单自由度系统的有阻尼自由振动
单自由度振动系统

单自由度振动系统m质量,k刚度,c阻尼,有时有p激振力单自由度振动系统,指用一个独立参量便可确定系统位置的振动系统。
只要以它的平衡位置取为坐标原点,任一瞬时的质点坐标x(线位移)或 (角位移)就可以决定振动质点的瞬时位置。
根据牛顿定律:mx+cx+kx=F1.单自由度系统无阻尼自由振动mx+kx=0;x+kmx=0;令w m2=k/m,求微分方程的解,得x=c1e iw n t+c2e−iw n t=c1+c2cosw n t+i c1−c2sinw n t=b1cosw n t+b2sinw n t将其合成一个简谐振动,并代入初始条件:t=0时,x=x0,x=x0x=Asin(w n t+φ); A=x2+x02w n2; φ=tg−1x0w nx01.1固有频率系统的圆频率和频率只与系统本身的物理性质(弹性和惯性)有关,因此当振动系统的结构确定后,系统的振动频率就固定不变,而不管运动的初始条件如何,也和振幅的大小无关,因此成为固有圆频率和固有频率。
w n=km ;f n=12πkm1.2固有频率计算方法1)公式法。
根据公式w n=km计算2)静变形法。
根据质量块所处平衡位置的弹簧变形计算。
3)能量法。
根据能量守恒定律,由于无阻尼,无能量损失,12mx2+12kx2=E,将x的方程代入上式,系统的最大动能等于系统的最大弹性势能,计算求出。
4)瑞利法。
考虑到系统弹簧质量的计算方法,如假设系统的静态变形曲线作为假定的振动形式,根据推倒,得出系统的固有频率为w n=km+ρl3,式中加入的部分为“弹簧等效质量”不同振动系统的等效质量不同,只需先算出弹性元件的动能,根据T s =12m s x 2,计算即可。
1.3扭转振动根据扭转运动的牛顿定律 M =I θ,M 为施加到转动物体上的力矩,I 转动物体对于转动轴的转动惯量,θ角加速度。
圆盘转动惯量为I ,轴的转动刚度为kθ。
系统受到干扰后做扭转自由振动,振动时圆盘上受到一个由圆轴作用的与θ方向相反的弹性恢复力矩-K θθ。
结构力学课件之单自由度体系的振动

2.2 单自由度体系的强迫振动
单自由度体系的强迫振动的微分方程: y m ky P(t) y k P(t) 2 P(t) y 可写成: y m y 2. 当荷载为简谐荷载时: P(t) F sin t 2 m P(t) ky y F sin t y m 3. 微分方程的解为: m y m受力图 y F 2 1 2 (sint sin t) yst (sint sin t) m 1 2 1 2 为动力系数。 F yst 2 为静荷载F作用下的振幅。 1 2 m 时,振幅会趋近于无穷大,这种现象叫共振。
tg
1
y0 0 v
2.1 单自由度体系的自由振动
三、结构的自振周期 y 从微分方程的解: (t) a sin(t ) 知位移是周期函数; 自振周期T:振动一周需要的时间; T 2 2 m 2 m k 自振频率f:单位时间的振动次数; f 1 T 2 圆频率或角频率:2 时间内的振动次数; 2 2 2f k 1 T m m 自振周期的性质:
2 k EI 2 2 4 3 4 48EI 2 1 48EIg k 1 3 m m m Ql
11 5
EI
0.5l
1 EI
0.5l
0.25l 2n 2 500 52.36 / s 2. 荷载频率: 60 60 M 1 1 2 2 5.93 3. 动力系数: 为动力位移和动力应 52.36
1. 自振周期仅与结构的质量和刚度有关;与外界的干扰力无关。 2. 质量越大,周期越大; 刚度越大,周期越小。 3. 自振周期是结构动力性能的一个重要指标。
例1:图示等截面竖直悬臂杆,长度为l,截面面积为A,惯性矩 为I,弹性模量为E。杆顶重物的质量为m。杆的质量忽略不 计,试分别计算水平振动和竖向振动的自振周期。 解:解题的依据 T 2 2 m 2 m m k
17-3 单自由度系统的有阻尼自由振动

振动微分方程
下面建立具有粘性阻尼系统的自由振动微分方程。
以平衡位置O为坐标原点,建立系统振动微分方程可不计重力
振动过程中作用在物块上的力有:
(1) 恢复力Fk,方向指向平衡位置O
大小: Fk = −kx
(2)粘性阻尼力Fc,方向与速度方向相反
大小:
Fc
=
−cvx
=
−c
dx dt
物块振动微分方程:
m
设振动质点的速度为v,则粘性阻尼的阻力FC 可表示为:
F
=
−cv
负号表示方向
比例常数c 称为粘性阻尼系数
振动系统中存在粘性阻尼时,经常用阻尼元件c 表示。
一般的机械振动系统都可以简化为: 由惯性元件(m) 弹性元件(k) 阻尼元件(c)组成的系统。
kc m
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
经过一个周期Td,系统到达另一个比前者略小的最大偏离值Ai+1
Ai+1 = Aen(ti +Td )
两相邻振幅之比为:
Ai Ai+1
=
Aenti Aen(ti +Td )
= enTd
这个比值称振幅减缩率。任意两相邻振幅之比为一常数,故
衰减振动的振幅呈几何级数减小,很快趋近于零。
分析表明:小阻尼情况下,阻尼对自由振动的频率影响较小,但 对自由振动的振幅影响较大,使振幅呈几何级数下降。
ωd =ωn 1−ζ 2
fd = f 1−ζ 2
表明:由于阻尼的存在,使系统自由振动的周期增大,频率减小。
空气中的振动系统阻尼比较小,可认为:
ωd =ωn , Td =T
由衰减振动运动规律:
单自由度系统的有阻尼自由振动

0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18
理论力学 第十章振动

k2
k1
δ st
r F1
k eq = k1 + k 2
δ st r
r mg
keq k1 + k 2 = m m
m
r F2
mg = k eqδ st
keq称为等效弹簧刚性系数 并联系统的固有频率为
mg k2
ωn =
当两个弹簧并联时,其等效弹簧刚度等于两个弹簧刚度的和。 这一结论也可以推广到多个弹簧并联的情形。
O
δ st
x
r F r P
则解为:
x = A sin(ω nt + θ )
表明:无阻尼自由振动是简谐振动。 其运动图线为:
x
A
x
x0
θ ωn
O
t
t+T
x
2.无阻尼自由振动的特点 无阻尼自由振动的特点
(1)固有频率 )
无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时t, 无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时 ,其 运动规律x(t)总可以写为: 运动规律 ( )总可以写为: x(t)= x(t+T) () ( ) T为常数,称为周期,单位符号为s。 为常数, 周期, 符号为 为常数 称为周期 单位符号 。 这种振动经过时间T后又重复原来的运动 后又重复原来的运动。 这种振动经过时间 后又重复原来的运动。 考虑无阻尼自由振动微分方程 考虑无阻尼自由振动微分方程
r F r P
x
两个根为: r1 = +iω n 方程解表示为:
r2 = −iω n
x = C1 cos ω nt + C2 sin ω nt
x = C1 cos ω nt + C2 sin ω nt
单自由度振动系统固有频率及阻尼的测定-实验报告

4、根据相频特性的测试数据,在同一图上绘出几条相位差频率( 特性曲线,由此分析阻尼的影响并计算系统的固有频率及阻尼比。
5、根据实验现象和绘制的幅频、相频特性曲线,试分析对于不同阻尼的振动系统,几种固有频率和阻尼比测量方法的优劣以及原因。
首先,在水平振动台面上不加任何重物,测量系统在自由衰减振动时的固有频率;之后在水平振动台面上放置一个质量已知的砝码,再次测量系统在自由振动时的固有频率。记录两次测得的固有频率,并根据其估算水平振动台面的等效质量。
4、测定自由衰减振动特性:
撤去水平振动台面上的砝码,调整励磁电流至0.6A。继续使用“自由衰减记录”功能进行测试。操作方法与步骤3基本相同,但需按照数据记录表的提示记录衰减振动的峰值、对应时间和周期数i等数据,以计算系统的阻尼。
假设实验使用的单自由度振动系统中,水平振动台面的等效质量为 ,系统的等效刚度为 ,在无阻尼或阻尼很小时,系统自由振动频率可以写作 。这一频率容易通过实验的方式测得,我们将其记作 ;此时在水平振动台面上加一个已知质量 ,测得新系统的自由振动频率为 。则水平振动台面的等效质量为 可以通过以下关系得到: 。
、 的意义同拾振器。但对激振器说, 的值表示单位电流产生的激振力大小,称为力常数,由厂家提供。JZ-1的力常数约为5N/A。频率可变的简谐电流由信号发生器和功率放大器提供。
4、计算机虚拟设备:
在计算机内部,插有A/D、D/A接口板。按照单自由系统按测试要求,进行专门编程,完成模拟信号输入、显示、信号分析和处理等功能。
6、教师签名的原始数据表附在实验报告最后,原始数据记录纸在实验课上提供,必须每人交一份,可以采用复印、拍照打印等方式进行复制。原始数据上要写清所有人的姓名学号,不得使用铅笔记录。
第一章(单自由度系统的振动)
单自由度系统的振动方程
c
k
m
s k
c
o
u
m
u
f (t)
mu(t) k[u(t) s ] cu(t) mg f (t)
k (u s ) cu
m
mg
f (t)
mg k s
mu(t) cu(t) k u(t) f (t)(单自由度系统振动方程的一般形式)
结论:只要以系统静平衡位置为坐标原点,那么在列写系统运动方程 时就可以不考虑系统重力的作用。
问题2
k1
k2
k3
m
k4
k1 k3
k2
√
k4
问题2
k1
k2
k3
m
k4
k1
k3
k2
╳
k4 k1
k3
k2
m
k4
问题3
无质量弹性杆
刚性杆
k
m
等效
k
m
F
k F /
第一章:单自由度系统的振动
第二讲:
无阻尼单自由度系统的自由振动
•正确理解固有频率的概念 •会求单自由度无阻尼系统的固有频率
无阻尼单自由度系统的自由振动
4
o 势能:V mg(R r)(1 cos ) 1 mg(R r) 2
2
R
m 简谐运动: max sin(nt )
B
rC
Tmax
3m 4
(
R
r
)2
(n
max
)
2
A
D
mg
Vmax
1 2
mg
(
R
r
)m2 ax
Tmax Vmax
单自由度系统自由振动
取物块的静平衡位置为坐标原点 O , x 轴顺弹簧 变形方向铅直向下为正。当物块在静平衡位置 时,由平衡条件,得到
mg k st
弹簧的静变形
当物块偏离平衡位置为x距离时,物块的运动微 分方程为
mx mg k ( st x)
mx kx
k 固有圆频率 令 : 0 m 无阻尼自由振动微分方程 2018年9 月4日
周期 T 2
0
; 则
1 0 2 2f T
f 称为振动的频率,表示每秒钟振动的次数,单位为1/s或Hz
0 称为固有角(圆)频率(固有频率),表示每2秒内振动
2018年9月4日 《振动力学》
的次数,单位为rad/s,只与系统的质量m和刚度系数k有关。
8
1.单自由度系统自由振动-无阻尼自由振动
统固有的物理参数,称为固有频率,振幅取决 于初始扰动的大小。阻尼振动的固有频率小于 无阻尼情形。临界阻尼和大阻尼条件下的系统 作非往复的衰减运动。
2018年9月4日 《振动力学》
3
单自由度系统自由振动
教学内容
• 无阻尼自由振动 • 能量法 • 等效质量和等效刚度 • 阻尼自由振动
2018年9月4日 《振动力学》
c1 A sin ,
c2 A cos
x t A sin 0 t
2018年9月4日 《振动力学》
无阻尼自由振动是简谐振动.
7
1.单自由度系统自由振动-无阻尼自由振动
1.2 无阻尼自由振动的特点
(1)固有频率
无阻尼自由振动是简谐振动,是一种周期振动
0 ( t T ) 0t 2
振动不能维持等幅而趋于衰减,称为有阻尼自由
第三讲单自由度系统的振动(阻尼)解读
nt i
两端取自然对数得 其中
ln ln e nTd
nT
δ称为对数减缩系数
Td
2
0 1 2
c 0 2 m k
n
对数减缩率δ与阻尼比ζ之间的关系为:
n
2
0 1
2
2 1
2
2
( 2<<1 )
上式表明:对数减缩率δ与阻尼比ζ之间只差2π倍,δ也是反映阻尼
x
这种振动的 振 幅 是 随 时 间 A x0 不断衰减的, 称为衰减振动。 衰减振动的运 动图线如图所 示。 d
Ae nt
衰减曲线的包络线
A1
A2
A3
t
Td
x
由衰减振动的表达式:
Ae
A x0
nt
x Ae
nt
sin(d t )
A1
A2
A3
这种振动不符合周期振 动 f (t ) f (t nT ) 的定
机械振动学
2.1.2.单自由度系统的有阻尼自由振动
1.阻尼
上节所研究的振动是不受阻力作用的,振动的振幅是不随
时间改变的,振动过程将无限地进行下去。
实际中的振动系统由于存在阻力,而不断消耗着振动的能 量,使振幅不断地减小,直到最后振动停止。 振动过程中的阻力习惯上称为阻尼。 阻尼类型: 1)介质阻尼; 2)结构阻尼; 3)库仑阻尼
ωd =ω0 , Td =T
阻尼对振幅的影响
nt 2 2 x Ae sin( n t ) 由衰减振动运动规律: 0
Ae-nt相当于振幅
设在某瞬时ti,振动达到的最大偏离值为Ai有: 经过一个周期 Td ,系统到达另一个 比前者略小的最大偏离值Ai+1
0723第二章单自由度振动系统(讲)
第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。
(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。
此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。
[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。
[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。
忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。
把它们看成是只有惯性而无弹性的集中质点。
于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。
在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。
阻尼器由一个油缸和活塞、油液组成。
汽车轮悬置系统等等。
[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。
所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。
以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。
在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。
有时在振动系统中还作用有一个持续作用的激振力P。
应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。
(牛顿运动定律) (达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零)(动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
e nTd
对数减缩率
ln
Ai Ai 1
ln enTd
nTd
因为:
Td
n
2 1 2
2 2 1 2
9
2、临界阻尼情形 (n n , 1 )
临界阻尼系数 cc 2 mk
1,s wn 是二重根
通解为:
x(t) ewnt (c1 c2t)
设 t 0 时, x x0 , x x0 , 则
mx kx cx mx kx cx 0
令
n2
k m
,
n
c 2m
则 x 2nx n2x 0
此即为有阻尼自由振动微分方程的标准形式。
其中n为衰减系数,单位为1/s,wn为无阻尼的固有频率
3
进一步令:
n / wn
2
C mk
C 2mwn
称为相对阻尼系数
x 2wnx wn2x 0
为了求解,令:
x est
s1, s2 wn wn 2 1
xent (C1e n2n2 t C2e ) n2n2 t
代入初始条件 (t 0时 , x x0 , x x0 )
C1
x0 (n
n
2
2 n
2
n
2
2 n
)
x0
;
C2
(
n
2
n
2
2 n
)
x0
n
2
2 n
x0
所示规律已不是周期性的了,随时间的增长,x 0,
不具备振动特性。
设 t 0 时, x x0 , x x0 , 则
A
x02
(
x0 nx0 )
n2 n2
2
;
tg
1
x0 n2 n
x0 nx0
2
6
衰减振动的特点:
(1) 振动周期变大,
频率减小。
Td
2 d
2 n2 n2
2 n 1 2
n c n 2 mk
有阻尼自由振动:
——阻尼比
Td
T
1 2
fd f 1 2
通解为 x(t) ewnt (c1 cos wdt c2 sin wdt)
设 t 0 时, x x0 , x x0 , 则
x(t)
ewnt ( x0
cos wdt
x0 wn x0
wd
sin
wd t )
5
也可写成
x Ae nt sin(d t )
d n2 n2 —有阻尼自由振动的圆频率
s2 2wns wn2 0
它的两个根为:
s1, s2 wn wn 2 1
4
其通解分三种情况讨论:
1、小阻尼情形 1 (n n) c 2 mk
s1, s2 wn wn 2 1
s1,s2为共轭复数,可写为
s1, s2 wn iwd
d n2 n2 —有阻尼的自由振动频率,阻尼固有频率
t [x0 ( x0 nx0 )t]
(t 0时 , x x0 , x x0 )
10
(2)临界尼情况( 1)
1.0
0.5
u a 0.0
-0.5
e-nt -te-nt
=1.0
F1 F2 F3
-1.0 0
2
4
t
n
可见,物体的运动随时间的增长而无限地趋向平 衡位置,不再具备振动的特性。
11
3、过阻尼(大阻尼)情形 (n n , 1 ) (c cc ) 有两个不等的实根,s1与s2是两个不等的实根
d n 1 2
当 n n 时, 1
可以认为
d n Td T
7
小(欠)阻尼情况(0 1)
1.0 0.5
u a 0.0
-0.5 -1.0
0
e-nt asinj
=0.1
- t
-e n
2
4
6
t
n
8 10
F1 F2 F3
8
(2) 振幅按几何级数衰减
相邻两次振幅之比
Ai Ai1
Ae nti Aen(ti Td
14
振幅的影响:
为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Ai1
Aewnti Aewnti td
ewntd
阻尼比越大,减幅系数越大,表明衰减的越快,如为 5%时,为1.37, 每一周期为1/1.37=0.73,每一周期内振 幅减小27%,可见对振幅影响很大。
15
例3 质量弹簧系统,W=150N,st=1cm , A1=0.8cm,
A21=0.16cm。 求阻尼系数c 。
解:
A1 A1 A2 A20 (enTd )20 A21 A2 A3 A21
0.8 (e nTd )20 0.16
ln520
nTd
20 n 2 n 1 2
由于 很小,ln540
c 2
mk
ln5
40
2
W g
Wst
ln5
40
2
1502 1980
0.122(Ns/cm)
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t)
ewnt ( x0
cos wdt
x0 wn x0
wd
sin
wd t )
18
19
20
Td
2
wd
wn
§3 单自由度系统的有阻尼自由振动
一、阻尼的概念: 实际系统的机械能不可能守恒,因为总存在各种 阻力。 阻尼:振动过程中,系统所受的阻力。 摩擦阻尼,电磁阻尼,介质阻尼(如空气、水) 及结构阻尼((也称迟滞阻尼Hysteresis Damping):当 材料处于交变应力状态时,由于内部的能量耗散 (材料内阻)而呈现的阻尼特性,结构阻尼力大 小与位移成正比, 方向与速度相反)
12
(1)过阻尼情况( 1)
13
由上可见,阻尼的存在对自由振动的影响表现在两方面, 一是使振动频率发生变化,另一是使振幅衰减。
频率的影响:
记Tn为相应的无阻尼的振动同期,有阻尼时的振动周期为:
Td
2
wd
wn
2 1 2
Tn
1 2
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
1
§3 单自由度系统的有阻尼自由振动
粘性阻尼:在很多情况下,振体速度不大时, 由于介质粘性引起的阻尼认为阻力与速度的 一次方成正比,这种阻尼称为粘性阻尼。
R cv
式中:
R cx
R —— 粘性阻尼力 v —— 相对速度 c —— 粘性阻尼系数,简称阻尼系数。
2
二、有阻尼自由振动微分方程及其解: 质量—弹簧系统存在粘性阻尼:
2 1 2
Tn
1 2
21
22