圆的方程及空间直角坐标系(讲义)含答案

合集下载

2021_2022年高中数学第四章圆的方程3

2021_2022年高中数学第四章圆的方程3

空间两点间的距离公式整体设计教学分析平面直角坐标系中,两点之间的距离公式是学生已学的知识,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离;从平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆,推广到空间直角坐标系中的方程x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面.学生是不难接受的,这不仅不增加学生负担,还会提高学生学习的兴趣.三维目标1.掌握空间两点间的距离公式,会用空间两点间的距离公式解决问题.2.通过探究空间两点间的距离公式,灵活运用公式,初步意识到将空间问题转化为平面问题是解决问题的基本思想方法,培养类比、迁移和化归的能力.3.通过棱与坐标轴平行的特殊长方体的顶点的坐标,类比平面中两点之间的距离的求法,探索并得出空间两点间的距离公式,充分体会数形结合的思想,培养积极参与、大胆探索的精神.重点难点教学重点:空间两点间的距离公式.教学难点:一般情况下,空间两点间的距离公式的推导.课时安排1课时教学过程导入新课思路1.距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如飞机和轮船的航线的设计,它虽不是直线距离,但也涉及两点之间的距离,一些建筑设计也要计算空间两点之间的距离,那么如何计算空间两点之间的距离呢?这就是我们本堂课的主要内容. 思路2.我们知道,数轴上两点间的距离是两点的坐标之差的绝对值,即d=|x 1-x 2|;平面直角坐标系中,两点之间的距离是d=212212)()(y y x x -+-.同学们想,在空间直角坐标系中,两点之间的距离应怎样计算呢?又有什么样的公式呢?因此我们学习空间两点间的距离公式.推进新课新知探究提出问题①平面直角坐标系中,两点之间的距离公式是什么?它是如何推导的?②设A(x,y,z)是空间任意一点,它到原点的距离是多少?应怎样计算?③给你一块砖,你如何量出它的对角线长,说明你的依据.④同学们想,在空间直角坐标系中,你猜想空间两点之间的距离应怎样计算?⑤平面直角坐标系中的方程x 2+y 2=r 2表示什么图形?在空间中方程x 2+y 2+z 2=r 2表示什么图形?⑥试根据②③推导两点之间的距离公式.活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,大胆猜想,发散思维.①学生回忆学过的数学知识,回想当时的推导过程;②解决这一问题,可以采取转化的方法,转化成我们学习的立体几何知识来解;③首先考虑问题的实际意义,直接度量,显然是不可以的,我们可以转化为立体几何的方法,也就是求长方体的对角线长.④回顾平面直角坐标系中,两点之间的距离公式,可类比猜想相应的公式;⑤学生回忆刚刚学过的知识,大胆类比和猜想;⑥利用③的道理,结合空间直角坐标系和立体几何知识,进行推导.讨论结果:①平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,它是利用直角三角形和勾股定理来推导的.图1②如图1,设A(x,y,z)是空间任意一点,过A 作AB ⊥xOy 平面,垂足为B,过B 分别作BD ⊥x 轴,BE ⊥y 轴,垂足分别为D,E.根据坐标的含义知,AB=z,BD=x,BE=OD=y,由于三角形ABO 、BOD 是直角三角形,所以BO 2=BD 2+OD 2,AO 2=AB 2+BO 2=AB 2+BD 2+OD 2=z 2+x 2+y 2,因此A 到原点的距离是d=222z y x ++.③利用求长方体的对角线长的方法,分别量出这块砖的三条棱长,然后根据对角线长的平方等于三条边长的平方的和来算.④由于平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,是同名坐标的差的平方的和再开方,所以我们猜想,空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-,即在原来的基础上,加上纵坐标差的平方.⑤平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆;在空间x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面;后者正是前者的推广.图2 ⑥如图2,设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)是空间中任意两点,我们来计算这两点之间的距离. 我们分别过P 1P 2作xOy 平面的垂线,垂足是M,N,则M(x 1,y 1,0),N(x 2,y 2,0),于是可以求出|MN|=212212)()(y y x x -+-.再过点P 1作P 1H ⊥P 2N,垂足为H,则|MP 1|=|z 1|,|NP 2|=|z 2|,所以|HP 2|=|z 2-z 1|.在Rt △P 1HP 2中,|P 1H|=|MN|=212212)()(y y x x -+-,根据勾股定理,得|P 1P 2|=2221||||HP H P +=221221221)()()(z z y y x x -+-+-.因此空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离为|P 1P 2|=221221221)()()(z z y y x x -+-+-. 于是空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-.它是同名坐标的差的平方的和的算术平方根.应用示例例1 已知A(3,3,1),B(1,0,5),求:(1)线段AB 的中点坐标和长度;(2)到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件.活动:学生审题,教师引导学生分析解题思路,已知的两点A 、B 都是空间直角坐标系中的点,我们直接利用空间两点间的距离公式求解即可.知识本身不难,但是我们计算的时候必须认真,决不能因为粗心导致结果错误.解:(1)设M(x,y,z)是线段AB 的中点,则根据中点坐标公式得x=213+=2,y=203+=23,z=215+=3.所以AB 的中点坐标为(2,23,3). 根据两点间距离公式,得 d(A,B)=29)15()30()31(222=-+-+-,所以AB 的长度为29.(2)因为点P(x,y,z)到A,B 的距离相等,所以有下面等式: 222222)5()0()1()1()3()3(-+-+-=-+-+-z y x z y x .化简得4x+6y-8z+7=0,因此,到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件是4x+6y-8z+7=0. 点评:通过本题我们可以得出以下两点:①空间两点连成的线段中点坐标公式和两点间的距离公式是平面上中点坐标公式和两点间的距离公式的推广,而平面上中点坐标公式和两点间的距离公式又可看成空间中点坐标公式和两点间的距离公式的特例.②到A,B 两点的距离相等的点P(x,y,z)构成的集合就是线段AB 的中垂面.变式训练在z 轴上求一点M,使点M 到点A(1,0,2),B(1,-3,1)的距离相等.解:设M(0,0,z),由题意得|MA|=|MB|,2222222)1()30()30()10()2()00()10(-+++++-=++-+-z z ,整理并化简,得z=-3,所以M(0,0,-3).例2 证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的△ABC 是一等腰三角形.活动:学生审题,教师引导学生分析解题思路,证明△ABC 是一等腰三角形,只需求出|AB|,|BC|,|CA|的长,根据边长来确定.证明:由两点间距离公式得: |AB|=,72)12()31()47(222=-+-+- |BC|=6)23()12()75(222=-+-+-, |CA|=6)31()23()54(222=-+-+-.由于|BC|=|CA|=6,所以△ABC 是一等腰三角形.点评:判断三角形的形状一般是根据边长来实现的,因此解决问题的关键是通过两点间的距离公式求出边长.变式训练三角形△ABC 的三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),试证明△ABC 是一直角三角形.活动:学生先思考或交流,然后解答,教师及时提示引导,要判定△ABC 是一直角三角形,只需求出|AB|,|BC|,|CA|的长,利用勾股定理的逆定理来判定.解:因为三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),所以 |AB|=222)13()12()11(+-++-++=3, |BC|=23)15()10()10(222=+-++++, |CA|=222)53()02()01(+-+--+-=3.又因为|AB|2+|CA|2=|BC|2,所以△ABC 是直角三角形.例3 已知A(x,5-x,2x-1),B(1,x+2,2-x),则|AB|的最小值为( ) A.0 B.735 C.75 D.78 活动:学生阅读题目,思考解决问题的方法,教师提示,要求|AB|的最小值,首先我们需要根据空间两点间的距离公式表示出|AB|,然后再根据一元二次方程求最值的方法得出|AB|的最小值.解析:|AB|=222)33()23()1(-+-+-x x x =1932142+-x x =73575)78(142≥+-x . 当x=78时,|AB|的最小值为735. 故正确选项为B.答案:B点评:利用空间两点间的距离公式转化为关于x 的二次函数求最值是常用的方法. 知能训练课本本节练习1、2、3、4.拓展提升已知三棱锥P —ABC(如图4),PA ⊥平面ABC,在某个空间直角坐标系中,B(3m,m,0),C(0,2m,0),P(0,0,2n),画出这个空间直角坐标系并求出直线AB 与x 轴所成的较小的角.图3解:根据已知条件,画空间直角坐标系如图3:以射线AC 为y 轴正方向,射线AP 为z 轴正方向,A 为坐标原点建立空间直角坐标系O —xyz,过点B 作BE ⊥Ox,垂足为E,∵B(3m,m,0),∴E(3m,0,0).在Rt △AEB 中,∠AEB=90°,|AE|=3m,|EB|=m,∴tan ∠BAE=m m AE EB 3|||| =33.∴∠BAE=30°, 即直线AB 与x 轴所成的较小的角为30°.课堂小结1.空间两点间的距离公式的推导与理解.2.空间两点间的距离公式的应用.3.建立适当的空间直角坐标系,综合利用两点间的距离公式.作业习题4.3 A 组3,B 组1、2、3.。

人教A版2019年高中数学选修4-4教学案: 第二讲 第1节 第2课时 圆的参数方程_含答案

人教A版2019年高中数学选修4-4教学案: 第二讲 第1节 第2课时 圆的参数方程_含答案

第2课时 圆的参数方程[核心必知]如图,设圆O 的半径是r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,点M 绕点O 转动的角速度为ω,以圆心O 为原点,OM 0所在的直线为x 轴,建立直角坐标系.(1)在t 时刻,M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =x r ,sin ωt =yr,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt (t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.[问题思考]1.方程⎩⎪⎨⎪⎧x =R cos θ,y =R sin θ(θ为参数,0≤θ<2π)是以坐标原点为圆心,以R 为半径的圆的参数方程,能否直接由圆的普通方程转化得出?提示:以坐标原点为圆心,以R 为半径的圆的标准方程为x 2+y 2=R 2,即(x R )2+(yR)2=1,令⎩⎨⎧xR =cos θ,y R=sin θ,则⎩⎪⎨⎪⎧x =R cos θ,y =R sin θ.2.若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程是什么?提示:圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ.(0≤θ<2π)点M 在圆(x -r )2+y 2=r 2(r >0)上,O 为原点,x 轴的正半轴绕原点旋转到OM 形成的角为φ,以φ为参数.求圆的参数方程.[精讲详析] 本题考查圆的参数方程的求法,解答此题需要借助图形分析圆上点M (x ,y )的坐标与φ之间的关系,然后写出参数方程.如图所示,设圆心为O ′,连接O ′M①当M 在x 轴上方时,∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ. ②当M 在x 轴下方时,∠MO ′x =-2φ,∴⎩⎪⎨⎪⎧x =r +r cos (-2φ),y =-r sin (-2φ). 即⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ. ③当M 在x 轴上时,对应φ=0或φ=±π2.综上得圆的参数方程为⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(φ为参数且-π2≤φ≤π2)(1)由于选取的参数不同,圆有不同的参数方程.一般地,同一条曲线,可以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式不同的参数方程表示的曲线却可以是相同的,另外在建立曲线的参数方程时,要注明参数及参数的取值范围.(2)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题如果把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.φ的意义就改变了.1.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________. 解析:把y =tx 代入x 2+y 2-4y =0 得x =4t 1+t 2,y =4t 21+t 2,∴参数方程为⎩⎨⎧x =4t1+t 2,y =4t 21+t 2.答案:⎩⎨⎧x =4t 1+t 2,y =4t21+t2(t 为参数)已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线?[精讲详析] 本题主要考查圆的参数方程的应用及轨迹的求法.解答本题需设出PQ 的中点M 的坐标为(x ,y ),然后利用已知条件中的参数分别表示x ,y ,从而求出轨迹方程,根据方程说明轨迹的形状.设中点为M (x ,y ),⎩⎨⎧x =2+cos θ2,y =0+sin θ2,即⎩⎨⎧x =1+12cos θ,y =12sin θ.它是圆的参数方程,表示以(1,0)为圆心,以12为半径的圆.解决此类问题的关键是利用已知圆的参数方程中所含的参数表示出所求点的坐标,求得参数方程,然后根据参数方程说明轨迹所表示的曲线.2.设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹的参数方程. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θ(cos θ+sin θ),y 1=sin θ(cos θ+sin θ),(θ为参数) 即为所求的参数方程.已知点P (x ,y )是圆⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数)上的动点,(1)求3x +y 的取值范围;(2)若x +y +a ≥0恒成立,求实数a 的取值范围.[精讲详析] 本题考查圆的参数方程的求法及不等式的恒成立问题,解决本题需要正确求出圆x 2+y 2=2y 的参数方程,然后利用参数方程求解问题(1)、(2).(1)∵P 在圆⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ上,∴3x +y =3cos θ+sin θ+1=2sin (θ+π3)+1∴-2+1≤3x +y ≤2+1.即3x +y 的取值范围为[-1,3]. (2)∵x +y +a =cos θ+sin θ+1+a ≥0, ∴a ≥-(cos θ+sin θ)-1.又-(cos θ+sin θ)-1=-2sin (θ+π4)-1≤2-1,∴a ≥2-1即a 的取值范围为[2-1,+∞).(1)解决此类问题的关键是根据圆的参数方程写出点的坐标,并正确确定参数的取值范围.(2)利用圆的参数方程求参数或代数式的取值范围的实质是利用正、余弦函数的有界性.3.设方程⎩⎨⎧x =1+cos θ,y =3+sin θ(θ为参数)表示的曲线为C ,求在曲线C 上到原点O 距离最小的点P 的坐标.解:∵OP 2=(1+cos θ)2+(3+sin θ)2=5+23sin θ+2cos θ=5+4sin (θ+π6).当θ=2k π+43π,k ∈Z 时,OP 最小,此时点P 的坐标为(12,32).高考模拟中常利用圆的参数方程考查直线与圆、圆与圆的位置关系.本考题将直线的极坐标方程与圆的参数方程相结合,考查直线与圆的交点问题,属低档题.[考题印证]已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 和圆C 的交点的直角坐标为________.[命题立意] 本题主要考查圆的参数方程与直线的极坐标方程.[解析] 由圆的参数方程知圆心的坐标为(0,1),半径r =1,由直线l 的极坐标方程可知直线l 的方程为y =1,则根据图象可知直线l 和圆C 的交点为(-1,1),(1,1).答案:(-1,1),(1,1)一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D 圆的普通方程为(x -2)2+y 2=4. 故圆心坐标为(2,0).2.直线3x -4y -9=0与圆⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但不过圆心解析:选D 圆的普通方程为x 2+y 2=4,∴圆心坐标为(0,0),半径r =2,点(0,0)到直线3x -4y -9=0的距离为d =|-9|32+42=95<2,∴直线与圆相交,而(0,0)点不在直线上. 3.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入得: (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α=26+10sin(α-φ)(tan φ=34,φ为锐角).∴最大值为36.4.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是( ) A.⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ B.⎩⎪⎨⎪⎧x =12cos 2θ,y =sin 2θC.⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θD.⎩⎨⎧x =12cos 2θ,y =12sin 2θ解析:选C 设x 1=cos θ,y 1=sin θ.P (x ,y )则 ⎩⎪⎨⎪⎧x =x 21-y 21=cos 2θ,y =x 1y 1=12sin 2θ,即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ. 二、填空题5.参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)表示的图形是________.解析:∵⎩⎪⎨⎪⎧x =cos α,y =1+sin α,且cos 2α+sin 2α=1,∴x 2+(y -1)2=1.∴该参数方程表示以(0,1)为圆心,以1为半径的圆. 答案:圆6.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,则实数a 的取值范围为________.解析:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin(θ+π4). ∵-1≤sin(θ+π4)≤1,∴1-2≤a ≤1+ 2. 答案:[1-2,1+2]7.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则P 到直线x -y +4=0的距离的最小值是________.解析:由P 在曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α上可得P 的坐标为(2+cos α,sin α).由点到直线的距离公式得d =|cos α-sin α+6|2=|2cos (α+π4)+6|2,当cos (α+π4)=-1时,d 最小,d min =-2+62=-1+3 2. 答案:-1+3 28.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),则圆心的轨迹的参数方程为________.解析:设P (x ,y )为动圆的圆心,由x 2+y 2-2ax cos θ-2by sin θ=0得:(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+b 2sin 2θ.∴⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ.答案:⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ三、解答题9.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ<2π).10.已知实数x ,y 满足x 2+(y -1)2=1,求t =x +y 的最大值. 解:方程x 2+(y -1)2=1表示以(0,1)为圆心,以1为半径的圆.∴其参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.(θ为参数)∴t =x +y =cos θ+sin θ+1 =2sin(θ+π4)+1 ∴当sin (θ+π4)=1时t max =2+1.11.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数,且0≤θ≤2π),点M 是曲线C 1上的动点.(1)求线段OM 的中点P 的轨迹的参数方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.解:(1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ),坐标原点O (0,0),设P 的坐标为(x ,y ),则由中点坐标公式得x =12(0+4cos θ)=2cos θ,y =12(0+4sin θ)=2sin θ,所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数,且0≤θ≤2π).(2)由直角坐标与极坐标关系⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得直线l 的直角坐标方程为x -y +1=0,又由(1)知点P 的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x -y +1=0的距离为|0-0+1|12+(-1)2=12=22, 所以点P 到直线l 距离的最大值为2+22.。

圆的方程专题讲义

圆的方程专题讲义

圆的方程专题讲义一、知识梳理圆的定义与方程注意:1确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )(4)方程x2+2ax+y2=0一定表示圆.()(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.()题组二:教材改编2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A .(x -3)2+(y +1)2=1B .(x -3)2+(y -1)2=1C .(x +3)2+(y -1)2=1D .(x +3)2+(y +1)2=13.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______.题组三:易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( )A .(-∞,-2)∪(2,+∞)B .(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞)5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±46.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1三、典型例题题型一:圆的方典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________. 思维升华:(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值;②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.跟踪训练 一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.题型二:与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.引申探究1.在本例的条件下,求y x的最大值和最小值. 2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.思维升华:与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练:已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上.(1)求y x的最大值和最小值; (2)求x +y 的最大值与最小值.题型三:与圆有关的轨迹问题典例已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.思维升华:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.注意:利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.四、反馈练习1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( )A .(x +1)2+(y -3)2=29B .(x -1)2+(y +3)2=29C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=1162.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0 3.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=44.若a ∈}431,0,2{ ,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3 5.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C.1+22D.2+226.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=17.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.8.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是__________________.9.已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为__________.10.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是__________.11.在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为22,在y轴上截得的线段长为2 3. (1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.12.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)若M(m,n),求n-3m+2的最大值和最小值.13.已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|P A|2,其中A(0,1),B(0,-1),则d的最大值为________.14.已知圆C截y轴所得的弦长为2,圆心C到直线l:x-2y=0的距离为55,且圆C被x轴分成的两段弧长之比为3∶1,则圆C的方程为_________________.。

圆的方程及空间直角坐标系(讲义及答案)

圆的方程及空间直角坐标系(讲义及答案)

X的方程及空间直角坐标系(讲义) >知识点睛一、圆的方程1. 圆的标准方程: ______________________ ,圆心: ________, 半径:________.2. 圆的一般方程:圆心: 二、位置关系的判断(1) 点与圆由两点间的距离公式计算点到圆心的距离",比较",r 大小. ① 已知点Vo)与圆的标准方程(x-a}\(y'-b)-=r,则计算矿二 _________________ ,比较沪,尸大小. ② 已知点P(xo, yo)与圆的一般方程X- + y- +Dx + Ey + F = 0 ,则计算 _____________________ ,与0比较大小.(2) 直线与圆① 利用点到直线的距离公式求圆心到直线的距离",比较 ",r 大小.② 联立直线与圆方程,得到一元二次方程,根△判断: 'A <O ,直线与圆相离.A = 0,直线与圆相切.△ >0,直线与圆相交(3)圆与圆利用两点间的距离公式求圆心距d,结合两圆半径和〃的关系 判断.三、常见思考角度1. 直线与圆位置关系常见考査角度(1)过定点求圆的切线方程① 判断该点与圆的位置关系(若点在圆内,则无切线). ② 根据切线的性质求切线方程.若点在圆上,则利用切线垂直于过切点的半径求切线方程: 若点在圆外,则分别讨论 ___________________ ,设点斜式 利用〃二r 建方程求解.[gl(2)直线与圆相交求弦长结合垂径定理和勾股定理,半径长厂圆心到直线的距离丛 弦长/满足关系式:厂2=〃2+(_厂22. 圆与圆位置关系常见考査角度(1) 两圆相交求公共弦所在直线方程设圆G :x2+y2 + DrV + Ej + F| = 0,C2:x2+b+0x + E* + F2 = O,则公共弦所在直线的方程为 (0 — D? )x + (E] — £*2) y + F[—尸2 = 0 -(2) 两圆相交求公共弦长求出公共弦所在直线方程及其中一圆圆心到公共弦的距离, 垂径定理、勾股定理结合求弦长.四、轨迹方程在平面直角坐标系中,点M 的轨迹方程是指点M 的坐标 (X, y )满足的关系式.五、空间直角坐标系Ovvz (右手直角坐标系)如图1, 0点叫做坐标原点,牙轴、y 轴、2轴叫做坐标 轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.zn六、空间直角坐标系中点的坐标如图2,过点M 分别作垂直于X 轴,y 轴和Z 轴的平面,依 次交X 轴,y 轴和Z 轴于点P, e 和设点P, Q 和R 在牙 轴,y 轴和Z 轴上的坐标分别是X, y 和Z,那么点M 对应唯 —确定的有序实数组U ,y,刀.有序实数组馆)* 201做点M 在此空间直角坐标系中的坐标, 记作MS ,y, z ).其中X 叫做点M 的 __________ , y 叫做点 M 的 __________ , Z 叫做点M 的 __________ .-1 -- B»1 "Z C'A' BC>1 \ >1 0 X七、空间两点间的距离公式如图3,设空间直角坐标系中点P 的坐标是(兀,y, Z ),则 IOPI = ____________________ .如图4,设点£(易,y,, Z,), RC E ,>'2»空)是空间中任意两点, 则 IA A1= ___________________ .A/ P 、 Pl精讲精练写出下列圆的标准方程:(I)圆心在C(-3,4” 半径长为^/J•(2)圆心在C(8,-3),且经过点M(5J)・2 . 下列方程:①W+y2-6x=0 ;②-2%+4 V-6=0 ;③W+y,二。

圆的方程及空间直角坐标系(习题及答案)

圆的方程及空间直角坐标系(习题及答案)

圆与方程及空间直角坐标系(习题) 1.方程2220x y ax by c ++-+=表示圆心为C (2,2),半径为2的圆,则a ,b ,c 的值依次为()A .2,4,4B .-2,4,4C .2,-4,4D .2,-4,-42.若方程224250x y x y k +-++=表示圆,则k 的取值范围是()A .1k >B .1k <C .1k ≥D .1k ≤3.已知圆C 的圆心在直线l :x -2y -1=0上,并且经过原点和A (2,1),则圆C 的标准方程是_____________________.4.已知点A (1,2)在圆22230x y x y m ++++=内,则m 的取值范围是_________.5.直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于()A .33-或B .333-或C .333-或D .3333-或6.已知圆x 2+y 2=4,直线l :y =x +b .若圆x 2+y 2=4上恰有3个点到直线l 的距离都等于1,则b 的值为______________.7.过点M (3,0)作圆22(1)(1)5x y -+-=的切线,则切线的方程为_________________________.8.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切.则圆C 的方程为______________.9.过原点且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为()A .3B .2C .6D .2310.若⊙O 1:x 2+y 2=m (0m >)和⊙O 2:2268110x y x y ++--=有公共点,则实数m 的取值范围是___________________.11.已知点A (-1,0),点B (2,0),动点C 满足|AC |=|AB |,则点C与点P (1,4)所连线段的中点M 的轨迹方程为_____________.12.在空间直角坐标系中,点A (1,2,-3)关于x 轴的对称点为()A .(1,-2,-3)B .(1,-2,3)C .(1,2,3)D .(-1,2,-3)13.在空间直角坐标系中,已知A(1,0,2),B(1,-3,1),在z,则M点的坐标为()轴上存在点M,使得MA MBA.(0,0,3)B.(0,0,-3)C.(0,0,-6)D.(0,0,6)14.若A(1,-2,1),B(4,2,3),C(6,-9,4),则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形15.已知圆的一条直径的端点分别为A(x1,y1),B(x2,y2).求证:此圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.16.如图在棱长为1的正方体ABCD -A 1B 1C 1D 1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz .(1)若点P 在线段BD 1上,且满足13BP BD ,试写出点P 关于平面Oxz 的对称点P′的坐标;(2)线段C 1D 中点为M ,求点M 到点P 的距离.【参考答案】1.B 2.B 3.226129()()51020x y -+-=4.m <﹣135.C 6.22-或7.26y x =-8.22(1)2x y ++=9.D 10.1≤m ≤12111.229(2)4x y +-=12.B 13.B 14.C 15.略16.(1)221'()333P -,,;(2)22。

直线与圆、圆与圆的位置关系讲义

直线与圆、圆与圆的位置关系讲义

直线与圆、圆与圆的位置关系讲义一、知识梳理1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( ) (4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( )(5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.()(6)如果直线与圆组成的方程组有解,则直线与圆相交或相切.()题组二:教材改编2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)3.x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为________.题组三:易错自纠4.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是() A.[-2,2] B.[-22,22]C.[-2-1,2-1] D.[-22-1,22-1]5.设圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4 B.42C.8 D.826.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为__________.答案5x-12y+45=0或x-3=0三、典型例题题型一:直线与圆的位置关系1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定2.圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能思维升华:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.题型二:圆与圆的位置关系典例已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切,则ab的最大值为()A.62 B.32 C.94D.23引申探究:1.若将本典例中的“外切”变为“内切”,求ab的最大值.2.若将本典例条件“外切”变为“相交”,求公共弦所在的直线方程.思维升华:判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.跟踪训练:如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是 题型三:直线与圆的综合问题 命题点1:求弦长问题典例已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 命题点2:直线与圆相交求参数范围典例 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 命题点3:直线与圆相切的问题典例 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).思维升华:直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. (2)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________. 注意:高考中与圆交汇问题的求解 一、与圆有关的最值问题典例1 (1)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33C .±33D .-3二、直线与圆的综合问题典例2 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .42 C .6D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 四、反馈练习1.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得的弦的长度为4,则实数a 的值是( ) A .-2 B .-4 C .-6 D .-82.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个3.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12C .y =-32D .y =-144.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A .m ∥l ,且l 与圆相交 B .m ⊥l ,且l 与圆相切 C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离6.已知圆C 的方程为x 2+y 2=1,直线l 的方程为x +y =2,过圆C 上任意一点P 作与l 夹角为45°的直线交l 于点A ,则|P A |的最小值为( ) A.12 B .1 C.2-1D .2-27.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.8.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.9.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________.10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.12.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.13在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.若圆C 上存在点M ,使|MA |=2|MO |,则圆心C 的横坐标a 的取值范围是14.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________. π|AB |2≥16(2-1)π.故选C.。

【原创讲义】圆与方程(全面详细)

同学们我们在初中的时候已经学习了圆的几何性质,今天开始我们从代数坐标系的角度再来学习圆的一些性质.1.圆的要素:在平面直角坐标系中,当圆心位置与半径大小确定后,圆就唯一确定了.因此,确定一个圆的基本要素是圆心与半径,即位置与大小.2.圆的定义:描述一:在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆.描述二:在同一平面内,到定点的距离等于定长的点的集合叫做圆. 如图所示:O 为定点(圆心),P 为动点()r b y a x =-+-⇒22)(根据点到点距离公式我们将上面这个方程平方也就得到了圆的标准方程.3.圆的标准方程: ()().11)0,0(),()0(22222称为单位圆的圆半径单位圆:我们把圆心为,半径圆心>=+==-+-y x r rb a r r b y a x理解:所说的标准方程其实也只是圆方程的一种书写形式,该方程的优势体现在能直观的看出圆心和半径长.其中标准方程的右边必须大于零才能表示圆,如果等于零,方程表示的只是一个点),(b a .现在我们将圆的标准方程括号去掉化简就可以得到圆的一般方程.※圆与方程4.圆的一般方程:24-2204-0222222F E D r ED FE DF Ey Dx y x +=--+=++++),圆心(>圆的判别式:一般方程:.022项,也没有的系数相同且与理解:xy y x ≠图像不存在<③表示点②表示圆>①一般方程:配方⇒+--⇒=+⇒++=+++−−→−=++++04-)2,2(04-04-44-)2()2(022*********2F E D ED FE DF E D FE D E y D xF Ey Dx y x圆的标准方程与一般方程在形式上存在区别,但又可以通过配方将二者相互转化.5.圆的参数方程:(一般用于求最值)()()[)πθθθθθθ2.0(sin cos sin cos 1)()()0(222222∈⎩⎨⎧+=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=-⇒=-+-−−−−−−→−=-+-为参数,圆的参数方程>等号左右两边同除以b r y a r x rb y r a x rb y r a x r r b y a x r圆成立的条件很重要:0422>F E D -+例1:写出以下方程的圆心、半径、参数方程再作出图像,将标准方程化为一般方程,将一般方程化为标准方程.[)()⎩⎨⎧∈+====+-+=-+πθθθ2,02sin cos 1)2,0(0341)2(2222y x r y y x y x ,圆心一般方程:例:064)1(22=+-+y x y x 022)2(22=-++y x y x2)1()2)(3(22=-++y x 31)33()4(22=++y x2)1()1)(5(22=++-y x 0)6(22=++-y y x x例2:的取值范围是表示圆,则方程m m y mx y x 052422=+-++ .例3:写出下列圆的方程.2),1,2()1(半径长是圆心- .1),,0()2(半径长是圆心m -.),,()3(a b a 半径长是圆心- .1,)4(半径长是轴圆心在x.,012)5(轴相切的圆且与上圆心在直线y y x =+-)2,0(),3,2()6(为圆直径的两个端点分别.)4,3(),2,1(),5,0()7(三个点圆的方程求过---C B A.)5,2(),3,2(,032)8(的圆的标准方程且过点上求圆心在---=--B y x类型一:点与圆位置关系()()())(0)()3()(0)()2()(0)()1(),(002020********020********0202202000r d F Ey Dx y x r b y a x r d F Ey Dx y x r b y a x r d F Ey Dx y x r b y a x y x >>或>点在圆外<<或<点在圆内或点在圆上点++++-+-⇒++++-+-⇒==++++=-+-⇒.,011122的取值范围求始终存在公共点与圆:直线例a ay x y x kx y =+++++=例2:一束光线从点)1,1(-A 出发x 轴反射,到达圆1)3()2(:22=-+-y x C 上一点的最短距离是多少?:例3已知圆1)3()2(221=-+-y x C :,圆9)4()3(222=-+-y x C :,N M 、分别是圆21C C 、上的动点,P 是x 轴上的动点,则PN PM +的最小值为?:例4若点),15(a a M +在圆26)1(22=+-y x 的内部,则实数a 的取值范围是?1:图形表示与判断方法关系 相交 相切 相离图 像几 何 法r d <r d =r d >联立方程方程组两个解方程组一个解方程组无解直线与圆交点个数两个公共点一个公共点没有公共点判别式法0>∆0=∆0<∆:例1直线2+=kx y 与圆122=+y x 没有公共点,求k 的取值范围?:例2不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是?:例3若圆4)1(22=+-y x 关于直线022=+-+m y x 对称,则实数m 的值为?关系 外离外切相交内切内含图 像几 何 法d 为圆心距21r r d +>21r r d +=2121r r d r r +-<<21r r d -=210r r d -≤<公切线 四条三条两条一条无位置 关系几个结论(1)经过圆()()222r b y a x =-+-上一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--.(掌握)(2)已知圆222r y x =+的切线的斜率为k ,则圆的切线方程为12+±=k r kx y .(了解) (3)切点弦方程:过圆()()222r b y a x =-+-外一点),(00y x P 引圆的两条切线,切点分别为B A 、,则过B A 、的直线方程为200))(())((r b y b y a x a x =--+--(掌握)(4)圆与圆公共弦方程:()0)(00212121222222111221=-+-+-=++++=++++F F y E E x D D F y E x D y x O F y E x D y x O :公共弦,该直线方程为若两圆相交,则有一条:与圆:圆(5)弦长公式ak d r AB ∆⋅+=-=22212 )(为平方项的系数为斜率,其中a k(6)半圆、直线、射线、点29x y -= 0)2(22=-+y y x x ()042222=-++y x x241y x -=- ()04122=-+-+y x y x 22x y --=类型一:切线方程、切点弦方程、公共弦方程1.已知圆1)1(22=+-y x O :,求过点)2,2(P 与圆O 相切的切线方程.2.两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.3.过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

数学圆的方程讲义含答案解析

数学课程讲义 学科:数学专题:圆的方程考点梳理一、圆的标准方程设圆心的坐标为(,)C a b ,半径为r ,222()()x a y b r -+-=特别地,当圆心为坐标原点(0,0)O 时,半径为r 的圆的标准方程为222x y r +=二、圆的一般方程220x y Dx Ey F ++++=. (2240D E F +->)问题:此圆的圆心和半径分别是多少?将方程配方整理得22224224D E D E Fx y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭其圆心在(,)22D E --224D E F+-. 金题精讲题一题面:圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A .22(2)1x y +-=B .22(2)1x y ++=C .22(1)(3)1x y -+-=D .22(3)1x y +-=题二题面:根据下面所给的条件,分别求出圆的方程:(1) 以点(2,5)-为圆心,并且过点(3,7)-;(2) 设点(4,3)A 、(6,1)B -,以线段AB 为直径;(3) 经过点(2,4)P -和点(0,2)Q ,并且圆心在直线0x y +=上.题三题面:以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程为 ( )A .22(2)(1)3x y -++=B .22(2)(1)3x y ++-=C .22(2)(1)9x y -++=D .22(2)(1)9x y ++-=题四题面:圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y x D.2)2()3(22=++-y x题五题面:在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A .25B .210C .D .220题六题面:已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为_____________.题七题面:点P (4,-2)与圆224x y +=上任一点连线的中点轨迹方程是________课后练习注:此部分为老师根据本讲课程内容为大家精选的课下拓展题目,故不在课堂中讲解,请同学们课下自己练习并对照详解进行自测.题一题面:若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( )A. x -y -3=0B.2x +y -3=0C. x +y -1=0D.2x -y -5=0题二题面:以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是 .题三题面:圆心为(1,1)且与直线x+y=4相切的圆的方程是.讲义参考答案金题精讲题一答案:A题二答案:(1)22 (2)(5)169 x y++-=(2)22 (5)(1)5 x y-+-=(3)22 (2)(2)4 x y++-=题三答案:C 题四答案:C 题五答案:B题六答案:22(1)(1)2x y -++=题七 答案:22(2)(1)1x y -++= 课后练习题一答案:A详解:由(x -1)2+y 2=25知圆心为Q (1,0). 据k QP ·k AB =-1, ∴k AB =-QP k 1=1(其中k QP =1201---=-1). ∴AB 的方程为y =(x -2)-1=x -3,即x -y -3=0.题二答案:2225(2)(1)2x y -++=详解:将直线6x y +=化为60x y +-=,圆的半径|216|5112r --==+, 所以圆的方程为2225(2)(1)2x y -++=题三答案:(x -1)2+(y -1)2=2详解:设圆的方程为()()22211r y x =-+- , ∵直线x +y =4与圆相切,∴21141122=+-+==d r ,∴所求圆的方程为(x -1)2+(y -1)2=2.。

人教A版高中数学必修二同步学习讲义:第四章圆与方程4.2.2 Word版含答案

4.2.2圆与圆的位置关系学习目标1.理解圆与圆的位置关系的种类.2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系.3.体会根据圆的对称性灵活处理问题的方法和它的优越性.知识点两圆位置关系的判定思考1圆与圆的位置关系有几种?如何利用几何方法判断圆与圆的位置关系?答案圆与圆的位置关系有五种,分别为:相离、外切、相交、内切、内含.几何方法判断圆与圆的位置关系设两圆的圆心距为d,两圆的半径分别为r1,r2(r1≠r2),则(1)当d>r1+r2时,圆C1与圆C2相离;(2)当d=r1+r2时,圆C1与圆C2外切;(3)当|r1-r2|<d<r1+r2时,圆C1与圆C2相交;(4)当d=|r1-r2|时,圆C1与圆C2内切;(5)当d<|r1-r2|时,圆C1与圆C2内含.思考2已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=0,如何通过代数的方法判断两圆的位置关系?答案联立两圆的方程,消去y后得到一个关于x的一元二次方程,当判别式Δ>0时,两圆相交,当Δ=0时,两圆外切或内切,当Δ<0时,两圆外离或内含.梳理(1)用几何法判定圆与圆的位置关系已知两圆C1:(x-x1)2+(y-y1)2=r21,C2:(x-x2)2+(y-y2)2=r2,则圆心距d=|C1C2|=(x1-x2)2+(y1-y2)2.两圆C1,C2有以下位置关系:(2)用代数法判定圆与圆的位置关系已知两圆:C1:x2+y2+D1x+E1y+F1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0,将方程联立⎩⎪⎨⎪⎧x2+y2+D1x +E1y +F1=0,x2+y2+D2x +E2y +F2=0,消去y (或x )得到关于x (或y )的一元二次方程, 则①判别式Δ>0时,C 1与C 2相交; ②判别式Δ=0时,C 1与C 2外切或内切; ③判别式Δ<0时,C 1与C 2相离或内含.类型一两圆的位置关系命题角度1两圆位置关系的判断 例1已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是() A .内切B .相交 C .外切D .相离 答案B解析由⎩⎪⎨⎪⎧x2+y2-2ay =0,x +y =0,得两交点分别为(0,0),(-a ,a ).∵圆M 截直线所得线段的长度为22,∴a2+(-a )2=22,又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心为M (0,2),半径为r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心为N (1,1),半径为r 2=1, ∴|MN |=(0-1)2+(2-1)2=2.∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.反思与感悟判断圆与圆的位置关系的一般步骤(1)将两圆的方程化为标准方程(若圆方程已是标准形式,此步骤不需要).(2)分别求出两圆的圆心坐标和半径长r 1,r 2. (3)求两圆的圆心距d .(4)比较d 与|r 1-r 2|,r 1+r 2的大小关系. (5)根据大小关系确定位置关系. 跟踪训练1已知圆C 1:x 2+y 2-2x +4y +4=0和圆C 2:4x 2+4y 2-16x +8y +19=0,则这两个圆的公切线的条数为() A .1或3B .4C .0D .2 答案D解析由圆C 1:(x -1)2+(y +2)2=1,圆C 2:(x -2)2+(y +1)2=14,得C 1(1,-2),C 2(2,-1), ∴|C 1C 2|=(2-1)2+(-1+2)2=2.又r 1=1,r 2=12,则r 1-r 2<|C 1C 2|<r 1+r 2, ∴圆C 1与圆C 2相交. 故这两个圆的公切线共2条.命题角度2已知两圆的位置关系求参数例2当a 为何值时,两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0: (1)外切;(2)相交;(3)相离. 解将两圆方程写成标准方程,则C 1:(x -a )2+(y +2)2=9,C 2:(x +1)2+(y -a )2=4.∴两圆的圆心和半径分别为C 1(a ,-2),r 1=3,C 2(-1,a ),r 2=2. 设两圆的圆心距为d ,则d 2=(a +1)2+(-2-a )2=2a 2+6a +5. (1)当d =5,即2a 2+6a +5=25时,两圆外切, 此时a =-5或a =2.(2)当1<d <5,即1<2a 2+6a +5<25时,两圆相交,此时-5<a <-2或-1<a <2. (3)当d >5,即2a 2+6a +5>25时,两圆相离, 此时a >2或a <-5.反思与感悟(1)判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤: ①将圆的方程化成标准形式,写出圆心和半径. ②计算两圆圆心的距离d .③通过d ,r 1+r 2,|r 1-r 2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合. (2)应用几何法判定两圆的位置关系或求参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.跟踪训练2若圆C 1:x 2+y 2=16与圆C 2:(x -a )2+y 2=1相切,则a 的值为() A .±3B .±5 C .3或5D .±3或±5 答案D解析圆C 1与圆C 2的圆心距为d =a2+(0-0)2=|a |.当两圆外切时,有|a |=4+1=5,∴a =±5; 当两圆内切时,有|a |=4-1=3,∴a =±3. 类型二两圆的公共弦问题例3已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0. (1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.解(1)将两圆方程配方化为标准方程,则 C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,∴圆C 1的圆心坐标为(1,-5),半径为r 1=52, 圆C 2的圆心坐标为(-1,-1),半径为r 2=10.又∵|C 1C 2|=25,r 1+r 2=52+10,|r 1-r 2|=|52-10|,∴|r 1-r 2|<|C 1C 2|<r 1+r 2, ∴两圆相交. (2)将两圆方程相减,得公共弦所在的直线方程为x -2y +4=0.(3)方法一由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=35,∴公共弦长为l =2r21-d2=250-45=25.方法二设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x2+y2+2x +2y -8=0,解得⎩⎪⎨⎪⎧ x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2,∴|AB |=(-4-0)2+(0-2)2=25.即公共弦长为25.反思与感悟(1)当两圆相交时,公共弦所在的直线方程的求法若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在的直线方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解. 跟踪训练3(1)两圆相交于两点A (1,3)和B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值为________. 答案3解析由题意知直线AB 与直线x -y +c =0垂直, ∴k AB ×1=-1,即3-(-1)1-m =-1,得m =5, ∴AB 的中点坐标为(3,1).又AB 的中点在直线x -y +c =0上, ∴3-1+c =0,∴c =-2, ∴m +c =5-2=3.(2)求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在的直线被圆C 3:(x -1)2+(y -1)2=254截得的弦长.解由题意将两圆的方程相减,可得圆C 1和圆C 2公共弦所在的直线l 的方程为 x +y -1=0.又圆C 3的圆心坐标为(1,1), 其到直线l 的距离为d =|1+1-1|12+12=22,由条件知,r 2-d 2=254-12=234,所以弦长为2×232=23.类型三圆系方程及应用例4求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程. 解方法一设经过两圆交点的圆系方程为 x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1), 即x 2+y 2-41+λx -4λ1+λy -6=0,所以圆心坐标为(21+λ,2λ1+λ).又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二由⎩⎪⎨⎪⎧x2+y2-4x -6=0,x2+y2-4y -6=0,得两圆公共弦所在直线的方程为y =x .由⎩⎪⎨⎪⎧ y =x ,x2+y2-4y -6=0,解得⎩⎪⎨⎪⎧x1=-1,y1=-1,⎩⎪⎨⎪⎧x2=3,y2=3.所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点坐标分别为A (-1,-1),B (3,3), 线段AB 的垂直平分线所在的直线方程为y -1=-(x -1).由⎩⎨⎧y -1=-(x -1),x -y -4=0,得⎩⎪⎨⎪⎧x =3,y =-1,即所求圆的圆心为(3,-1), 半径为(3-3)2+[3-(-1)]2=4. 所以所求圆的方程为(x -3)2+(y +1)2=16.反思与感悟当经过两圆的交点时,圆的方程可设为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0,然后用待定系数法求出λ即可.跟踪训练4求过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点且过点(2,-2)的圆的方程. 解设过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点的圆系方程为x 2+y 2-4x +2y +1+λ(x 2+y 2-6x )=0,即(1+λ)x 2+(1+λ)y 2-(4+6λ)x +2y +1=0.把(2,-2)代入,得4(1+λ)+4(1+λ)-2(4+6λ)-4+1=0,解得λ=-34.∴圆的方程为x 2+y 2+2x +8y +4=0.1.两圆x 2+y 2-1=0和x 2+y 2-4x +2y -4=0的位置关系是() A .内切B .相交C .外切D .相离 答案B解析圆x 2+y 2-1=0的圆心为C 1(0,0),半径为r 1=1,圆x 2+y 2-4x +2y -4=0的圆心为C 2(2,-1),半径为r 2=3,两圆的圆心距为d =|C 1C 2|=(2-0)2+(-1-0)2=5,又r 2-r 1=2,r 1+r 2=4,所以r 2-r 1<d <r 1+r 2,故两圆相交.2.圆C 1:x 2+y 2=1与圆C 2:x 2+(y -3)2=1的内公切线有且仅有() A .1条B .2条C .3条D .4条 答案B解析因为两圆的圆心距为3,半径之和为2,故两圆相离,所以内公切线的条数为2. 3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是() A .x +y +3=0B .2x -y -5=0 C .3x -y -9=0D .4x -3y +7=0 答案C解析AB 的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A 、B 、D. 4.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程是________. 答案(x -4)2+(y +3)2=16或(x -4)2+(y +3)2=36 解析设圆C 的半径为r ,圆心距为d =(4-0)2+(-3-0)2=5, 当圆C 与圆O 外切时,r +1=5,r =4, 当圆C 与圆O 内切时,r -1=5,r =6, ∴圆的方程为(x -4)2+(y +3)2=16 或(x -4)2+(y +3)3=36.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________.答案1解析将两圆的方程相减,得相交弦所在的直线方程为y =1a ,圆心(0,0)到直线的距离为d =1a =22-(3)2=1,所以a =1.1.判断两圆的位置关系的方法(1)由两圆的方程组成的方程组有几个实数解确定,这种方法计算量比较大,一般不用. (2)依据圆心距与两圆半径的和或两半径的差的绝对值的大小关系.2.当两圆相交时,把两圆的方程作差消去x 2和y 2就得到两圆的公共弦所在的直线方程. 3.求弦长时,常利用圆心到弦所在的直线的距离求弦心距,再结合勾股定理求弦长.课时作业一、选择题1.圆(x -3)2+(y +2)2=1与圆x 2+y 2-14x -2y +14=0的位置关系是() A .外切B .内切 C .相交D .相离 答案B解析圆x 2+y 2-14x -2y +14=0变形为(x -7)2+(y -1)2=36,圆心坐标为(7,1),半径为r 1=6,圆(x -3)2+(y +2)2=1的圆心坐标为(3,-2),半径为r 2=1,所以圆心距d =(7-3)2+[1-(-2)]2=5=6-1=r 1-r 2,所以两圆内切.2.已知圆C 1:x 2+y 2+2x +8y -8=0与圆C 2:x 2+y 2-4x -4y -2=0相交,则圆C 1与圆C 2的公共弦所在直线的方程为()A .x +2y +1=0B .x +2y -1=0C .x -2y +1=0D .x -2y -1=0 答案B解析两个圆的方程相减,得x +2y -1=0.故选B.3.若圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4外切,则m 的值为() A .2B .-5 C .2或-5D .不确定 答案C解析两圆的圆心坐标分别为(-2,m ),(m ,-1), 两圆的半径分别为3,2,由题意得(m +2)2+(-1-m )2=3+2, 解得m =2或-5.4.设r >0,圆(x -1)2+(y +3)2=r 2与圆x 2+y 2=16的位置关系不可能是()A.相切B.相交C.内切或内含D.外切或相离答案D解析两圆的圆心距为d=(1-0)2+(-3-0)2=10,两圆的半径之和为r+4,因为10<r+4,所以两圆不可能外切或相离,故选D.5.若圆x2+y2=r2与圆x2+y2+2x-4y+4=0有公共点,则r满足的条件是()A.r<5+1B.r>5+1C.|r-5|≤1D.|r-5|<1答案C解析由x2+y2+2x-4y+4=0,得(x+1)2+(y-2)2=1,两圆圆心之间的距离为(-1)2+22=5.∵两圆有公共点,∴|r-1|≤5≤r+1,∴5-1≤r≤5+1,即-1≤r-5≤1,∴|r-5|≤1.6.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是()A.(x-4)2+(y-6)2=6B.(x+4)2+(y-6)2=6或(x-4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36答案D解析由题意可设圆的方程为(x-a)2+(y-6)2=36,由题意,得a2+9=5,所以a2=16,所以a=±4. 7.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于()A.4B.42C.8D.82答案C解析∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根, 整理得x 2-10x +17=0, ∴a +b =10,ab =17.∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=(a -b )2+(a -b )2=32×2=8.二、填空题8.若圆x 2+y 2-2ax +a 2=2和x 2+y 2-2by +b 2=1相离,则a ,b 满足的条件是_____. 答案a 2+b 2>3+22解析由题意可得两圆的圆心坐标和半径长分别为(a,0),2和(0,b ),1.因为两圆相离,所以a2+b2>2+1,即a 2+b 2>3+22.9.圆C 1:x 2+y 2-2x -8=0与圆C 2:x 2+y 2+2x -4y -4=0的公共弦长为________. 答案27解析由圆C 1与圆C 2的公共弦所在的直线l 的方程为x -y +1=0,得点C 1(1,0)到直线l 的距离为d =|1-0+1|12+12=2,圆C 1的半径为r 1=3,所以圆C 1与圆C 2的公共弦长为2r21-d2=232-(2)2=27.10.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是__________. 答案3或7解析∵A ∩B 中有且仅有一个元素,∴圆x 2+y 2=4与圆(x -3)2+(y -4)2=r 2相切. 当两圆内切时,由32+42=|2-r |,解得r =7; 当两圆外切时,由32+42=2+r ,解得r =3.∴r =3或7.11.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________. 答案x 2+y 2-34x -34y -114=0解析由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34,故所求圆的方程为x 2+y 2-34x -34y -114=0.三、解答题12.已知圆O 1:x 2+(y +1)2=4,圆O 2的圆心O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且|AB |=22,求圆O 2的方程. 解(1)设圆O 2半径为r 2,因为两圆外切,所以|O 1O 2|=r 2+2.又|O 1O 2|=22+[1-(-1)2]=22, 所以r 2=|O 1O 2|-2=2(2-1),故圆O 2的方程为(x -2)2+(y -1)2=12-82. (2)设圆O 2的方程为(x -2)2+(y -1)2=r 2,因为圆O 1的方程为x 2+(y +1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在的直线方程为4x +4y +r 2-8=0, 作O 1H ⊥AB ,H 为垂足,则|AH |=12|AB |=2, 所以|O 1H |=r21-|AH|2=4-2=2.由圆心O 1(0,-1)到直线4x +4y +r 2-8=0的距离为|r22-12|42=2,得r 2=4或r 2=20,故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.四、探究与拓展 13.已知圆C 1:x 2+y 2+4x +1=0和圆C 2:x 2+y 2+2x +2y +1=0,则以圆C 1与圆C 2的公共弦为直径的圆的方程为________.答案(x +1)2+(y +1)2=1解析由两圆的方程相减,得公共弦所在直线的方程为x -y =0.∵圆C 1:(x +2)2+y 2=3,圆C 2:(x +1)2+(y +1)2=1,圆心C 1(-2,0),C 2(-1,-1), ∴两圆连心线所在直线的方程为y -0-1-0=x +2-1+2, 即x +y +2=0.由⎩⎪⎨⎪⎧x -y =0,x +y +2=0,得所求圆的圆心为(-1,-1). 又圆心C 1(-2,0)到公共弦所在直线x -y =0的距离 d =|-2-0|2=2, ∴所求圆的半径r =(3)2-(2)2=1, ∴所求圆的方程为(x +1)2+(y +1)2=1.14.求与圆C :x 2+y 2-2x =0外切且与直线l :x +3y =0相切于点M (3,-3)的圆的方程.解圆C 的方程可化为(x -1)2+y 2=1,圆心为C (1,0),半径为1.设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 由题意可知⎩⎪⎨⎪⎧ (a -1)2+b 2=r +1,b +3a -3×(-33)=-1,|a +3b |2=r ,解得⎩⎪⎨⎪⎧ a =4,b =0,r =2. 故所求圆的方程为(x -4)2+y 2=4.。

2024年新高二数学提升精品讲义圆的标准方程(思维导图+4知识点+4考点+过关检测)(原卷版)

2024年新高二数学提升精品讲义圆的标准方程(原卷版)模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.会用定义推导圆的标准方程,并掌握圆的标准方程的特征;2.能根据所给条件求圆的标准方程;3.掌握点与圆的位置关系并能解决相关问题.知识点1圆的定义平面内到定点的距离等于定长的点的集合叫做圆.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(,)a b ,半径为r ,(,)M x y 为圆上任意一点,⊙A 就是集合{}P M MA r ==.定义中,定点指的是圆心,定长指的是圆的半径.知识点2圆的标准方程1、圆的标准方程:我们把()()222-+-=x a y b r 称为圆心为(),A a b ,半径长为r 的圆的标准方程.【注意】(1)所谓标准方程,是指方程的形式.圆的标准方程体现了圆的集合性质,突出了圆的几何意义:圆心位置和半径.(2)圆的标准方程的右端20r >,当方程右端小于或等于0时,对应方程不是圆的标准方程.2、圆的标准方程的推导过程(1)建系设点:建立坐标系时,原点在圆心是特殊情况,就一般情况来说,因为A 是定点,设(),A a b ,半径为r ,且设圆上任意一点M 的坐标为(,)x y .(2)写点集:根据定义,圆就是集合{}P M MA r ==.(3r =.(4)化简方程:将上式两边平方得222()()x a y b r -+-=.3、几种特殊位置的圆的标准方程知识点3点与圆的位置关系1、几何法:点()00,M x y ,圆心(),A a b ,圆的半径r ,设M 与点A 间的距离MA d =,d r >⇔点M 在圆A 外;d r <⇔点M 在圆A 内;d r =⇔点M 在圆A 上.2、代数法:将点()00,M x y 直接代入圆的标准方程()()222-+-=x a y b r 进行判断,即若点()00,M x y 在圆外,则()()22200->+-x a y b r ;若点()00,M x y 在圆内,则()()22200x a y b r +-<-;若点()00,M x y 在圆上,则()()22200x a y b r +-=-.知识点4圆上的点到定点的最大、最小距离设圆心A 到定点C 的距离为d ,圆的半径为r ,圆上的动点为点P .(1)若点C 在圆外时,max PC d r =+,min PC d r =-;(2)若点C 在圆上时,max 2PC r =,min 0PC =;(2)若点C 在圆内时,max PC d r =+,min PC r d =-.综上:max PC d r =+,min PC d r =-.考点一:求圆的标准方程例1.(23-24高二上·安徽马鞍山·月考)已知圆的圆心在(3,4)-,半径为5,则它的方程为()A .()()22345x y -+-=B .()()223425x y +++=C .22(3)(4)25x y ++-=D .()()22345x y ++-=【变式1-1】(23-24高二上·山西太原·期末)已知圆C 的一条直径的两个端点坐标分别为()4,1-,()2,3,则圆C 的方程是.【变式1-2】(22-23高二上·广东东莞·期中)求经过点(2,0),(2,2)--且圆心在直线:0l x y +=上的圆的标准方程为.【变式1-3】(23-24高二下·云南玉溪·期中)过三点()()()120,01,33,1O M M ---、、的圆的标准方程是.考点二:点与圆的位置关系例2.(23-24高二上·安徽亳州·月考)(多选)已知()14,9P ,()26,3P 两点,以线段12PP为直径的圆为圆P ,则()A .()6,9M 在圆P 上B .()3,3N 在圆P 内C .()5,3Q 在圆P 内D .()2,7R 在圆P 外【变式2-1】(23-24高二上·江苏·专题练习)已知点(,10)P a ,圆的标准方程为()()221112x y -+-=,则点P ()A .在圆内B .在圆上C .在圆外D .与a 的取值有关【变式2-2】(23-24高二上·重庆·期中)若点(),3A a 在圆()22:15C x y +-=外,则实数a 的取值范围是()A .(),1-∞-B .(),1-∞C .()(),11,-∞-⋃+∞D .()1,1-【变式2-3】(23-24高二上·广西·期末)已知两直线2y x k =+与y x =-的交点在圆228x y +=的内部,则实数k 的取值范围是()A .11k -<<B .2<<2k -C .33k -<<D .k <考点三:与圆有关的最值问题例3.(23-24高二上·湖北·期中)已知半径为2的圆经过点()3,4,则其圆心到原点的距离的最大值为()A .4B .5C .6D .7【变式3-1】(23-24高二上·浙江湖州·月考)若实数x y ,满足221x y +=,则()()2234x y -+-的最大值是()A .5B .6C .25D .36【变式3-2】(23-24高二上·上海·期末)已知P 为圆22(3)(4)4x y -+-=上一点,Q 为圆221x y +=上一点,则点Q 到点P 的距离的最大值为.【变式3-3】(23-24高二上·天津武清·月考)已知圆C :()()22124x y ++-=,点()2,0A -,()2,0B .设P 是圆C 上的动点,令22d PA PB =+,则d 的最小值为.考点四:与圆有关的对称问题例4.(23-24高二上·河南周口·期末)若曲线()()22124x y -+-=上相异两点P 、Q 关于直线20kx y --=对称,则k 的值为()A .1B .2C .3D .4【变式4-1】(23-24高二上·云南昆明·月考)已知圆()()22124x y +++=关于直线10ax by ++=(0a >,0b >)对称,则12a b+的最小值为()A .52B .9C .4D .8【变式4-2】(23-24高二上·河北·期中)已知圆M :()2211x y ++=与圆N :()()22231x y -+-=关于直线l 对称,则l 的方程为()A .210x y --=B .210x y -+=C .230x y +-=D .230x y +-=【变式4-3】(23-24高二上·四川成都·期末)圆()()22:112C x y -+-=关于直线:1l y x =-对称后的方程为()A .()2222x y -+=B .()2222x y ++=C .()2222x y +-=D .()2212x y ++=一、单选题1.(23-24高二上·广东湛江·期中)在平面直角坐标系中,圆心为()1,0,半径为2的圆的方程是()A .()2212x y -+=B .()2212x y ++=C .()2214x y -+=D .()2214x y ++=2.(23-24高二上·河南开封·期末)已知圆M 经过点()()0,20,4,,且圆心M 在直线210x y --=上,则圆M 的面积为()A .2πB 5πC .4πD .5π3.(23-24高二上·安徽黄山·期末)圆22:(2)(1)1M x y -+-=与圆N 关于直线0x y -=对称,则圆N 的方程为()A .22(1)(2)1x y +++=B .22(2)(1)1x y -++=C .22(2)(1)1x y +++=D .22(1)(2)1x y -+-=4.(23-24高二上·广东惠州·期中)点(,3)P m 与圆()()22212x y -+-=的位置关系为()A .点在圆外B .点在圆内C .点在圆上D .与m 的值无关5.(2023高二上·全国·专题练习)点(1,1)--在圆22()()4x a y a ++-=的内部,则a 的取值范围是()A .11a -<<B .01a <<C .1a <-或1a >D .1a =±6.(23-24高二上·浙江温州·期中)已知半径为2的圆经过点()3,4,则其圆心到原点的距离最小值为()A .1B .2C .3D .4二、多选题7.(23-24高二上·四川宜宾·期末)已知圆C 经过点()0,0A 、()2,0B ,ABC 为直角三角形,则圆C 的方程为()A .()()22114x y -+-=B .()()22112x y -++=C .()()22112x y -+-=D .()()22125x y -+-=8.(23-24高二上·重庆九龙坡·月考)若有一组圆k C :()()()224R x k y k k -+-=∈,下列命题正确的是()A .所有圆k C 的半径均为2B .所有的圆kC 的圆心恒在直线y x =上C .当2k =时,点()3,0在圆k C 上D .经过点()2,2的圆k C 有且只有一个三、填空题9.(23-24高二上·贵州毕节·期末)与圆222430x y x y +-++=有相同圆心,且过点()4,2-的圆的标准方程是.10.(22-23高二下·四川凉山·月考)若圆221:(1)9C x y -+=和圆222:(3)(2)9C x y +++=关于直线l 对称,则直线l 的方程是11.(23-24高二上·全国·专题练习)已知,x y 满足22(1)(2)16x y -+-=,则22x y +的取值范围是.四、解答题12.(23-24高二上·福建福州·期末)已知A 关于直线y x =对称,点()0,0O ,()4,0N 都在A 上.(1)求线段ON 垂直平分线的方程;(2)求A 的标准方程13.(23-24高二上·山东济南·期末)已知圆心为C 的圆经过()0,0O ,(0,A 两点,且圆心C 在直线:l y =上.(1)求圆C 的标准方程;(2)点P 在圆C 上运动,求22PO PA +的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程及空间直角坐标系(讲义)
➢ 知识点睛
一、圆的方程
1. 圆的标准方程:________________________, 圆心:_________,半径:________.
2. 圆的一般方程:_______________________(
_____________,半径:_____________.
二、位置关系的判断 (1)点与圆
由两点间的距离公式计算点到圆心的距离d ,比较d ,r 大小. ①已知点P (x 0,y 0)与圆的标准方程(x -a )2+(y -b )2=r 2, 则计算2d =___________________,比较2d ,2r 大小. ②已知点P (x 0,y 0)与圆的一般方程220x y Dx Ey F ++++=, 则计算______________________,与0比较大小. (2)直线与圆
①利用点到直线的距离公式求圆心到直线的距离d ,比较 d ,r 大小.
②联立直线与圆方程,得到一元二次方程,根据∆判断:
000∆<⎧⎪
∆=⎨⎪∆>⎩

直线与圆相离,
直线与圆相切,直线与圆相交. (3)圆与圆
利用两点间的距离公式求圆心距d ,结合两圆半径和d
三、常见思考角度
1. 直线与圆位置关系常见考查角度 (1)过定点求圆的切线方程
①判断该点与圆的位置关系(若点在圆内,则无切线). ②根据切线的性质求切线方程.
若点在圆上,则利用切线垂直于过切点的半径求切线方程;
若点在圆外,则分别讨论____________________解.
(2)直线与圆相交求弦长
结合垂径定理和勾股定理,半径长r ,圆心到直线的距离d ,弦长l 满足关系式:
222()2
l r d =+. 2. 圆与圆位置关系常见考查角度
(1)两圆相交求公共弦所在直线方程
设圆2211110C x y D x E y F ++++=:
, 2222220C x y D x E y F ++++=:,则公共弦所在直线
121212()()0D D x E E y F F -+-
+-=.
(2)两圆相交求公共弦长
结合求弦长. 四、轨迹方程
在平面直角坐标系中,点M 的轨迹方程是指点M 的坐标 (x ,y )满足的关系式.
五、空间直角坐标系Oxyz (右手直角坐标系)
如图1,O 点叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴.
通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.
图1 图2
六、空间直角坐标系中点的坐标
如图2,过点M 分别作垂直于x 轴,y 轴和z 轴的平面,依次交x 轴,y 轴和z 轴于点P ,Q 和R .设点P ,Q 和R 在x 轴,y 轴和z 轴上的坐标分别是x ,y 和z ,那么点M 对应唯一确定的有序实数组(x ,y ,z ).
有序实数组(x ,y ,z )叫做点M 在此空间直角坐标系中的坐标,记作M (x ,y ,z ).其中x 叫做点M 的__________,y 叫做点M 的__________,z 叫做点M 的__________.
七、空间两点间的距离公式
如图3,设空间直角坐标系中点P 的坐标是(x ,y ,z ),则
|OP |=_____________________.
如图4,设点11112222()()P x y z P x y z ,,,,,是空间中任意两点,则
12||PP _____________________________.
0)
)
图3 图4
➢ 精讲精练
1. 写出下列圆的标准方程:
(1)圆心在(34)C -,
(2)圆心在(83)C -,,且经过点(51)M ,.
2. 下列方程:
①x 2+y 2-6x =0;②x 2+y 2-2x +4y -6=0;③x 2+y 2=0;
④22(240x y y +-+=;⑤y 2+x 2+5y -4x +5=0. 其中表示圆的是_____________.(填写序号)
3. 已知圆的方程是22(3)(2)25x y -++=,则圆心为__________,半径为
_________.点(5,-7)在__________,点(42)在 __________.(填“圆上”、“圆外”或“圆内”)
4. 圆x 2+y 2-2x +4y +1=0的圆心是_________,半径是________.
点(1,3)在____________,点(1-1-)在____________. (填“圆上”、“圆外”或“圆内”)
5. 已知△OAB 的三个顶点的坐标分别是O (0,0),A (1,1), B (4,2),则它的外接圆的方程为_____________________.
6. 已知直线方程为mx -y -m -1=0,圆的方程为x 2+y 2-4x -2y +1=0.
(1)若直线与圆只有一个公共点,则m 的值为___________;(2)若直线与圆有两个公共点,则m 的取值范围
是___________________.
7. 过点(3,1)作圆(x -1)2+y 2=1的切线,则切线的方程是______________________.
8. 圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长为________.
9. 已知圆C 1:x 2+y 2+2x +8y +1=0,圆C 2:x 2+y 2-4x +4y -1=0,则圆C 1与圆C 2的位置关系是__________.
10. 圆x 2+y 2-10x -10y =0与圆x 2+y 2-6x +2y -40=0的公共弦长 为____________.
11.(1)已知点M与两个定点O(0,0),A(3,0)的距离的比为1
2

则点M的轨迹方程为____________________.
(2)已知线段A B的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,则线段A B的中点M的轨迹方程为____________________.
D.以上答案都有可能
17. 求证:以A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.
【参考答案】 ➢ 知识点睛
一、圆的方程
1. 222()()()x a y b r a b r -+-=,,
, 2. 2222040x y Dx Ey F D E F ++++=+->,
()22D E -
-,
二、位置关系的判断
(1)2200()()x a y b -+-;(2)220000x y Dx Ey F ++++ 三、常见思考角度 1. 切线有无斜率
六、空间直角坐标系中点的坐标 横坐标,纵坐标,竖坐标 七、空间两点间的距离公式
➢ 精讲精练
1. (1)22(3)(4)5x y ++-=;(2)22(8)(3)25x y -++=
2. ①②⑤
3. (3,-2),5,圆外,圆内
4. (1,-2),2,圆外,圆上
5. 22860x y x y +-+=
6. (1)0或43-;(2){|0m m >或4
}3m <-
7. 1y =或4
33
y x =-
8.
9. 相交
10.
11. (1)22230x y x ++-=;(2)2233
()()122
x y -+-=
12. C
13. (0,4,0),(3,4,3),(3
2
,2,3)
14. (-3,2,1),(3,2,-1),(-3,-2,-1),(-3,-2,1)
(3,2,1),(3,-2,-1),(3,-2,1) 15. B 16. C
17. 证明略。

相关文档
最新文档