第二章 期权定价
影响企业期权定价的因素分析

影响企业期权定价的因素分析第一章:引言企业期权是财务管理领域的一项重要工具,它允许企业在未来的某个时间点以指定价格购买或出售资产。
在进行企业期权定价时,需要考虑多个影响因素,本文将对这些因素进行分析,并探讨它们对企业期权定价的影响。
第二章:影响企业期权定价的因素2.1 资产价格企业期权与标的资产价格息息相关,因此资产价格是影响企业期权定价的最重要的因素之一。
当资产价格上涨时,购买期权的成本也会上升,反之亦然。
此外,资产价格的波动性也会影响企业期权定价。
如资产价格波动幅度较大,企业期权的价值也相应增加。
2.2 行权价行权价是企业期权另一个非常重要的因素,它代表着期权购买或出售资产的价格。
通常情况下,如果期权的行权价越低,其购买价值就越高,因为购买期权时所需要承担的风险就会降低。
相反,如果期权的行权价越高,其出售价值就越高,因为在卖出期权时所能获取的对价就更大。
2.3 期权持有期期权持有期也是影响企业期权定价的一个因素。
期权持有期越长,相应的价值也会越高。
这是因为,期权所能够带来的利润越多,企业也就会愿意为其支付更高的价值。
此外,期权持有期还会影响到期权价格的波动性。
如果企业期权的持有期越长,其价格波动性也会越大。
2.4 波动率波动率是指标的资产价格波动的程度,是影响企业期权定价的另一个重要因素。
如果资产的波动率越大,企业在购买或卖出期权时的风险也就越大,相应的价值也会更高。
2.5 利率利率对企业期权定价同样有影响。
通常情况下,利率的上升会导致期权的价值下降,而利率的下降则会导致期权的价值上升。
这是因为,利率上升会导致资金成本上升,从而增加购买或出售期权的成本。
相反,利率下降则会降低资金成本,从而降低购买或出售期权的成本。
2.6 分红率分红率是指企业在期权期间内支付给股东的分红比率。
如果分红率较高,这会降低股票价格,从而影响企业期权定价。
相反,如果分红率较低,股票价格就会上涨,这也会对企业期权价值产生影响。
期权的定价

期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。
期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。
BSM模型是最早也是最经典的期权定价模型之一。
该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。
该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。
通过对组合进行数学推导,可以得到期权价格的解析公式。
BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。
有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。
与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。
该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。
通过逐步计算,可以得到期权价格的近似值。
二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。
无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。
其中,最关键的参数是标的资产的波动率。
波动率代表了市场对标的资产未来价格变动的预期。
根据波动率的不同,期权的价格也会有所变化。
其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。
需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。
实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。
因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。
总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。
BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。
期权定价

第二章期权定价自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授F. Black和M. Scholes 发表《期权定价与公司负债》一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox、S. Ross和M. Rubinstein三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。
第一节二叉树与风险中性定价对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。
然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。
1979年,J. Cox、S. Ross和M. Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(the Binomial Model)”,是期权数值定价方法的一种。
二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。
同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。
1.1 二叉树模型概述二叉树(binomial tree)是指用来描述在期权存续期内股票价格变动的可能路径。
二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。
根据第一章我们学到的知识,不难得出:3个月后,如果股票上涨至12元,则该股票期权的价格应为1元,如果股票下跌至8元,则该股票期权的价格应为0元。
这些可以通过下图的二叉树来表示。
股票价格=12元期权价格=1元股票价格=10元期权价格=?股票价格=8元期权价格=0元图2-1现在我们来考虑建立一个无风险投资组合,这个投资组合由两部分组成:买入∆只该股票,同时卖出一份以该股票为标的的看涨期权,即同时持有∆只股票的多头头寸和一份看涨期权的空头头寸。
第二节期权定价模型

C Fe r (T t ) Ke r (T t ) P
(二)平价关系
4、美式期权的平价关系 (1)标的资产无收益的平价关系
S K c p S Ker (T t )
(2)标的资产有收益的平价关系
S D K c p S D Ker (T t )
第二节
金融期权的定价模型
一、金融期权价格构成 (一)金融期权的内在价值 1、含义:期权的内在价值,即履约的价值,指期权合 约本身所具有的价值,也是期权的买方立即执行期权能 获得的收益。 期权的内在价值取决于协定价格与标的物市场价格的 关系。 期权的内在价值不会小于零。 根据内在价值,期权可分为实值、虚值和平值三种。
注意:对看涨期权来说,L 总是负值(总是借入资金)。 问题:导出复制看跌期权组合的计算公式。
• Risk-Neutral Probability
记: q R d
ud
1 q
C=∆S+L C = 1/R × (q × Cu + (1-q) × Cd) 如果q是股票价格上涨的概率,则看涨期权的价格是期权未来 价值的期望值的贴现值。 衍生证券的风险中性定价 如果每个人都是风险中性的,股票的期望收益率将等于无风险 收益率R. 在风险中性的世界中,股票上升的概率为q(注意 在实际中,股票上升的概率为p,投资者是风险厌恶的 ) 看涨期权的价格是期权未来价值的期望值的贴现值: C = 1/R × {q × Cu + (1-q) × Cd} 一般公式为: Derivative Price = EQ[(1/R)(T-t) × Payoff ] 此公式说明衍生证券的价格是其盈亏贴现值的期望值 (风险中 性的世界中)
1、实例
期权定价

第二章期权定价自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授 F. Black 和M. Scholes发表《期权定价与公司负债》一文,提出了着名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最着名的是1979年由J. Cox、S. Ross 和M. Rubinstein三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。
第一节二叉树与风险中性定价对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。
然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。
1979年,J. Cox、S. Ross和M. Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(the Binomial Model)”,是期权数值定价方法的一种。
二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。
同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。
二叉树模型概述二叉树(binomial tree)是指用来描述在期权存续期内股票价格变动的可能路径。
二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。
根据第一章我们学到的知识,不难得出: 3个月后,如果股票上涨至12元,则该股票期权的价格应为1元,如果股票下跌至8元,则该股票期权的价格应为0元。
这些可以通过下图的二叉树来表示。
图2-1现在我们来考虑建立一个无风险投资组合,这个投资组合由两部分组成:买入∆只该股票,同时卖出一份以该股票为标的的看涨期权,即同时持有∆只股票的多头头寸和一份看涨期权的空头头寸。
期权定价理论课件

除了金融资产,现实中还存在许多非金融资产,如房地产、艺术品等。将这些资产的价格和风险特性纳入期权定 价模型中,可以更好地服务于实物期权定价和风险管理。
运用计算机技术提高模型计算效率
采用更高效的算法
随着计算机技术的发展,可以采用更高效的算法来计算期 权价格,如蒙特卡洛模拟算法、有限元方法等。这些算法 可以更快地得到期权价格估计值。
、城市规划、自然资源开发等多个领域。
06
期权定价理论的发展趋势与展望
改进现有模型的局限性
01
引入更复杂的因素
随着金融市场的变化和经济的发展,期权定价理论需要引入更多的影响
因素,如宏观经济因素、市场情绪因素等,以更准确地预测期权价格。
02 03
完善假设条件
现有的期权定价模型通常基于一些假设条件,如无摩擦市场、完全竞争 等。为了更真实地反映市场情况,需要进一步放宽或修改这些假设条件 。
期权类型
按行权时间可分为欧式期 权和美式期权;按交易场 所可分为场内期权和场外 期权。
期权持有者权利
期权持有者具有在到期日 之前按照行权价买入或卖 出标的资产的权利。
期权定价模型的起源与发展
起源
期权定价模型最初由BlackScholes模型和二叉树模型两
种主要方法所主导。
发展历程
随着金融市场的不断发展和完善, 各种新型期权定价模型如随机波动 率模型、跳跃扩散模型等逐渐被引 入。
:P = (1 - e^(-rT)) / (1 + d) - K / (1 + d)^T, 其中P表示期权价格,r表示无风险利率,T表示时间步长,d表 示上涨与下跌的比率。 • 模型应用:基于二叉树模型的数字期权定价方法适用于美式期权和欧式期权的定价,具有较高的计算效率和适 用性。
期权的定价基本理论及特性

期权的定价基本理论及特性期权是一种金融衍生工具,它赋予持有者在未来某个时间点或期间内以约定价格买入或卖出某个资产的权利,而并非义务。
期权的定价理论是为了确定期权合理的市场价格。
以下是期权定价的基本理论及特性:1. 内在价值和时间价值:期权的价格由内在价值和时间价值组成。
内在价值是期权执行时的实际价值,即与标的资产市场价格的差额。
时间价值是期权存在期限内所具备的可能增值的价值,它会随时间的推移而减少。
2. 标的资产价格的波动性:期权的价格受标的资产价格的波动性影响。
波动性越高,期权价格越高,因为更大的价格波动可能会带来更大的利润机会。
3. 行权价:期权的行权价是购买或出售标的资产的协议价格。
购买期权的持有者希望标的资产价格高于行权价,而卖出期权的持有者希望标的资产价格低于行权价。
4. 期权到期时间:期权的到期时间是期权生效的时间段。
到期时间越长,期权价格越高,因为时间价值越高。
到期时间到达后,期权将失去其价值。
5. 利率:利率对期权的价格也有影响。
高利率会提高购买期权的成本,因为持有者必须支付为期较长时间的利息。
6. 杠杆作用:期权具有较高的杠杆作用。
购买期权相对于购买标的资产的成本较低,但潜在的利润也较高。
相比之下,期权卖方承担的潜在风险较高,但收入较低。
7. 期权类型:期权可以是看涨期权(认购期权)或看跌期权(认沽期权)。
看涨期权赋予持有者以在行权日购买标的资产的权利,而看跌期权赋予持有者以在行权日以行权价格卖出标的资产的权利。
总的来说,期权定价基于标的资产价格的波动性、行权价、期权到期时间、利率等因素。
同时,期权也具有杠杆作用和灵活性,可以用来进行投机或风险管理。
对于投资者来说,理解期权定价基本理论及特性对于正确选择和定价期权合约至关重要。
期权的定价理论及特性对于投资者和交易员而言非常重要,因为它们能够帮助他们进行科学合理的决策和风险管理。
下面将进一步探讨期权定价的相关内容。
期权定价的基本理论依赖于数学建模,最著名的理论之一就是布莱克-斯科尔斯模型(Black-Scholes Model)。
期权定价期权定价公式

期权定价—期权定价公式什么是期权定价?期权定价是指确定期权在市场上的合理价格的过程。
期权是一种金融工具,它授予买方在未来某一特定时间点购买或出售标的资产的权利,而不是义务。
期权的价格取决于多种因素,包括标的资产价格、行使价格、到期时间、无风险利率和波动率等。
期权定价的目标是确定一个公平的市场价格,使得买卖双方在交易中均获得合理回报。
对于买方来说,期权的价格应该对应于未来可能获得的收益;对于卖方来说,期权的价格应该对应于承担的风险以及可能获得的收益。
期权定价公式的重要性期权定价公式是用于计算期权合理价格的数学模型。
它基于一些假设和前提条件,通过对相关变量进行运算,得出期权的价格。
期权定价公式对于市场参与者来说具有重要意义,它为投资者提供了一个参考,可以帮助他们做出更明智的投资决策。
期权定价公式的提出可以追溯到20世纪70年代初,当时经济学家Fischer Black 和 Myron Scholes 提出了著名的Black-Scholes模型。
该模型基于一些假设,包括期权在到期前不支付股息、标的资产价格在特定时间内的变动是连续且满足几何布朗运动以及市场不存在无风险套利机会等。
Black-Scholes模型是第一个用于计算期权价格的理论模型,它提供了一个简单而有效的方法来评估期权的价格。
在此之后,许多其他的期权定价模型相继被提出,如Binomial模型、Trinomial模型、Monte Carlo模拟和Heston模型等。
这些模型都是基于不同的假设和计算方法,用于满足不同的情景和需求。
期权定价公式的基本要素期权定价公式通常包括以下几个基本要素:1.标的资产价格(S):标的资产是期权所关联的基础资产,它可以是股票、商品、外汇等。
标的资产价格是期权定价的一个重要变量,它代表了期权的内在价值。
2.行使价格(X):行使价格是期权合约约定的价格,买方可以在到期时基于该价格购买或者出售标的资产。
行使价格与标的资产价格之间的差异会影响期权的价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章期权定价自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授 F. Black和M. Scholes 发表《期权定价与公司负债》一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox、S. Ross和M. Rubinstein三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。
第一节二叉树与风险中性定价对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。
然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。
1979年,J. Cox、S. Ross和M. Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(the Binomial Model)”,是期权数值定价方法的一种。
二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。
同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。
1.1 二叉树模型概述二叉树(binomial tree)是指用来描述在期权存续期内股票价格变动的可能路径。
二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。
根据第一章我们学到的知识,不难得出:3个月后,如果股票上涨至12元,则该股票期权的价格应为1元,如果股票下跌至8元,则该股票期权的价格应为0元。
这些可以通过下图的二叉树来表示。
股票价格=12元期权价格=1元股票价格=10元期权价格=?股票价格=8元期权价格=0元图2-1现在我们来考虑建立一个无风险投资组合,这个投资组合由两部分组成:买入∆只该股票,同时卖出一份以该股票为标的的看涨期权,即同时持有∆只股票的多头头寸和一份看涨期权的空头头寸。
我们假设市场上不存在套利机会,因此我们总能找到一个∆,使得该投资组合是无风险组合。
我们接下来计算出使得该组合无风险的∆。
当股票价格由10元上涨为12元时,组合中股票头寸的价值为12∆,期权头寸的价值为-1元(我们持有的是空头头寸),该组合的整体价值则为12∆-1;当股票价格由10元下跌至8元时,组合中股票头寸的价值为8∆,期权头寸的价值为0,该组合的整体价值为8∆。
只有当该投资组合在上述两种情况下的终端价值相等时,该组合才是无风险组合。
即:12∆-1=8∆∆=0.25因此,该无风险投资组合是由0.25只股票的多头持仓和1份看涨期权的空头持仓所构成。
注意,在此我们假定了股票是无限可分割的,并且不存在佣金等交易税费。
无套利均衡定价是金融工程学中对金融工具进行定价的基本思路。
其基本做法是,构建两个资产组合,若令其终值(期末的价值)相等,则其现值(当前的价值)也一定相等;否则就将产生套利机会,即我们可以卖出现值较高的资产组合,买入现值较低的资产组合,并持有到期,套利者就可以获取无风险收益。
在上例中,如果股票价格上涨为12元,该组合价值为12×0.25-1=2 元如果股票价格下跌至8元,则该组合的价值为8×0.25=2 元由于该投资组合是无风险的,因此其收益率一定等于无风险收益率。
假设当前无风险收益率为4%,那么该组合的现值应为终值2元的贴现值;在此我们使用连续复利进行计算,即该组合的现值为4%3/122e -⨯=1.98 元假定期权当前的价格为f ,已知股票当前价格为10元,那么该交易组合的现值为10×0.25-f=2.5-f=1.98元 f=0.52 元因此,本例中看涨期权当前的价格应为0.52元。
1.2 推广——单步二叉树期权定价接下来,我们将上面例子得到的结论进行推广。
假定股票的当前价格为0S ,看涨期权当前的价格为f ,该期权的有效期为T ;在这段时间内,股票价格或者会从0S 上涨至0u S ,或者会从0S 下跌至0d S ,其中u>1,0<d<1;相对应地,期权价格为u f 或者d f 。
因此,若股票价格上涨,其涨幅为u-1;若股票价格下跌,其跌幅为1-d 。
如图2-2所示:图2-2与上面的例子相同,我们考虑构建一个由∆只股票的多头持仓和一份期权的空头持仓多组成的无风险投资组合。
若股票价格上涨,在期权到期时该组合的价值为u 0-uS f ∆若股票价格下跌,在期权到期时该组合的价值为d 0-dS f ∆令以上两式相等,即u 0-uS f ∆=d 0-dS f ∆可以求出00du dS -uS -f f =∆ (2.1) 由于投资组合是无风险的,其收益率必须等于无风险利率。
假定无风险利率为r ,那么该投资组合的贴现值为rT u e f uS --∆)(0而该组合的当前价值为f -S 0∆因此有f -S 0∆=rT u e f uS --∆)(0将式2-1中的∆带入并化简,即可求得期权的价格f 0S uf 0uSd f 0dS[]rT d u e f p pf f --+=)1( (2.2) 其中d -u de p rT -=- (2.3) 综上所述,当股票价格的变动路径可由一步二叉树给出时,我们可以用式2-2及式2-3对期权进行定价。
当然,用二叉树方法对期权进行定价是建立在一些基本假设上的,如不存在套利机会、不存在交易税费、股票是无限可分割的等。
1.3 风险中性定价现在我们将式2.2中的p 定义为股票价格上涨的概率,看看会得到什么意想不到的收获。
既然p 为股票价格上涨的概率,相应地,1-p 也就是股票价格下跌的概率;而(1)u d pf p f +-则为期权价格的数学期望,这样式2.2表达的意思就是:期权的价格等于其期望的贴现。
我们知道,T 时刻股票价格的期望为()00)1(dS p puS S E T -+=将式2-3中的p 代入后可得()rT T e S S E 0= (2.4) 上式说明:股票价格是按无风险利率增长。
这就是说,股票价格上涨的概率为p 的假设等价于股票的收益率为无风险利率。
在这里我们引入风险中性定价(risk-neutral valuation )的概念。
在一个风险中性世界(risk-neutral world )中,投资者对风险都秉持中性的态度,也就是说投资者对风险不要求任何形式的补偿,因而在这样的世界里,所有证券的期望收益率均等于无风险利率。
因此,式2.4同时说明:股票价格上涨的概率为p 的假设等价于世界为风险中性世界的假设,P 也被称为风险中性概率。
式2.2说明:在风险中性世界里,期权的价格等于其数学期望按无风险利率进行贴现所得数值。
这就是风险中性定价原理在期权定价领域的重要应用。
用上述思想来对资产进行定价就叫做风险中性定价。
首先,我们定义p为风险中性概率。
由于在风险中性世界里,股票的期望收益率等于无风险利率,这就意味着p必须要满足4%/312+epp=10)-8(112⨯计算可得p=0.525,1-p=0.475。
因而,3个月后,看涨期权价格为1的概率为0.525,价格为0的概率为0.475,期权价格的数学期望为0.525×1+0.475×0=0.525在风险中性世界中,期权的当前价格应等于其期望值以无风险利率进行贴现,因此期权的当前价格为4%3/120.525e-⨯,即0.52元。
这与前面的计算结果相同,说明用无套利均衡定价方法与风险中性定价方法计算所得到的结果是一致的。
事实上,我们可以证明,在对期权进行定价时可以放心地假设世界是风险中性的,由此得到的结果不仅在风险中性世界里是正确的,在现实世界也是成立的。
利用风险中性定价原理可以大大简化问题的分析。
因为在风险中性世界里,所有资产都要求同的收益率,即无风险利率;而且所有资产的定价都可以运用风险中性概率计算出未来收益的预期值,再以无风险利率贴现得到。
最后再将所得到结果放回到现实世界中,就获得了有实际意义的结果。
利用风险中性定价方法对金融资产进行定价,其核心环节是构造出风险中性概率。
第二节两步二叉树期权定价模型我们可以将以上单步二叉树的分析推广到如图2-3所示的两步二叉树情形。
图2-3在此,我们反复使用风险中性定价方法来对这个期权进行定价。
在下图中的各个节点,上面的数字代表股票价格,下面的数字代表期权价格。
10 0.9191280 14.4 3.4 9.6 0 6.40 A 1012814.49.66.4图2-4图2-4中最右边节点上的期权价格不难求出:在节点D ,股票的价格为()210 1+20%=14.4,期权价格则为14.4-11=3.4;在节点E 和F ,期权价格显然为0。
由于节点C 的价值来自于节点E 和F ,因此在节点C 上期权的价格为也0。
为求节点B 上的期权价格,我们将u=1.2,d=0.8,r=4%,和T=0.25代入式2-2,因此节点B 上的期权价格为768.104750.4.3525.012/3%4-=⨯+⨯⨯)(e我们的目的是要计算出节点A 上的期权价格。
我们现已知期权在节点B 上的价格为1.768,在节点C 上的价格为0,代入式2-2便可算出期权的初始价格为199.004750.687.1525.012/3%4-=⨯+⨯⨯)(e假定无风险利率为r ,股票的初始价格为0S ,二叉树的步长为T ,看涨期权的初始价格为f ,该期权的有效期为2T ;在二叉树的每一步,股票价格或者上涨至初始价格的u 倍,或者下跌至初始价格的d 倍,其中u>1,0<d<1。
根据上面的分析过程,我们很容易得出两步二叉树期权定价模型的一般公式,如图2-5所示:图2-5通过反复应用式2.2,我们不难得出:f 0S uf 0uSd f dS uu f 02S u ud f 0udS dd f 02S d A[]rT ud uu u e f p pf f --+=)1( (2.5) []rT dd ud d e f p pf f --+=)1( (2.6) []rT d u e f p pf f --+=)1( (2.7) 将式2-5、式2-6代入式2-7,我们得到:[]rT dd ud uu e f p f p p f p f 222)1()1(2--+-+= (2.8) 式2.8完全可以用中性定价理论进行解释。
式中2p 、2(1)p p -、2(1)p -分别对应于股票价格取上、中、下三个节点上值的概率,期权价格仍然等于其在风险中性世界里的期望收益以无风险利率进行贴现所得数值。