有限元法的力学基础
有限元和有限体积

有限元和有限体积引言有限元和有限体积方法是数值计算中常用的一种数值方法,用于求解连续介质力学问题。
有限元方法通过将连续介质分割为无数个小单元,通过对小单元进行分析,来近似求解整个问题。
而有限体积方法使用有限体积元胞对区域进行离散化,通过求解元胞边界上的通量和源项来逼近整体问题的解。
本文将详细讨论这两种方法的基本原理、应用领域和优缺点。
有限元方法基本原理有限元方法是将连续介质划分为一个个小的有限元,每个有限元都有自己的形状函数和自由度。
通过将连续问题离散化为有限个自由度上的代数方程,再通过求解代数方程组来近似求解连续问题的解。
具体步骤如下:1.将连续介质划分为有限个小的有限元;2.在每个有限元上选择适当的形状函数;3.建立有限元刚度矩阵和载荷向量;4.组装有限元刚度矩阵和载荷向量;5.边界条件的处理;6.求解代数方程组得到近似解。
有限体积方法基本原理有限体积方法是将连续介质划分为有限个的离散控制体积,通过对每个控制体积内部的平衡方程进行积分,得到离散控制方程。
以控制体积为基本单位,建立离散方程,通过对自由度进行遍历,求解整个问题。
具体步骤如下:1.将连续介质划分为有限个的离散控制体积;2.在每个控制体积内部建立平衡方程并进行积分;3.得到离散控制方程;4.边界条件的处理;5.求解离散方程组得到近似解。
有限元方法和有限体积方法的区别有限元方法和有限体积方法都是数值计算的重要方法,但在求解连续介质力学问题时有一些差异。
离散化方式不同有限元方法对连续介质进行的离散化是基于几何结构的,将连续域划分为小的有限元。
而有限体积方法则是基于控制体积划分,离散化程度相对较小。
近似程度不同有限元方法是在各个有限元上进行近似,通过调节有限元的数量和自由度的精度来改变近似程度。
有限体积方法是在每个控制体积上进行平衡方程的积分,通过选取不同大小的控制体积来改变近似程度。
单元法程度的力学意义不同有限元方法中的单元法是具有力学意义的,可以通过单元的应力、应变等物理量来反映力学本质。
弹性力学有限元法.ppt

2021/3/11
13
在离散体中任取一个单元,三个节点按逆时针方向顺序编
号为i,j,m。节点坐标分别表示为(xi,yi),(xj,yj), (xm,ym)。
2021/3/11
14
对于弹性力学平面问题,一个三角形单元上的每 个节点应有2个位移分量,则三角形单元共有6个自 由度: ui , vi ,u j , v j ,um , vm 。
u x
K
矩形单元:采用双线性位移模式,单元内的应力是线性
变化的。
u kx2 mx
(kx2 mx) x
3. 薄板弯曲单元和薄板单元
2021/3/11
7
4. 多面体单元
2021/3/11
8
5. 等参数单元:单元内任一点的位移与节点位移之间的关系 恰好和该点的坐标与节点坐标之间的关系相同。
任意四边形的边一般不平行于坐标轴,沿单元边的位 移将按抛物线变化,而不是线性变化。
2021/3/11
2
(2)分析单元的力学性质 列出单元节点和节点位移之间的关系式。应用几何方程和
物理方程来建立力和位移的方程式,导出单元刚度矩阵。
节点载荷和节点位移之间的关系式为:
Fe Kee
K e 为单元刚度矩阵。
(3)计算等效节点力:用等效的节点力来代替所有在单元 上的力。
2021/3/11
元位移模式。
u(x, v(x,
y) y)
Ni
(x, 0
y)
0 N j (x, y) Ni (x, y) 0
0 Nm (x, y) N j (x, y) 0
0
Nm
(
x,
y)
u Ne
2021/3/11
18
有限元-结构静力学分析

03
结果优化
如果结果不满足设计要求,需要对有 限元模型进行优化设计,如改变梁的 截面尺寸、增加支撑等。
THANKS
谢谢您的观看
结构静力学的求解方法
解析法
解析法是通过数学方法求解结构在静载荷作用下的响应的求解方法。它通常 适用于具有简单几何形状和载荷条件的结构,如梁、板、壳等。
数值法
数值法是一种通过数值计算方法求解结构在静载荷作用下的响应的求解方法 。它通常适用于具有复杂几何形状和载荷条件的结构,如飞机、汽车等。
结构静力学的基本假设和简化
问题描述和基本方程
问题描述
弹性地基梁是支撑在弹性地基上的梁,受到垂直荷载的作用。该问题可描述为求 解地基反力和梁的挠度。
基本方程
该问题的基本方程包括梁的平衡方程、几何方程和物理方程。这些方程描述了梁 在受力后的变形和应力分布情况。
利用有限元法进行每个单元之间通过节点相连。每个节点具有三个自由度:沿 x、y、z方向的移动。
系统方程的建 立
将所有单元的平衡方程 和变形协调方程组合起 来,得到整个结构的系 统方程。
求解系统方程
利用数值方法(如高斯 消元法)求解系统方程 ,得到每个节点的位移 和应力。
结果分析和讨论
01
结果输出
输出每个节点的位移、应力、应变和 弯矩等结果。
02
结果评估
根据输出结果,对框架结构的强度、 刚度和稳定性进行评估,判断是否满 足设计要求。
连续性假设
结构静力学的基本假设是结构的材料是连续的, 即结构的内部没有空隙和缺陷。
各向同性假设
结构静力学的基本假设是结构的材料是各向同性 的,即结构的各个方向具有相同的材料性质。
均匀性假设
结构静力学的基本假设是结构的材料是均匀的, 即结构的各个部分具有相同的材料性质。
有限元结构静力学分析

有限元结构静力学分析有限元结构静力学分析的基本原理是将结构分割为离散的小单元,通过对这些小单元的力学行为进行数学建模来研究整个结构的行为。
通常情况下,结构被离散为多个三角形或四边形单元,每个单元内的力学行为可通过有限元模型进行模拟。
有限元方法基于结构的力学行为方程,通过数值计算的方式求解出结构的位移、应力等物理量。
1.生成有限元离散网格:将结构几何分割为小单元,构成有限元离散网格。
通常受到计算资源和准确性的限制,根据具体情况选择单元尺寸和分割密度。
2.建立有限元模型:对每个单元进行力学行为的建模,包括约束、边界条件等。
通常使用线性弹性模型,即假设结构为弹性体,在小变形范围内满足胡克定律。
3.求解结构位移:根据结构的边界条件和受力情况,求解结构的位移。
位移是结构分析的基本结果,可通过求解结构的刚度矩阵和载荷向量来获得。
4.计算应力和变形:根据结构的位移,计算结构中各个单元的应力和变形。
应力和变形是结构分析的重要结果,可用于评估结构的安全性和合理性。
5.分析结果的后处理:对求解得到的位移、应力和变形等结果进行后处理,如绘制位移云图、应力云图等,以便更直观地了解结构的行为。
在实际应用中,有限元结构静力学分析需要注意以下几个方面:1.模型准确性:选择合适的有限元模型和求解方法以保证结果的准确性。
选择适当的单元尺寸和分割密度,根据具体情况对模型进行验证和校正。
2.材料特性:结构的力学性质受到材料特性的影响,如弹性模量、泊松比等。
确保材料特性的准确性和可靠性,以获得可靠的力学分析结果。
3.界面和边界条件:结构的界面和边界条件对分析结果有重要影响。
需要仔细设定和模拟各个界面和边界条件,以反映实际工况和受力情况。
4.结构非线性问题:有限元结构静力学分析通常假设结构在小变形范围内满足胡克定律。
对于存在非线性行为的结构,如大位移、屈曲等,需要采用相应的非线性分析方法。
总而言之,有限元结构静力学分析是一种重要的结构力学分析方法,通过离散化和数值计算的方式求解结构的力学性质。
二、 弹性力学有限元法基本原理(一)

1 6 12 8
引入约束条件:u1 0
即划去第一个方程,解出其余三个方程得到:
u2 13 3 cL u3 23 u 3 AE 27 4
结合单元位移模式 u N d 就得到整体上近似位移场。
s 是插值基函数矩阵,称为“形函数”矩阵。 L
L s N L
u1 d 称为单元1的节点位移列阵。 u2
其它两个单元也有同样的插值位移试探函数:
单元2:
u N d u N d
u2 , d u3
1 T U d k d 2
1 DT K D DT R 2 p 0 应用势能驻值条件: D
简写为: p
得到有限元求解方程——系统平衡方程:
K D R
即:
1 1 0 0 u1 1 2 1 0 u AE 2 cL2 L 0 1 2 1 u3 6 0 0 1 1 u4
这个做法正体现了有限元法的实质。
上面形式的分片位移试探函数有下列缺点: 必须对它进行调整,使其满足连续条件和边界约束条件; 多项式系数作为广义坐标缺乏明显的物理意义。
1) 2)
因此,上述不是通常意义上标准的有限元形式,仍然具有
局限性,如对于二维以上的问题使各单元之间分片多项式
保持连续性很难处理。
下面用节点位移未知量作为待定参数(广义坐标),得到 其标准有限元形式。
重新构造单元内位移试探函数
离散结构中,节点位移分量是问 题的基本未知量。
在每个单元内通过对节点位移插 值,分片建立位移试探函数:
第2章_弹性力学基础及有限元法的基本原理1

W U
当外力的形式是多样的时,外力的虚功等于:
W f Pc f Pv dV f Ps dS
T T T v s
• 1.4 平面问题定义
严格地讲,任何结构都是空间的。对于某些特殊情 况,空间问题可以转化为平面问题。
(1)平面应力问题 满足条件: 1)几何条件 厚度尺寸远远小于截面尺寸; 2)载荷条件 载荷平行于板平面且沿厚度方向均匀 分布,而板平面不受任何外力作用。
1)位移函数 分片插值→ 假设一种函数来表示单元位移分布 一般选取多项式(简单而且易求导)
可用于离散的单元: • 三角形单元; • 矩形单元; • 不规则四边形单元。 DOF 节点的自由度:节点所具有的位移分量的数量。 一个单元所有节点的自由度总和称为单元自由度。 (1)单元参数只能通过节点传递到相邻单元 (2)单元和节点必须统一编号
2.2 单元分析(位移、应力、应变) 任务:形成单元刚度矩阵,建立单元特性方程 因此必须建立坐标系,如下图:
1D问题的弹性模量
E杨氏弹性模量
泊松比是指材料在单向受拉或受压时,横向正应变与轴向 正应变的绝对值的比值,也叫横向变形系数,它是反映材 料横向变形的弹性常数。 若在弹性范围内加载,横向应变εx与纵向应变εy之间存 在下列关系: εx=- νεy 式中ν为材料的一个弹性常数,称为泊松比。泊松比是 量纲为一的量。 可以这样记忆:空气的泊松比为0,45#钢0.3,水的泊松 比为0.5,中间的可以推出。
• 未知数 应力 6个+应变 6个+位移 3个=15个 • 方程个数 平衡方程 3个+几何方程6个+物理方程6个=15个 原则上可以根据15个方程求出15个未知物理量 但实际求解时先求出一部分再通过方程求解剩下的。 目前有限元法主要采用的是位移法,以三个位移 分量为基本未知量。位移-应变-应力,应力和外力平衡
有限元分析理论基础
有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
它包括大位移大应变及大位移小应变问题。
有限元法PPT课件
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
四、 弹性力学有限元法基本原理(三)
该单元位移模式及其形函数的构造可采用根据形函数性质直接
构造插值函数的方法。或从对应的二维单元进行推广,再用形
函数性质进行验证。 • 为了突破这类单元几何上的限制,得到实用的单元,必须引
入等参变换。
第二节 等参单元
• 问题的提出
从前面介绍的各种二、三维单元看出,这些单元可能有两个方面 的约束: 第一是单元的精度,显然单元的节点数越多,单元精度越高。因 此在这一点上,矩形单元优于简单三角形单元,六面体单元优于四面 体单元; 第二是单元几何上的限制。单独使用矩形或长方体单元都不能 模拟任意形状几何体,且网格中单元大小无法过渡。所有上述单元
n
n
n
n
•
显然,只要形函数满足性质 满足。
N
i 1
n
i
1 ,等参单元的完备性就得到
六、等参单元力学特性分析
• 等参单元特性分析的所有公式的导出原理与前面介绍的其它单元相同。
•
等参单元的形函数矩阵、应变矩阵、应力矩阵均用自然坐标描述。应变 矩阵中涉及到形函数对总体x,y,z坐标求导数时,须进行坐标变换。
•
该单元在母单元中的位移模式为包含完全二次式的不完全三次多项式。
插值基函数可以用形函数性质直接构造。对应图中局部节点编号,8个节 点形函数为:
1 (1 i )(1 i )( i i 1)(i 1,2,3,4) 4 1 N i (1 2 )(1 i )( i 5,6) 2 1 N i (1 2 )(1 i )(i 7,8) 2 Ni
一、等参单元的概念
• 图4-3为一个4节点任意四边形单元(Q4),单元有8个自由度。将矩 形单元放松为4节点任意四边形单元将带来许多好处。 • 但在建立单元位移模式时产生了新的问题:
弹性力学有限元法详解
x
4
i1 4
Ni ( ,)xi
y
i1
Ni ( ,) yi
总体坐标系适用于整体结构,局部坐标系只适用于具体某个 单元。
常用的对于平面问题还有八节点等参元,空间问题有八节 点空间等参元,二十节点等参元等 。
第18页,共40页。
3.2 连续体离散化
5.轴对称单元
对于回转结构,如果约束条件和载荷都对称于回转轴,其 应力、应变和位移也都对称于回转轴线,这类应力应变问题称 为轴对称问题 ,通常用柱坐标来描述应力、应变和位移,单元 为实心圆环体,仅截面不同
1
2
ai
(1
0
)
ai (1 0 ) ai (1 0 )
1
2
ai
(1
0
)
(i, j,l,m)
对于平面应变问题:
E
E 1 2
1
第29页,共40页。
3.3 单元分析
2. 单元分析
由虚功原理得:
Fe
K e BT DBdxdyt A
BT DBdxdyt δe
A
Fe Keδe
单元刚度矩阵可分块表示为:
第10页,共40页。
3.2 连续体离散化
3. 薄板弯曲单元和薄板单元
A. 薄板弯曲单元
l
θxi
i
θyi
wi
m
j
四边形弯 曲单元
四边形单元有四个节点,每个节点有三个自由度,主要承 受横向载荷和绕水平轴的弯矩。
第11页,共40页。
3.2 连续体离散化
3.薄板弯曲单元和薄板单元
A. 薄板弯曲单元
m
θxi
对于平面应变问题:
E
E 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元法的力学基础
有限元法是一种数值分析方法,利用数学和计算机技术解决实际工程问题。
其力学基础主要包括材料力学、结构力学和数值分析。
一、材料力学
有限元法的首要任务是分析工程结构的受力情况,而这涉及到材料的应力和应变等基本力学问题。
材料力学是有限元法的基础,它研究材料在外力作用下变形和破坏的规律及其数学描述。
在计算中,材料本构方程是将应力和应变联系起来的核心方程式,通过解析材料的物理特性,可以建立精确的应力-应变关系。
应力是物体受力过程中单位面积所受的力。
在研究材料力学问题时,应力通常分为三个方向:轴向应力、切向应力和法向应力。
材料因内部力的作用而使形状改变的现象称之为应变。
应变分为线性应变和非线性应变两种类型。
材料的本构方程则是将应力和应变通过数学公式联系起来,其中最重要的参数是杨氏模量、泊松比、屈服强度等材料力学性质指标。
二、结构力学
有限元法主要应用于结构力学中,因为任何实际的结构都受到力的作用,这些力包括静载、动载、温度变化
等。
结构力学是研究结构受力和变形状态的学科,它的核心是研究结构刚度和强度等性质。
结构刚度是指结构抵抗外界力的能力,强度则是指结构承受载荷发生破坏前的最大强度。
在有限元法中,将结构划分成有限个小单元,然后使用材料力学原理及结构力学原理计算每个小单元的应力和应变及整个结构的位移。
通过建立坐标系,可以把每个小单元在局部坐标系下的变形通过旋转变换到全局坐标系下。
将各个小单元的变形叠加起来,就可以求得整个结构的位移和变形。
三、数值分析
有限元法是一种数值分析方法,因此数值分析对于有限元法的运用也是相当重要的。
数值分析是研究利用数值方法解决科学和工程问题的一门学科。
有限元法可以通过数学公式和计算机程序来模拟物理现象,从而得出求解问题的解。
数值分析中最重要的就是数值计算误差和截断误差的控制,只有通过合理的参数设置和计算方法,才能得到高精度的结果。
总体来看,有限元法的力学基础涉及材料力学、结构力学和数值分析三个方面。
只有这些基础知识有一个深入的理解,才能更好地掌握有限元法的应用。