对象.如果每一次定义一个映射都要将这个映射写成它的定义域与值域的笛卡儿积的一个子集,这毕竟是件麻烦事;因此我们在定义映射时宁愿采用我们从前惯用的办法:为定义域中的每一个点指定值域中的一个点作为它的象.以下我们定义往后经常要用到的两个映射作为例子.定义1.5.5 设是n>0个集合,1≤i≤n.从笛卡儿积到它的第i个坐标集的投射(或称第i个投射):X→定义为对于每一个定义1.5.6 设R是集合X中的一个等价关系.从集合X到它的商集X/R的自然投射:p:X→X/R定义为对于每一个x∈X,p(x)=.作业:熟练掌握本节的所有定义与定理;注意定理 1.3.2(2)与定理1.5.2的区别;熟练记忆P23习题1. 2与定理1.5.2.§1.6集族及其运算设Γ是一个集合.如果对于每一个γ∈Γ,指定了一个集合A,我们就说给定了一个有标集族,或者在不至于引起混淆的情形下干脆说给定了一个集族,同时Γ称为(有标)集族的指标集.定理1.6.2 设是一个非空的有标集族,A是一个集合.则(1)对于任何,(2)分配律:(3)DeMorgan律:证明(略)如果集族满足条件:对于每一个γ∈Γ,都是某一个集合X的子集,这时我们称这个集族为集合X的一个子集族.以下的两个定理讨论关系和映射与集族运算之间的关联.定理1.6.3 设R是从集合X到集合Y的一个关系,则对于集合X 的任何一个非空子集族,有证明(略)(这个定理对关系成立,当然对映射更成立.注意这两个公式,一个是等式,一个是包含于关系.)定理1.6.4 设X和Y是两个集合,f:X→Y.则对于集合Y的任何一个非空子集族,有简言之,集族的原象保持集族的并与交运算.证明(略)作业:熟练记忆这3个定理!§1.7可数集,不可数集,基数定义1.7.1 设X是一个集合.如果X是空集或者存在正整数n∈N使得集合X和集合{1,2,…,n}之间有一个一一映射,则称集合X是一个有限集,不是有限集的集合称为无限集;如果存在一个从集合X 到正整数集的单射,则称集合X是一个可数集,不是可数集的集合称为不可数集.(注意:无限集可能是可数集,也可能是不可数集)显然,凡有限集皆是可数集,但可数集可为无限集.例如,正整数集本身便是一个可数集,但它不是有限集.定理1.7.1 任何可数集的任何一个子集都是一个可数集.定理1.7.2 设X和Y是两个集合,f:X→Y是一个映射.如果X 是可数集,则f(X)也是一个可数集.定理1.7.3 集合X是一个可数集当且仅当存在从正整数集到集合X的一个满射.定理1.7.4 如果集合X和集合Y都是可数集,则笛卡儿积X×Y也是一个可数集.特别,集合×是一个可数集.定理1.7.5 设是一个集族.如果指标集Γ是可数集并且对于每一个γ∈Γ,也是可数集,则并集是可数集.定理1.7.8 实数集合R是不可数集.作业:以上这些定理均要熟练记忆,证明过程不要求记.§1.8选择公理(略)本章总结:本章是点集拓扑学的预备知识,点集拓扑学需要对集合进行各种运算,因此就必须熟记本章的各种有关集合的运算公式:(1)若干个集合的并、交、差运算:定义 1.2.1与定理1.2.1,定义1.6.1与定理1.6.2(2)若牵涉到两个空间之间集合的关系,则就要用到:定义1.5.2,定理1.5.2,定理1.6.4与定理1.6.3(此定理中的关系R当然适用于映射f),及课本P23习题1.2.另:本章中有关等价类的概念及乘积空间,乘积空间到分空间的投射等概念也要深刻地理解好.。