《点集拓扑讲义》第六章 分离性公理 学习笔记
第六章 分离性公理

H
10
6.3 Urysohn引理和 Tietze扩张定理(2)
定理6.3.4(Tietze扩张定理) X是正规空间对X的任一闭集A及连续映射f: A[a, b], 存在连续映射g: X[a, b]是f的扩张, 即g|A=f.
定理
6.3.1
fAB来自g定理f
6.3.4
H
11
6.4 完全正则空间, Tychonoff空间
证 设X是正则空间, YX. yY及不含y的闭集B, X的闭集 B*使B*∩Y=B, 那么yB*, X中不交开集U*, V*使yU*且B*V*, 从而yU*∩Y, B=B*∩YV*∩Y.
三、T0T3.5、正则、完全正则是有限可积性质, T4、正规不是有 限可积的
H
16
6.5 分离性公理与 子空间、积空间和商空间(3)
6.5 分离性公理与 子空间、积空间和商空间(4)
本节习题3表明: 实数下限拓扑空间Rl是T4空间, 但是Rl2不是正规空间. 有例子说明, 分离性都不是可商性质. 例3.3.1表明, 存在商映射q: RR/~使R/~是由两点组成的平庸空间. R具有下述介绍的所有分离性质, 但是R/~不是T0空间. 因此, 分离公理Ti 不是可商性质.
定 理 6.2.2 X 是 正 规 空 间 对 X 的 闭 集 A 及 A 的 开 邻 域U, 存 在 开 集 V 使 AVVU.
与定理6.2.1的证明类似.
例6.2.1 正则+正规 T0.
令X={1, 2, 3}, T={, {1}, {2, 3}, X}, 则(X, T)是拓扑空间. 由于X的开集也是闭集, 所以X是正则, 正规空间. 由两点2, 3可见, X不是T0空间.
在T1空间中, 定理6.1.5可以不成立. 如对例6.1.1中的空间X, X中的任一由两两不同 点构成的序列{xi}收敛于任意xX. 事实上, 设U是x的开邻域, 则U是有限集, nZ+, 使 当i>n时有xiU, 所以xix.
《拓扑学》教学大纲

拓扑学课程教学大纲【课程编码】JSZX0500【适用专业】数学与应用数学【课时】54课时【学分】3学分【课程性质、目标和要求】本课程是数学与应用数学专业的一门专业课。
它系统而完整地介绍了点集拓扑学的一些基本概念、基本理论和基本方法。
其主要任务是使学生获得拓扑学的基本思想与拓扑空间、连续映射、连通性、可数性、分离性、紧致性等方面的系统知识。
它既能从较高的观点总结一、二年级学过的有关概念、理论和方法,又能使学生抽象思维能力和逻辑论证能力得到进一步训练,为今后深入学习拓扑、几何、泛函等学科提供基础。
通过学习本课程,使学生理解拓扑学的一些基本概念,掌握拓扑学的基本理论和基本方法,并能运用这些基本概念、基本理论和基本方法解决拓扑学中的相关问题。
从而,有助于培养学生辨证唯物主义基本观点与学生抽象思维能力。
【教学时间安排】本课程计3学分,54学时, 学时分配如下:【教学内容要点】第一章集合论初步一、学习目的要求本章属预备知识,集合的概念与运算已经在数学分析课程中学过了,建议由学生自学。
关系与等价关系、映射、集族及其运算作为重点掌握的内容。
通过本章的学习,使学生正确理解关系与等价关系、映射、集族等基本概念,掌握单射、满射、一一映射的等价刻画及集族的基本运算,了解Cantor-Bernstein 定理、连续统假设及广义连续统假设。
二、主要教学内容1、集合的基本概念;2、集合的基本运算;3、关系;4、等价关系5、映射;6、集族及其运算;7、可数集,不可数集,基数;8、选择公理。
第二章拓扑空间与连续映射一、学习目的要求本章属于拓扑学的重要内容,通过本章的学习,使学生理解度量空间的概念,由度量导出的球邻域、开集,闭集、收敛性等概念,度量空间之间的连续映射概念及其等价描述;掌握拓扑空间的定义,由拓扑导出的邻域与邻域系,集合的聚点与闭包,内部与边界等概念,这些概念之间的联系;正确理解拓扑空间的基,以邻域系为基生成拓扑的方法,由闭包公理生成拓扑,子基概念及由子基生成拓扑的方法;拓扑空间的映射的连续性及其等价描述,同胚映射及同胚的概念。
拓扑学分离公理

拓扑学分离公理全文共四篇示例,供读者参考第一篇示例:拓扑学是数学中的一个重要分支,研究的是空间结构的性质和性质之间的关系。
拓扑学分离公理是拓扑学中的一个重要概念。
分离公理是描述点集在拓扑空间中的分离情况的一组性质。
这些性质刻画了拓扑空间中的点之间的相对位置关系,使得我们能够更好地理解拓扑空间的性质和结构。
拓扑学分离公理分为几种不同的类型,包括T0分离公理、T1分离公理、T2分离公理等。
这些公理描述了不同程度上的点集分离性质,是拓扑学中的基本概念和定理。
下面我们将介绍这些分离公理及其性质。
T0分离公理是拓扑学中最基本的分离公理,它要求拓扑空间中的任意两个不同的点都有一个开集包含其中一个点但不包含另一个点。
换句话说,对于任意两个不同的点x和y,在x点的邻域U中必然包含y或y的邻域V中必然包含x。
这个性质刻画了拓扑空间中点的局部特征,指出了不同点之间的局部关系。
T2分离公理又称为海涅-比雷尔分离公理,它是比T1更强的分离公理。
T2分离公理要求对于任意两个不同的点x和y,存在开集U包含x但不包含y,以及开集V包含y但不包含x,并且U和V是不相交的。
换句话说,T2分离公理要求拓扑空间中的任意两个不同的点都可以被不相交的开集分离出来,强调了点与点之间的完全分离性。
除了上述的三种分离公理外,拓扑学中还有其他分离公理,如T3分离公理、T4分离公理等。
这些分离公理为我们研究拓扑空间提供了重要的工具和方法,帮助我们理解和分析拓扑空间的性质和结构。
在实际应用中,拓扑学分离公理被广泛应用于各个领域,比如几何学、物理学、工程学等。
通过分析拓扑空间中点的分离性质,我们可以更好地研究空间的结构和性质,为实际问题的解决提供有力的支持。
拓扑学分离公理具有重要的理论和应用价值,对于提高我们对空间结构的理解和认识起着重要的作用。
第二篇示例:拓扑学是数学中的一个分支,研究空间的性质和结构的学科。
在拓扑学中,最基本的概念之一就是拓扑空间。
《点集拓扑学》章§.紧致性与分离性公理

§ 7.2 紧致性与分离性公理本节重点:掌握紧致空间中各分离性公理的关系;掌握Hausdoff 空间中紧致子集的性质在本节中我们把第六章中研究的诸分离性公理和紧致性放在一起进行考察、我们将会发 现在紧致空间中分离性公理变得十分简单了. 此外在本节的后半部分,我们给出从紧致空间到Hausdoff 空间的连续映射的一个十分重要的性质.资料个人收集整理,勿做商业用途 定理7.2.1 设X 是一个Hausdoff 空间•如果A 是X 的一个不包含点x €X 的紧 致子集,则点x 和紧致子集A 分别有开邻域U 和V 使得 U Q V 〜. 资料个人收集整理,勿做商 业用途证明 设A 是一个紧致子集,x € 匸.对于每一个 y € A ,由于X 是一个Hausdoff 空间,故存在x 的一个开邻域八和y 的一个开邻域一「「一】集族{\|y € A }明显是紧致子集 A 的一个开覆盖,它有一个有限子族,设为 { ' :「’ X - I I'. },覆盖A .令■-1 ",它们分别是点x 和集合A 的开邻域.此外,由于对于每一个所以推论7.2.2 Hausdorff 空间中的每一个紧致子集都是闭集.证明 设A 是Hausdoff 空间X 的一个紧致子集.对于任何 x € X ,如果x :二A ,则根据 定理7.2.1可见x 不是A 的凝聚点.因此凡 A 的凝聚点都在 A 中,从而A 是一个闭集.资料 个人收集整理,勿做商业用途推论7.2.2 结合定理7.1.5可见:推论7.2.3 在一个紧致的Hausdoff 空间中,一个集合是闭集的充分必要条件是它是一个紧致子集.资料个人收集整理,勿做商业用途为了加强读者对定理 7.1.5 ,推论722和推论723中的几个简单而常用的结论的印象,重新简明地列举如下: 资料个人收集整理,勿做商业用途紧致空间:闭集 紧致子集i=1,2,…,n 有:资料个人收集整理,勿做商业用途Hausdorff 空间:闭集一紧致子集紧致的hausdo市空间:闭集二:紧致子集推论7.2.4 每一个紧致的Haudorff空间都是正则空间.证明设A是紧致的Hausdorff空间X的一个闭子集,x是X中的一个不属于集合A的点•由于紧致空间中的闭子集是紧致的(参见定理7.1.5 ),所以A是一个紧致子集•又根据定理7.2.1,点x和集合A分别有开邻域U和V使得UQ g;.这就证明了X是一个正则空间.资料个人收集整理,勿做商业用途定理7.2.5 设X是一个Hausdorff空间.如果A和B是X的两个无交的紧致子集,则它们分别有开邻域U和V使得U Q V。
点集拓扑讲义知识点总结

点集拓扑讲义知识点总结一、拓扑空间基本概念1.1 集合和拓扑空间在点集拓扑学中,最基本的两个概念就是集合和拓扑空间。
集合是元素的无序集合,而拓扑空间是一个集合,其中定义了一种称为拓扑结构的特定结构。
这个结构用来描述集合中元素的“接近”或“相邻”的概念。
1.2 拓扑结构拓扑结构定义了哪些子集被认为是开集,从而为集合赋予了拓扑性质。
具体来说,给定一个集合X,如果满足以下条件:(1)空集和X本身是开集;(2)任意开集的任意并集仍然是开集;(3)有限个开集的任意交集仍然是开集。
那么这个集合X连同其定义的拓扑结构称为一个拓扑空间。
1.3 开集和闭集在拓扑空间中,开集和闭集是两个非常重要的概念。
开集是指每个点都包含在集合内部的集合,闭集则是指包含了其边界的集合。
开集和闭集的性质和运算是拓扑学中的基础。
1.4 拓扑空间的连通性拓扑空间的连通性描述了空间内部的连通性质,一个拓扑空间如果不是两个不相交开集的并,则称为连通的。
连通性质是描述空间整体结构的一种重要方式。
二、拓扑空间的结构和性质2.1 度量空间和拓扑空间度量空间是一种拥有度量的拓扑空间,度量是一种满足一系列性质的函数,用来度量空间中两点之间的距离。
度量空间可以定义一种称为度量拓扑的拓扑结构,这种拓扑结构给出了空间中点的“接近”概念。
2.2 Hausdorff空间Hausdorff空间是指任意两个不同的点都存在不相交的邻域的拓扑空间。
这种空间具有较强的分离性质,能够更好地描述空间中点的位置关系。
2.3 紧空间在拓扑学中,紧空间是指任何开覆盖都存在有限子覆盖的空间。
紧空间具有重要的性质,例如有限覆盖性质和闭性性质,这些性质在分析和拓扑学的研究中有着重要的应用。
2.4 连通空间连通空间是指空间中不存在非空且既开又闭的子集的空间。
换句话说,连通空间是指空间中的点在拓扑上是连续的,没有间断。
这是拓扑空间中另一个极为重要的性质。
2.5 分离性和局部性在拓扑学中,还存在一些描述拓扑空间性质的分离性和局部性定理,包括T0空间、T1空间、T2空间等概念。
《点集拓扑学》第6章 §65 分离性公理与子空间,(有限)积.

§6.5分离性公理与子空间,(有限)积空间和商空间本节重点:掌握各分离性公理是否是连续映射所能保持的性质,是否是可遗传的,可积的.本书正文中提到的所有的分离性公理有(即Hausdorff),(即Tychonoff),以及正则和正规等,它们都是经由开集或者经由通过开集定义的概念来陈述的,所以它们必然都会是拓扑不变性质.但是我们还是愿意完全形式地作一番验证,但只是以一种情形为例.其它的请读者自己去作.定理6.5.1 设X和Y是两个同胚的拓扑空间.如果X是一个完全正则的空间,则Y也是一个完全正则的空间.证明设h:X→Y是一个同胚.对于Y中的任意一个点和任何一个不包含点x的闭集B,(x)和(B)分别是X中的一个点和一个不包含点(x)的闭集.由于X是一个完全正则空间,故存在一个连续映射f: X→[0,1]使得f((x))=0和对于任何y∈(B)有f(y)=l.于是连续映射g=f:Y→[0,1],满足条件:g(x)=0和对于任何z∈B有g(z)=1.(即Hausdorff),(即Tychonoff),以及正则都是可遗传的性质.我们也只是举一例证明之,其余的留给读者自己去作.习题第1题中的结论表明正规和对于闭子空间是可遗传的性质.定理6.5.2 正则空间的每一个子空间都是正则空间.证明设X是一个正则空间,Y是X的一个子空间,设y∈Y和B是Y的一个闭集使得yB.首先,在X中有一个闭集使得∩Y=B.因此.由于X是一个正则空间,所以y和分别在X中有开邻域(对于拓扑空间X而言)使得.令,它们分别是y和B在子空间Y中开邻域,此外易见.(即Hausdorff),(即Tychonoff),以及正则都是有限可积性质,证明(略)正规和不是有限可积性质.至于本书正文中提到的所有分离性公理都不是可商性质这个结论,可以通过适当的反例来指出.例6.5.1 由于实数空间R是一个度量空间,所以它满足本书正文中提到的所有分离性公理.在实数空间R中给出一个等价关系~使得对于任意x,y∈R,x~y的充分必要条件是或者x,y∈(-∞,0];或者x,y∈(0,1);或者x,y∈[1,∞).将所得到的商空间记为Y.换言之,Y便是在实数空间中分别将集合A=(-∞,0],B=(0,l)和C=[1,∞)各粘合为一个点所得到的拓扑空间.事实上Y={A,B,C}.容易验证Y的拓扑便是{,{A,B},{B},{B,C},{A,B,C}}.考察点A和点B可见,Y不是空间,因此也不是(即Hausdorff),(即Tychonoff),以及空间.此外,考察两个单点闭集{A}和{C}可见,Y既不是正则空间也不是正规空间.此外容易验证Y是一个空间.上述例子尚没有说明不是可商性质.事实上例3.3.1中所给出的实数空间R的那个商空间是包含着两个点的平庸空间,当然也就不是空间了.然而例3.3.1并不能代替例6.5.1,因为平庸空间既是正则空间,也是正规空间.作业:P175 1.。
点集拓扑讲义

连通性和道路连通性
连通性的定义:如果点集中的任意两点都可以通过点集中的一条路径相连则称该点集是连通的。
道路连通性的定义:如果存在一条路径使得点集中任意两点都可以通过这条路径相连则称该点集是道路连通的。
连通性与道路连通性的关系:如果一个点集是连通的那么它一定是道路连通的;反之则不一定成立。
连通性和道路连通性的应用:在几何学、图论等领域中连通性和道路连通性是重要的概念对于研究点集的拓扑性 质和结构具有重要意义。
定理和性质的应用
定理和性质在数学领域中 的应用
在物理问题中的具体应用
在计算机科学中的实际应 用
在其他领域中的应用和推 广
在几何学中的应用
拓扑不变性:点集拓扑学中的概念指在拓扑变换下保持不变的性质。 几何结构:研究几何对象的拓扑性质如连通性、紧致性等。 流形:在点集拓扑学中流形是一类特殊的拓扑空间可以用来研究几何对象的形状和结构。 组合几何:利用点集拓扑学中的方法研究几何形状的组合和构造。
添加标题
同胚:在点集拓扑中如果存在一个从拓扑空间到拓扑空间B的连续映射并且这个映射可以逆向地由一个 从拓扑空间B到拓扑空间的连续映射构成则称拓扑空间与拓扑空间B同胚。
分离公理和紧致性
分离公理:点集拓扑中的基本性质指对于任意两个 不同的点存在一个开邻域不包含另一个点。
紧致性:点集拓扑中的基本性质指一个点集是紧致 的当且仅当它的闭包等于自身。
基的概念:拓扑空间中一个重要的概念是用来定义空间的拓扑结构的。基由若干个开集组成 满足一定的性质。
基的分类:根据基的性质可以将基分为第一类基和第二类基。第一类基是可数的第二类基是 不可数的。
基的性质:基具有连通性、可数性、分离性等性质这些性质对于研究拓扑空间的性质和结构 非常重要。
完整word版点集拓扑讲义连通性学习笔记

完整word版点集拓扑讲义连通性学习笔记4章连通性第局部连通性和弧连本章讨论拓扑空间的几种拓扑不变性质,包括连通性,这些拓扑不变性质的研究也使我们能够区别通性,并且涉及某些简单的应用.一些互不同胚的空间.连通空间§4.1:本节重点掌握连通与不连通的定义;掌握如何证明一个集合的连通与否;掌握连通性的拓扑不变性、有限可积性、可商性.)l(0,我们先通过直观的方式考察一个例子.在实数空间R中的两个区间)20,)∪[l,2)=(,和[12),尽管它们互不相交,但它们的并(0,1),1,2),它们的并(00却是一个“整体”;而另外两个区间(,1)和(1)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一,2∪(1)中;而对于后一种情形,两2在[1,种情形,区间(0,l)有一个凝聚点1个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用术语来区别这两种情形.X中的两个子集.如果A和B是拓扑空间定义4.1.1 设B是隔离的.A则称子集和页29 共* 页1 第同时成立,也就是明显地,定义中的条件等价于和B无交并且其中的任何一个不包含另一个的任何凝聚点.说,A与)2)和(1,应用这一术语我们就可以说,在实数空间R中,子集(0,1 不是隔离的.[1,2)是隔离的,而子集(0,l)和又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个无交的子集都是隔离的.和A是一个拓扑空间.如果X中有两个非空的隔离子集定义4.1.2 设X 是一个连通空间.是一个不连通空间;否则,则称XB使得X=A∪B,则称X显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间.是一个拓扑空间.则下列条件等价:设X定理4.1.1是一个不连通空间;)X(l 成立;A∪B=A∩B=X和中存在着两个非空的闭子集(2)XA和B使得B使得A∩B=成立;A∪B=X和3()X中存在着两个非空的开子集A和X中存在着一个既开又闭的非空真子集.(4)中的两个非空的设(条件(l)蕴涵(2):1)成立.令A和B是X证明,显然,并且这时我们有A∩B=隔离子集使得A∪B=X中的一个闭子集.这证明也是一个X是X中的一个闭子集;同理A因此B 2)中的要求.和B满足条件(了集合A)中的要求,所2B 满足条件(A)蕴涵(3).如果X的子集和条件(2AB也是开集,所以和A、AB为闭集,则由于这时有A=B=,因此、以)中的要求.也满足条件(和B3页29 共* 页2 第条件(3)蕴涵(4).如果X的子集A和B满足条件(3)中的要求,所B=易见A和B都是AX=和中的闭集,因此A、B以A、B 是开集,则由中既开又闭的真(∵A、B≠,A∪B=X,∴A、B≠X)子集,所以条件(4是X)成立.B=.则A.令(l).设X中有一个既开又闭的非空真子集条件(4)蕴涵A和B 都是X中的非空的闭子集,它们是无交的并且使得A∪B=X.易见两个无交的闭子集必定是隔离的(因为闭集的闭包仍为自己).因此(l)成立.例4.1.1 有理数集Q作为实数空间R的子空间是一个不连通空间.这是因为对于任何一个无理数r∈R-Q,集合(-∞,r)∩Q=(-∞,r]∩Q是子空间Q中的一个既开又闭的非空真子集.定理4.1.2 实数空间R是一个连通空间.证明我们用反证法来证明这个定理.假设实数空间R是不连通空间.则根据定理4.1.1,在R中有两个非空闭A∩B=和A∪B=R成立.任意选取a∈A和b∈B,不失一般性B集A和使得和中的两个非空闭=A∩[a,b],和是=B∩[a,b]..可设a <bR令于是成立.集合b],并且使得∩==[a和集分别包含∪a和b有上界,,并且因此可见<∈b是一个闭集,所以,故有上确界,设为.由于b](矛盾.∩将导致b,因为=b因此b∈=∩.由,,而这与∈=于∈矛盾.是一个闭集,所以.这又导致,也与∩∩定义4.1.3 设Y是拓扑空间X的一个子集.如果Y作为X的子空间是一个连通空间,则称Y是X的一个连通子集;否则,称Y是X的一个不连通子集.页29 共* 页3 第拓扑空间X的子集Y是否是连通的,按照定义只与子空间Y的拓扑有关(即.因此,如果,则Y是X)Y的连通与否与X的连通与否没有关系.的连通子集当且仅当Y是Z的连通子集.这一点后面要经常用到.定理4.1.3 设Y是拓扑空间X的一个子集,A,BY.则A和B是子空间Y中的隔离子集当且仅当它们是拓扑空间X中的隔离子集.因此,Y是X的一个不连通子集,当且仅当存在Y中的两个非空隔离子集A和B 使得A∪B=Y(定义)当且仅当存在X中的两个非空隔离子集A和B使得A∪B=Y.A在Y,分别表示X 证明中的闭包.因为用、因此根据隔离子集的定义可见定理成立.定理4.1.4 设Y是拓扑空间X中的一个连通子集.如果X中有隔离子集A和B 使得YAUB,则或者YA,或者YB.AUB,则证明如果A和B是X中的隔离子集使得Y这说明A∩Y和B∩Y也是隔离子集.然而(A∩Y)∪(B∩Y)=(A∪B)∩Y=Y因此根据定理4.1.3,集合A∩Y和B∩Y中必有一个是空集.如果B∩Y =,同理可见YA.BY,据上式立即可见,如果A∩Y= X是拓扑空间满足条件X的一个连通子集,ZY4.1.5 定理设的一个连通子集.也是Z.则X页29 共* 页4 第证明假设Z是X中的一个不连通子集.根据定理4.1.3,在X中有非空隔离子集A和B使得Z=A∪B,因此YAUB.由于Y是连通的,根据定理4.1.4,或者YA. , 或者YB,同理.这两种情形都与假设矛盾.设是拓扑空间X的连通子集构成的一个子集族.如果定理4.1.6是X的一个连通子集.,则使得X中的两个隔离子集,A和B是=A∪B.,任意选取证明设,由于∈Γ,不失一般性,设连通,根据x∈A.对于每一个γx∈者或理4.1.4;由于,以∩A,所x∈定或者这就证明了,是连通的..根据定理4.1.3定理4.1.7 设Y是拓扑空间X中的一个子集.如果对于任意x,y∈Y存,y∈Y,则Yx是中的一个连通子集在XX 中的一个连通子集.使得Y≠证明如果是连通的.下设Y=,显然任意选取a∈Y,容易验Y,a ∈.应用定理4.1.6,可见并且Y证Y=是连通的.所2拓扑学的中心任务便是研究拓扑不变性质我们曾经说过,(参见§2.).乃是为一个拓扑空间具有必为任何一个与其同胚的拓扑空间谓拓扑不变性质,所具有的性质.事实上,如果拓扑空间的某一个性质,它是藉助于开集或者藉助于经由开集定义的其他概念表达的,则此性质必然是拓扑不变性质.页29 共* 页5 第拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个在连续映射下保持不变的性质.因为同胚是连续的满射,所以在连续映射下保持不变的性质必然是拓扑不变性质.拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个可商性质.因为拓扑空间到它的商空间的自然的投射是一个连续的满射,所以在连续映射下保持不变的性质必然是可商性质.以下定理4.1.8指出,连通性(即一个拓扑空间是连通的这一性质)是一个在连续映射下保持不变的性质.因此,它是拓扑不变性质,也是可商性质.定理4.1.8 设f:X→Y是从连通空间X到拓扑空间Y的一个连续映射.则f(X)是Y的一个连通子集.证明如果f(X)是Y的一个不连通子集,则存在Y的非空隔离子集A)和(B)是X的非空子集,并且和B使得f(X)=A∪B.于是(A(B)是A所以X)和的非空隔离子集.此外,(=(f(X))=X )=A(A∪B))∪B ((这说明X不连通.与定理假设矛盾.页29 共* 页6 第拓扑空间的某种性质P称为有限可积性质,如果任意n>0个拓扑空间,蕴涵着积空间也具有性质pp.都具有性质都是离散空间(平庸空例如,容易直接证明,如果拓扑空间也是离散空间(平庸空间),因此我们可以说间),则积空间拓扑空间的离散性和平庸性都是有限可积性质.根据定理3.2.9以及紧随其后的说明可见:假设已知拓扑空间的某一个性质p 是一个拓扑不变性质.为了证明性质p是一个有限可积性质,我们只要证明任何两个具有性质p的拓扑空间的积空间也是具有性质p的拓扑空间.则积空间也n 个连通空间.是设定理4.1.9.是连通空间根据前一段中的说明,我们只要对于证明n=2的情形加以证明.两个点有一个坐标相首先我们指出:如果y x同,则有一个连通子集同时包含和不失一般性,设: k定义映射使得对于任何.有由于是取常值的映射,为恒同映射,页29 共* 页7 第个坐标空间的和第2分别是到第它们都是连续映射,1其中k(k是一个连续映射.根据定理4.1.8,是连通的.此外易)投射.因此,.,因此它同时包含x和y见,同时现在来证明:中任何两个点的某一个连通子集.这是因为这时若令,则属于可见有根据前段结论,同时包含x和z,也有的一个连通子集,z∈,因此根据定理y和z.由于4.1.6同时包含的一个连通子集y.是连通的,它同时包含x和可见于是应用定理4.1.7是一个连通空间.又是一R的笛卡儿积,而实数空间因为n维欧氏空间是n个实数空间R维欧氏空间个连通空间,所以应用这个定理可见,是一个连通空间. n作业:..6.814. P116 3.5连通性的某些简单应用§4.2本节重点:掌握实数空间R中的连通子集的“形状”掌握实数空间R的子集中常见的连通子集与不连通子集.页29 共* 页8 第掌握常见的几种空间的同胚与否的事实.让我们回忆实数集合R中区间的精确定义:R的子集E称为一个区间,如果它至少包含两个点,并且如果a,b∈E,a<b,则有[a,b]={x∈R|a≤x≤b}E读者熟知,实数集合R中的区间共有以下9类:(-∞,∞),(a,∞),[a,∞),(-∞,a),(-∞,a](a,b),(a,b],[a,b),[a,b]因为,一方面以上9类集合中的每一个显然都是区间;另一方面,如果E R是一个区间,可视E有无上(下)界,以及在有上(下)界的情形下视其上(下)确界是否属于E,而将E归入以上9类之一在定理4.1.2中我们证明了实数空间R是一个连通空间.因为区间(a,∞),(-∞,a)和(a,b)都同胚于R(请读者自己写出必要的同胚映射),所以这些区间也都是连通的;由于根据定理4.1.5可见区间[a,∞),(-∞,a],[a,b),(a,b]和[a,b]都是连通的.另一方面,假设E是R的一个子集,并且它包含着不少于两个点.如果E,也就是说,存在a<c通综合以上两个方面,我们已经证明了:页29 共* 页9 第定理4.2.1 设E是实数空间R的一个子集.E是包含着不少于两个点的一个连通子集当且仅当E是一个区间.定理4.2.2 设X是一个连通空间,f:X→R是一个连续映射.则f(X)是R中的一个区间.因此,如果x,y∈X,则对于f(x)与f(y)之间的任何一个实数t(即当f(x)≤f(y)时,f(x)≤t≤f(y);当f(y)≤f(x)时,f(y)≤t≤f(x)),存在z∈X 使得f(z)=t.证明这个定理的第一段是定理4.1.8和定理4.2.1的明显推论.以下证明第二段.设x,y∈X.如果f(x)=f(y),则没有什么要证明的.现在设f(x)≠f(y),并且不失一般性,设f(x)<f(y).由于f(X)是一个区间,所以[f(x),f(y)]f(X).因此</c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章分离性公理§6.1,Hausdorff空间本节重点:掌握空间的定义及它们之间的不同与联系;掌握各空间的充要条件;熟记常见的各种空间.与前两章的连通性公理和可数性公理一样,分离性公理也是拓扑不变性质。
回到在第二章中提出来的,“什么样的拓扑空间的拓扑可以由它的某一个度量诱导出来”这一问题.为了回答这个问题势必要求我们对度量空间的拓扑性质有充分的了解.我们将会发现,本章中所提到的诸分离性公理,实际上是模仿度量空间的拓扑性质逐步建立起来的.对诸分离性的充分研究使我们在§6.5中能够对于前述问题作一个比较深刻的(虽然不是完全的)回答.引入:例对于度量空间X,如果x,y∈X,∀x、y ,当x ≠y时,x、y之间应该有一个距离,这个距离用d(x,y)表示,定义6.1.1设X是一个拓扑空间,如果X中的任意两个不相同的点中必有一个点有一个开邻域不包含另一个点(即如果x,y∈X,x≠y,则或者x有一个开邻域U使得y U,或者y有一个开邻域V使得x V),则称拓扑空间X 是一个空间.拓扑空间自然不必都是空间,例如包含着不少于两个点的平庸空间就不是空间.定理6.1.1 拓扑空间X是一个空间当且仅当X中任意两个不同的单点集有不同的闭包.(即如果x,y∈X,x≠y,则.)证明充分性:设定理中的条件成立.则对于任何x,y∈X,x≠y,由于,因此或者成立,或者成立.当前者成立时,必定有.(因为否则).这推出x 有一个不包含y的开邻域.同理,当后者成立时,y有一个不包含x的开邻域.这证明X是一个空间.必要性:设X是一个空间.若x,y∈X,x≠y,则或者x有一个开邻域U 使得或者y有一个开邻域V使得.若属前一种情形,由于,若属后一种情形,同样也有.定义6.1.2设X是一个拓扑空间.如果X中的任意两个不相同的点中每一个点都有一个开邻域不包含另一个点,则称拓扑空间X是一个空间.空间当然是空间.但反之不然.例如设X={0,1},T={,{0},X},则T 是X的一个拓扑,并且拓扑空间(X,T)是的但不是的.(请读者自己验证,)定理6.1.2 设X是一个拓扑空间,则以下条件等价:(1)X是一个空间;(2)X中每一个单点集都是闭集;(3)X中每一个有限子集都是闭集.证明(1)蕴涵(2).设x∈X.当X是一个空间时,对于任何y∈X,y≠x,点x有一个邻域U使得,即.这证明单点集{x}是一个闭集.(2)蕴涵(3).这是显然的.因为有限个闭集的并仍然是闭集.(3)蕴涵(1).设x,y∈X,x≠y,当(3)成立时单点集{x}和{y}都是闭集.从而分别是y和x的开邻域,前者不包含x,后者不包含y.这就证明了X是一个空间.下面的两个定理表明,空间中关于凝聚点和序列收敛的性质和我们在数学分析中熟知的多了一些类似之处.定理6.1.3 设X是一个空间.则点x∈X是X的子集A的一个凝聚点当且仅当x的每一个邻域U中都含有A中的无限多个点,即U∩A是一个无限集.证明定理充分性部分是明显的.以下证明必要性部分.假设x∈X,x∈d(A).如果x有一个开邻域U使得U∩A是一个有限集,则集合B=U∩A-{x}也是一个有限集,因此是一个闭集.因此U-B是一个开集,并且是x的一个邻域.此外易见(U-B)∩(A-{x})=.这蕴含着x不是A的凝聚点,与假设矛盾.定理6.1.4 设X是一个空间.则X中的一个由有限个点构成的序列{}(即集合{|i∈Z+}是一个有限集)收敛于点x∈X当且仅当存在N>0使得=x对于任何i≥N成立.证明由于X是一个空间,集合A={|≠x,i=1,2…}是一个有限集,所以是一个闭集.从而是x的一个开邻域.于是存在N>0使得当i≥N有,因而=x.定义6.1.3 设X是一个拓扑空间.如果X中任何两个不相同的点各自有一个开邻域使得这两个开邻域互不相交(即如果x,y∈X,x≠y,则点x有一个开邻域U,点y有一个开邻域V,使得U∩V=),则称拓扑空间X是一个Hausdorff空间,或空间.hausdorff空间一定是空间,但反之不然.例6.1.1 非Hausdorff的空间的例子.设X是一个包含着无限多个点的有限补空间.由于X中的每一个有限子集都是闭集,因此它是一个空间.然而在拓扑空间X中任何两个非空的开集一定会有非空的交.这是因为X中每一个非空开集都是X中的有限子集的补集,而X又是一个无限集的缘故.由此易见X必然不是一个空间.定理6.1.5 Hausdorff空间中的任何一个收敛序列只有一个极限点.证明设{}是Hausdorff空间X中的一个序列,并且有于是对于j=1,2,点有一个开邻域,使得.故存在>O使得当i≥时有.任意选取M>max{}.可见,这是一个矛盾.但在空间中定理6.1.5却可以不成立.例如设拓扑空间X如例6.1.1中所述,{}是X中的任何一个由两两不同的点构成的序列,即当i≠j时有.此时对于任何y∈X和y的任一邻域U,由于U的补集是一个有限集,所以存在N>0使得当i≥N时有∈U.于是lim=y.也就是说,序列{}收敛于X中的任何一个点.作业:P155 3.4.5.§6.2正则,正规,空间本节重点:掌握各空间的定义、充要条件及之间的联系.我们先将点的邻域的定义推广到对于集合有效.定义6.2.1 设X是一个拓扑空间,A,U X.如果A包含于U的内部,即A,则称集合U是集合A的一个邻域.如果U是A的一个邻域,并且还是一个开集(闭集),则称U是A的一个开(闭)邻域.定义6.2.2 设X是一个拓扑空间.如果X中的任何一个点和任何一个不包含这个点的闭集都各有一个开邻域,它们互不相交(即如果x∈X和A X是一个闭集,使得x A,则存在x的一个开邻域U和A的一个开邻域V使得),则称拓扑空间X是一个正则空间.定理6.2.1 设X是一个拓扑空间.则X是一个正则空间当且仅当对于任何点x∈X和x的任何一个开邻域U,存在x的一个开邻域V使得.证明必要性设X是一个正则空间.如果x∈X,集合U是x的一个开邻域,则U的补集便是一个不包含点x的闭集.于是x和分别有开邻域使得.从而,所以充分性设x∈X和A是一个不包含x的闭集.这时A的补集是x的一个开邻域,根据定理中所陈述的条件可见,有x的开邻域U使得.令,所以V是A的一个开邻域,并且易见.这证明X是一个正则空间.定义6.2.3 设X是一个拓扑空间.如果X中的任何两个互不相交的闭集各有一个开邻域并且这两个邻域互不相交(即如果A,B X都是闭集,则存在A的一个开邻域U和B的一个开邻域V使得),则称拓扑空间X是一个正规空间.定理6.2.2 设X是一个拓扑空间.则X是一个正规空间当且仅当对于任何一个闭集A X和A的任何一个开邻域U,存在A的一个开邻域V使得.证明证明类似于定理6.2.l,请读者自己写出.正则、正规性质与§6.l中定义的以及Hausdorff诸性质之间并无必然的蕴涵关系.例6.2.1 正则且正规的空间但非空间(因而也是非,非Hausdorff 空间)的例子.令X={1,2,3}和T={{1},{2,3},{1,2,3},}.容易验证(X,T)是一个拓扑空间,并且是一个正则且正规的空间.留意点2和点3立即可见它不是一个空间.例6.2.2 Hausdorff空间(因而也是空间)但非正则空间、也非正规空间的例子.(略)拓扑空间的正则性和正规性之间也没有必然的蕴涵关系.例6.2.3 正规空间而非正则空间的简单例子是(X,T),其中X={1,2,3}和T ={,{1},{2},{1,2},{1,2,3}}定义6.2.4 正则的空间称为空间,正规的空间称为空间.由于空间中的每一个单点集都是闭集,因此空间一定是空间,空间一定是Hausdorff空间.而非空间的一个例子(它自然也是正则而非正规空间的例子)可见于习题第6题.最后,我们证明度量空间满足本章中在此之前所有我们引进的那些定义(指至,以及正则正规等).为此,我们只要证明:定理6.2.3 每一个度量空间都是空间.证明设(X,d)是一个度量空间.如果x,y∈X,x≠y,则d(x,y)>0.令ε=d(x,y),则球形邻域B(x,ε/2)和B(y,ε/2)分别是x和y的开邻域,并且易见它们无交.因此X是一个Hausdorff空间,自然它也是空间.现在设A和B是X中的两个无交的闭集.假如A和B中有一个是空集,例如B= .这时我们可以取X为A的开邻域,为B的开邻域,它们的交当然是空集.以下假定A和B都不是空集.根据定理2.4.9可见,对于x,y∈X,如果x B,则d(x,B)>0;如果y A,则d(y,A)>0.记ε(x)=d(x,B)/2,δ(x)=d(x,A)/2并且令显然U和V分别是A和B的开邻域.以下证明.若不然设,不失一般性,设.于是我们有这与d(,B)的定义(d(,B)=inf{(,y)|y∈B})矛盾.这就证明了X是一个正规空间.作业:P160 1.2.3.§6.3 Urysohn引理和Tietze扩张定理本节重点:掌握Urysohn引理的内容(证明不要求);掌握定理6.3.2的证明方法.定理6.3.1 [Urysohn引理]设X是一个拓扑空间,[a,b]是一个闭区间.则X是一个正规空间当且仅当对于X中任意两个无交的闭集A和B,存在一个连续映射f:X→[a,b]使得当x∈A时f(x)=a和当x∈B时f(x)=b.证明(略)定理6.3.2 空间中任何一个连通子集如果包含着多于一个点,则它一定是一个不可数集.证明设C是空间X中的一个连通子集.如果C不只包含着一个点,任意选取,x,y∈X,x≠y,对于空间X中的两个无交的闭集{x}和{y},应用Urysohn引理可见,存在一个连续映射f:X→[0,1]使得f(x)=0,f(y)=1.由于C是X中一个连通子集,因此f(X)也连通.由于0,1∈f(X),因此f(X)=[0,1].由于[0,1]是一个不可数集,因此C也是一个不可数集.作业:P168 1.§6.4完全正则空间,Tychonoff空间本节重点:掌握完全正则空间与空间的定义;掌握正则,正规及完全正则空间之间的关系.定义6.4.1 设X是一个拓扑空间.如果对于任意x∈X和X中任何一个不含点x的闭集B,存在一个连续映射f:X→[0,1]使得f(x)=0以及对于任何y∈B有f(y)=1,则称拓扑空间X是一个完全正则空间.完全正则的空间称为Tychonoff空间,或空间.定理6.4.1 每一个完全正则空间都是正则空间.证明设X是一个完全正则空间.设x∈X,B是中的一个不含点x的闭集.则存在连续映射f:X→[0,1],使得f(x)=0和对任何b∈B有f(b)=1.于是([0,1/2))和((1/2,1])分别是点x和闭集B的开邻域,并且它们无交.这表明X是一个正则空间.根据定理6.4.1明显可见,每一个Tychonoff空间都是空间.根据Urysohn引理也容易看出,每一个空间都是Tychonoff空间,但反之不真,有关的例子可以参见§6.2习题第5题.定理6.4.2 每一个正则且正规的空间都是完全正则空间.证明设X是一个既正则又正规的空间.设x∈X,B是X中的一个不包含点x的闭集.由于X是一个正则空间,根据定理6. 2.l,点x有一个开邻域U使得.令则A和B是X中无交的两个闭集.由于X是一个正规空间,应用Urysohn引理可见,存在一个连续映射f: X→[0,l]使得对于任何y∈A有f(y)=0和对于任何y∈B有f(y)=1.由于x∈A,故f(x)=0,这就证明了X是一个完全正则空间.定理6.4.3[Tychonoff定理] 每一个正则的Lindeloff空间都是正规空间.证明设X是一个正则的Lindeloff空间.设A和B是X中的两个无交的闭集.对于每一个x∈A,由于,根据定理6.2.1可见,存在x的一个开邻域使得即.集族{|x∈A}是闭集A的一个开覆盖.由于Lindeloff空间的每一个闭子空间都是Lindeloff空间(参见定理5.3.4),易见A的开覆盖{|x∈A}中有一个可数子族,设为,仍然覆盖A.注意:对于每一个i∈Z+,有.同理,集合B也有一个可数开覆盖现在,对于每一个n∈Z+,令显然都是开集.对于任何m,n∈Z+,因为若设m≤n,则有令它们都是开集,并且现在只剩下证明和了.不失一般性,我们验证前者:如果x∈A,则存在n∈Z+使得x∈.另一方面,由于诸与A无交,所以对于任意i∈Z+有.§6.1,§6.2和本节中定义的(即Hausdorff),(即Tychonoff),以及正则和正规等拓扑空间的性质统称为分离性公理.现将满足诸分离性公理的拓扑空间类之间的蕴涵关系列为图表6.1.作业:P171 1.2.3§6.5分离性公理与子空间,(有限)积空间和商空间本节重点:掌握各分离性公理是否是连续映射所能保持的性质,是否是可遗传的,可积的.本书正文中提到的所有的分离性公理有(即Hausdorff),(即Tychonoff),以及正则和正规等,它们都是经由开集或者经由通过开集定义的概念来陈述的,所以它们必然都会是拓扑不变性质.但是我们还是愿意完全形式地作一番验证,但只是以一种情形为例.其它的请读者自己去作.定理6.5.1 设X和Y是两个同胚的拓扑空间.如果X是一个完全正则的空间,则Y也是一个完全正则的空间.证明设h:X→Y是一个同胚.对于Y中的任意一个点和任何一个不包含点x的闭集B,(x)和(B)分别是X中的一个点和一个不包含点(x)的闭集.由于X是一个完全正则空间,故存在一个连续映射f: X→[0,1]使得f((x))=0和对于任何y∈(B)有f(y)=l.于是连续映射g=f:Y→[0,1],满足条件:g(x)=0和对于任何z∈B有g(z)=1.(即Hausdorff),(即Tychonoff),以及正则都是可遗传的性质.我们也只是举一例证明之,其余的留给读者自己去作.习题第1题中的结论表明正规和对于闭子空间是可遗传的性质.定理6.5.2 正则空间的每一个子空间都是正则空间.证明设X是一个正则空间,Y是X的一个子空间,设y∈Y和B是Y的一个闭集使得y B.首先,在X中有一个闭集使得∩Y=B.因此.由于X是一个正则空间,所以y和分别在X中有开邻域(对于拓扑空间X而言)使得.令,它们分别是y和B在子空间Y 中开邻域,此外易见.(即Hausdorff),(即Tychonoff),以及正则都是有限可积性质,证明(略)正规和不是有限可积性质.至于本书正文中提到的所有分离性公理都不是可商性质这个结论,可以通过适当的反例来指出.例6.5.1 由于实数空间R是一个度量空间,所以它满足本书正文中提到的所有分离性公理.在实数空间R中给出一个等价关系~使得对于任意x,y∈R,x~y的充分必要条件是或者x,y∈(-∞,0];或者x,y∈(0,1);或者x,y∈[1,∞).将所得到的商空间记为Y.换言之,Y便是在实数空间中分别将集合A=(-∞,0],B=(0,l)和C=[1,∞)各粘合为一个点所得到的拓扑空间.事实上Y={A,B,C}.容易验证Y的拓扑便是{,{A,B},{B},{B,C},{A,B,C}}.考察点A和点B可见,Y不是空间,因此也不是(即Hausdorff),(即Tychonoff),以及空间.此外,考察两个单点闭集{A}和{C}可见,Y既不是正则空间也不是正规空间.此外容易验证Y是一个空间.上述例子尚没有说明不是可商性质.事实上例3.3.1中所给出的实数空间R的那个商空间是包含着两个点的平庸空间,当然也就不是空间了.然而例3.3.1并不能代替例6.5.1,因为平庸空间既是正则空间,也是正规空间.作业:P175 1.§6.6可度量化空间本节重点:掌握三个定理的结论(前两个定理的证明不要求)先回忆一下在第二章中的可度量化空间的定义.一个拓扑空间称为是可度量化的,如果它的拓扑可以由它的某一个度量诱导出来.我们已经在许多章节中研究过度量空间的一些拓扑性质,这些拓扑性质当然也是可度量化空间所具有的.在这一章中我们部分地回答具有什么样的拓扑性质的拓扑空间是可度量化空间这个问题.定理6.6.1[Urysohn嵌入定理] 每一个满足第二可数性公理的空间都同胚于Hilbert空间H的某一个子空间.证明(略)定理6.6.2 Hilbert空间H是一个可分空间.证明(略)定理6.6.3 设X是一个拓扑空间.则下列条件等价:(1)X是一个满足第二可数性公理的空间;(2)X同胚于Hilbert空间H的某一个子空间;(3)X是一个可分的可度量化空间.证明(l)蕴涵(2).此即定理6.6.1.(2)蕴涵(3).由于Hilbert空间H是一个可分的度量空间,而可分的度量空间的每一个子空间都是可分的度量空间(参见推论5.2.5),与一个可分的度量空间同胚的拓扑空间是可分的(参见§5.2习题第4题),也是可以度量化的(参见§2.2习题12).(3)蕴涵(1).可分的度量空间满足第二可数性公理参见定理5.2.4),可度量化空间是一个空间(参见定理6.2.3).因此更是一个空间.作业:P180 1.本章总结:(1)性质是描述点的分离性的,熟记各空间的定义、性质、与实数空间的区别.注意它们的充要条件,往往是证明的出发点.(2)正则、正规是描述点、闭集与闭集之间关系的性质.注意它们的充要条件.(3)完全正则、Tychonoff只有一种定义,一定要用映射来描述.(4)有了Urysohn引理,可将正规空间与实数空间联系起来,给证明提供了极大的方便.(完全正则与Tychonoff空间也是如此)(5)掌握它们的关系图及是否是连续映射所能保持的、有限可积的、可遗传的.从而会判断一个空间是哪种空间.。