极值、临界问题
2025高考物理总复习圆周运动中的临界极值问题

2
对 a 有 kmg-FT=ml2 ,对 b 有 FT+kmg=m·
2l2 ,解得 ω2=
2
。
3
拓展变式 2
把典题1中装置改为如图所示,木块a、b用轻绳连接(刚好拉直)。(1)当ω为
多大时轻绳开始有拉力?(2)当ω为多大时木块a所受的静摩擦力为零?
答案 (1)
2
(2)
解析 (1)在 b 的静摩擦力达到最大时,轻绳刚要产生拉力,对 b 有
的间隙可忽略不计。已知放置在圆盘边缘的小物体与圆盘的动摩擦因数
为μ1=0.6,与餐桌的动摩擦因数为μ2=0.225,餐桌离地高度为h=0.8 m。设小
物体与圆盘以及餐桌之间的最大静摩擦力等于滑动摩擦力,重力加速度g
取10 m/s2。
(1)为使小物体不滑到餐桌上,圆盘的角速度ω的最大值为多少?
(2)缓慢增大圆盘的角速度,小物体从圆盘上甩出,
滑动的末速度 vt',由题意可得 vt'2-0 2 =-2ax'
由于餐桌半径为 R'= 2r,所以 x'=r=1.5 m
解得 vt'=1.5 m/s
设小物体做平抛运动的时间为 t,则
1 2
h=2gt ,解得
t=
小物体做平抛运动的水平位移为 x1=vt't=0.6 m。
2ℎ
=0.4
s
审题指导
关键词句
在圆周运动最高点和最低点的临界条件分析。
题型一
水平面内圆周运动的临界问题
1.水平面内圆周运动的临界、极值问题通常有两类,一类是与摩擦力有关
的临界问题,一类是与弹力有关的临界问题。
2.解决此类问题的一般思路
小专题4.5 动力学中临界与极值问题(解析版)

第四章 力和运动的关系小专题5 动力学中临界与极值问题【知识清单】1.临界与极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;(3)若题目中有“最大”、“最小”、“至少”、“至多”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;(4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度。
2.动力力学中典型临界条件(1)接触与分离的临界条件: 。
(2)接触面间相对滑动的临界条件: 。
(3)绳子断裂的临界条件: 。
(4)绳子松弛的临界条件: 。
(5)变加速运动过程中速度达到极值时刻的临界条件: 。
【答案】2.(1)接触面间弹力为零(2)静摩擦力达到最大值(3)绳中张力等于它所能承受的最大张力(4)绳中张力为零(5)加速度为零【考点题组】【题组一】物理临界与极值问题1.如图所示,一细线的一端固定于倾角为450的光滑楔形滑块A 上的顶端O 处,细线另一端拴一质量为m=0.2kg 的小球静止在A 上。
若滑块从静止向左匀加速运动时加速度为a 。
(取g=10m/s2.)A . 当a =5m/s 2时,线中拉力为N 223 B . 当a =10m/s 2时, 小球受的支持力为N 2C . 当a =12m/s 2时, 经过1秒钟小球运动的水平位移是6mD . 在稳定后,地面对A 的支持力一定小于两个物体的重力之和【答案】A【解析】当小球对滑块的压力恰好等于零时,小球所受重力mg 和拉力T 使小球随滑块一起沿水平方向向左加速运动,由牛顿运动定律得小球和滑块共同的加速度为:200/1045tan s m g a ==。
当a=5m/s 2<a 0=10m/s 2时,斜面对小球有支持力,将小球所受的力沿加速度方向和垂直于加速度方向分解,有:Tcos450-Nsin450=ma ,Tsin450+Ncos450=mg ,联立解得:N T 223=,故A 正确;当a=10m/s 2=a 0=10m/s 2时,斜面对小球恰好没有支持力,故N=0,故B 错误;当a=12m/s 2>a 0=10m/s 2时,滑块的位移为m at x 6212==,而小球要先脱离斜面,然后保持与滑块相同的运动状态,故在这1s 内小球运动的水平位移小于6m ,故C 错误;在稳定后,对小球和滑块A 整体受力分析可知,在竖直方向没有加速度,故地面对A 的支持力等于两个物体重力之和,故D 错误。
平衡中的临界极值问题

平衡中的临界和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。
求解平衡的临界问题一般用极限法。
极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。
在平衡中最常见的临界问题有以下两类: 一、以弹力为情景1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。
2. 绳子断与持续的临界条件是:作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。
例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。
解:作出A 受力图如图所示,由平衡条件有:F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为:N F N 33403320≤≤变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断?(2)要使细线不被拉断,拉力F 不得超过多少?变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承受的最大拉力均为T ,则每根绳的长度不得短于__ ____.例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。
动力学中的临界与极值问题

考点二 动力学中的临界与极值问题动力学中的临界问题一般有三种解法:1.极限法在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.2.假设法有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法.3.数学法将物理过程转化为数学公式,根据数学表达式求解得出临界条件.命题点1 接触与脱离的临界条件3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2)【解析】 设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有kx 1=(M +m )g ①kx 2-mg =ma ②x 1-x 2=12at 2③ 由①式得x 1=(M +m )g k=0.15 m , 由②③式得a =6 m/s 2.F min =(M +m )a =72 N ,F max =M (g +a )=168 N.【答案】 F max =168 N F min =72 N命题点2 相对滑动的临界条件4.如图所示,12个相同的木块放在水平地面上排成一条直线,相邻两木块接触但不粘连,每个木块的质量m =1.2 kg ,长度l =0.5 m .木块原来都静止,它们与地面间的动摩擦因数均为μ1=0.1,在左边第一个木块的左端放一质量M =1 kg 的小铅块(可视为质点),它与各木块间的动摩擦因数均为μ2=0.5,现突然给小铅块一个向右的初速度v 0=9 m/s ,使其在木块上滑行.设木块与地面间及小铅块与木块间的最大静摩擦力均等于滑动摩擦力,重力加速度g =10 m/s 2.求:(1)小铅块相对木块滑动时小铅块的加速度大小;(2)小铅块下的木块刚发生运动时小铅块的瞬时速度大小.【解析】 (1)设小铅块相对木块滑动时加速度大小为a ,由牛顿第二定律可知μ2Mg =Ma解得a =5 m/s 2.(2)设小铅块最多能带动n 个木块运动,对n 个木块整体进行受力分析,当小铅块下的n 个木块发生运动时,则有μ2Mg ≥μ1(mgn +Mg )解得n ≤3.33即小铅块最多只能带动3个木块运动设当小铅块通过前面的9个木块时的瞬时速度大小为v ,由动能定理可知-μ2Mg ×9l =12M (v 2-v 20) 解得v =6 m/s.【答案】 (1)5 m/s 2 (2)6 m/s命题点3 数学方法求解极值问题5.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.求:(1)物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?【解析】 (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得L =v 0t +12at 2① v =v 0+at ②联立①②式,代入数据得a =3 m/s 2③v =8 m/s ④(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得F cos α-mg sin θ-F f =ma ⑤F sin α+F N -mg cos θ=0⑥又F f =μF N ⑦联立⑤⑥⑦式得F =mg (sin θ+μcos θ)+ma cos α+μsin α⑧ 由数学知识得cos α+33sin α=233sin(60°+α)⑨ 由⑧⑨式可知对应F 最小的夹角α=30°⑩联立③⑧⑩式,代入数据得F 的最小值为F min =1335N. 【答案】 (1)3 m/s 2 8 m/s (2)30°1335N“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.。
高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。
物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
第四章 运动和力的关系 临界(极值)问题(课件)高中物理课件(人教版2019必修第一册)

θ
G
【例题】在水平向右运动的小车上,有一倾角θ=370的光滑斜面,质量为m的小球被平行
于斜面的细绳系住而静止于斜面上,如图所示。当小车分别以a1=g和a2=2g 的加速度水平
a
向右运动时,绳对小球的拉力及斜面对小球的弹力各为多大?
FT
解:小球即将脱离斜面支持力FN =0
对小球进行受力分析,得合力:
必须大于或等于1 N.
当F较大时,在A到达B的右端之前,就与B具有相同的速度,之后A必须相对于B
静止,才不会从B的左端滑落.对A、B整体和A分别应用牛顿第二定律
得F=(m+M)a,μMg=Ma 解得F=3 N.
若F大于3 N,A就会相对于B向左滑下
综合得出力F应满足的条件是1 N≤F≤3 N.
【例题】如图甲所示,物体P置于光滑的水平面上,用轻细线跨过质量不计的光滑
沿y轴方向
FNcosθ + FTsinθ=mg
将 a=g 代入
得
FT=-0.2mg
FN=1.4mg
FT的负号表示绳已松弛,故FT=0
a
y
FN
FT
x
θ
G
【拓展】上述问题中,若小车向左加速运动 ,试求加速度a=g时的绳中张力。
解:绳子即将变柔软时拉力FT =0
a
对小球进行受力分析,得合力:
FN
F=mgtanθ =ma
M
fm
则两者保持相对静止的最大加速度为
am=fm/M= µmg/M=3m/s2
再取整体为研究对象受力如图
得:Fm=(M+m) am=30N
m
而 F=25N <Fm
M
Fm
木块与小车保持相对静止一起加速
牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题牛顿运动定律中的临界和极值问题动力学中的典型临界问题包括接触与脱离的临界条件、相对静止或相对滑动的临界条件、绳子断裂与松弛的临界条件以及速度最大的临界条件。
对于接触与脱离的临界条件,当两物体相接触或脱离时,接触面间弹力FN等于0.对于相对静止或相对滑动的临界条件,当两物体相接触且处于相对静止时,常存在着静摩擦力,此时相对静止或相对滑动的临界条件是静摩擦力达到最大值。
对于绳子断裂与松弛的临界条件,绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力,绳子松弛的临界条件是FT等于0.对于速度最大的临界条件,在变加速运动中,当加速度减小为零时,速度达到最大值。
解决临界极值问题常用方法有极限法、假设法和数学法。
极限法可以把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的。
假设法常用于临界问题存在多种可能时,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时。
数学法则将物理过程转化为数学公式,根据数学表达式解出临界条件。
举例来说,对于接触与脱离类的临界问题,可以考虑以下几个例子:例1:在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动(a<g),试求托盘向下运动多长时间能与物体脱离?例2:竖直固定的轻弹簧,其劲度系数为k=800N/m,上端与质量为3.0kg的物块B相连接。
另一个质量为1.0 ___的物块A放在B上。
先用竖直向下的力F=120N压A,使弹簧被压缩一定量后系统静止,突然撤去力F,A、B共同向上运动一段距离后将分离,分离后A上升最大高度为0.2m,取g=10m/s,求刚撤去F时弹簧的弹性势能?例3:质量均为m的A、B两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg的恒力F向上拉A,当运动距离为h时A与B分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 两接触面刚好脱离的临界条件是:弹力为零,两物体沿垂直接触切面方向上的和均相同.5. 用细线吊着的小球,为使小球能在竖直平面内作完整的圆周运动,需满足:小球在最高点的速度至少为v = .设细线的长度为l,重力加速度为g.6. 简谐振动的物体的速度、回复力的大小关于对称.简谐振动的v - t图象,s -t均为正弦或余弦图。
7. 有固定转动轴的物体系,当时,有最大转动速度.8. 由不可伸长的轻绳,轻质硬棒连接的两物体,各自速度沿着绳子或杆身方向上的分量大小相等,两接触物体的速度沿着垂直接触面方向上的分量大小相等.通常将绳子(杆)末端的实际速度沿着方向和方向上进行分解.9. 一端开口的盛有水银的玻璃管转到位置时,空气柱最长,如有水银泄出,则此位置水银泄出量最多.10. 等量同种电荷在连线的中垂线上的场强变化规律是:从连线中点向无穷远处,场强(填变化情况)。
11. 滑动变阻器按并联式接入电路时:当两并联支路的阻值越(填“接近”或“远离”),总阻值越大。
随着滑片移动,某一条支路的阻值变小,则与它并联的那条支路中的电流,(填变化情况)它本身的电流. (填变化情况)。
反之,一条支路的阻值变大,与它并联的那条支路的电流一直变大,它本身的电流一直减小.即概括为“并同串反”,两支路电流均为单调变化.12. 电源的电动势为E,内阻为r. 当外电路总阻值与电源内阻越(填“接近”或“远离”)时,电源的输出功率越大. 当外电路总阻值与电源内阻相等时,电源的输出功率达到最大值P m = (用E、r表示). 若电源的输出功率P ≠ P m,则P对应的外电路阻值可能有两个值,R1和R2,两者满足:R1.R2 = r2 .对电源的输出功率的这一特点稍加推广,可得到:当时,滑动变阻器上消耗的电功率最大。
热身练习:1. 如图所示.质量为m的物体静止在倾角为θ的斜面上.当沿水平方向对物体施加一水平恒力时,物体仍静止不动.下列判断正确的是() (A )物体对斜面的正压力肯定比原来的大 (B )物体对斜面的静摩擦力肯定比原来的小 (C )物体受到的静摩擦力方向可能发生变化 (D )上述说法都正确2. 如图,在匀强电场中将一质量为m 、带电量为q 的带电小球,由静止释放,带电小球运动轨迹为一直线,该直线与竖直方向夹角为θ.不能忽略小球的重力,则匀强电场的场强大小为()(A )唯一值是q mg θtan (B )最大值是q mg θtan(C )最小值是qmg θsin (D )最小值是q mg θcos3. 图所示,自由下落的小球,从它接触竖直放置的弹簧开始,到弹簧被压缩到最短的过程中,下列说法中正确的是()(A )小球从接触弹簧开始一直减速,直到速度减为零 (B )弹簧弹力对小球先做正功,再做负功 (C )小球的加速度一直增大(D )小球的加速度先减小后增大,当加速度为零时,小球的速度最大4. 距离水平面某一高度固定一带正电的点电荷Q ,一同样带正电的点电荷从水平面的左边以一定的速度向右运动到C 点,B 点为Q 在水平面上的投影,AB = BC ,则下列描述叙述的是()(A )为使P 点能运动到C 点,则需使P 点能通过B 点 (B )若P 点能到到达C 点,则P 在B 点的电势能最小 (C )若P 点能到达C 点,从O 到C ,电场力先做正功后作负功(D )若P 点能到达C 点,则A 点的动能等于C 点的动能5. 轻质支架的两端固定质量均为m 的A 、B 两球,支架两条边长OA = 3OB ,且可绕转轴O 在竖直平面内转动,不计摩擦和空气阻力。
将OA 边从水平位置由静止释放后,下列说法正确的是()(A ) 当A 球转动的O 点的正下方时,A 球的速度最大 (B ) 当OA 边转过60°后,A 球的速度最大 (C ) 转动过程中A 球的机械能守恒(D ) 转动过程中A 球和B 球的机械能总和守恒A B C O PP Q A O6. 在竖直平面内固定一半径为R 的光滑圆轨道,其左侧有光滑轨道与其相切与最低点B ,如图所示。
现从左轨道上的某处,无处速度释放一质量为m 的小球,则为使小球能完成圆周运动,则释放的高度的最小值H = 。
精解名题:【例1】(2008年高考上海卷·NO. 4)向量与矢量三角形]如图所示,在竖直平面内的直角坐标系中,一个质量为m 的质点在外力F 的作用下,从坐标原点O 由静止沿直线ON 斜向下运动,直线ON 与y 轴负方向成θ角(θ<π/4)。
则F 大小至少为____________; 若F =mg tan θ,则质点机械能大小的变化情况是: _________________。
【易错点】:某同学这样解第2问,若F =mg tan θ时,正好F 力的方向沿着x 轴正方向,因此外力F 与运动位移方向成锐角,质点的机械能增加。
实际上该同学忽视了题干只给出外力F 的大小,而未给出该力的方向。
F =mg tan θ时,外力F 的方向不仅仅为沿着x 轴正方向,还可能有其它方向。
为了能够严密的找出F =mg tan θ时的所有可能性,需要运用力的矢量三角形定则。
【解析】:如图所示,质点受到的力有重力mg 和外力F ,合力的方向沿着ON 方向,将重力、外力、合力归结到一个三角形中,该质点受到重力和外力F 从静止开始做直线运动,说明质点做匀加速直线运动,如图中显示当F 力的方向为a 方向(垂直于ON )时,F 力最小为mg sin θ;若F =mg tan θ,即F 力可能为b 方向或c 方向,故F 力的方向可能与运动方向成锐角相同,也可能与运动方向成钝角,成锐角时,除重力外的这个F 力对质点做正功,质点机械能增加;若成钝角,力F 做负功,则质点机械能减少。
故两空分别填:mg sin θ,增大、减小都有可能。
【点评】:力的矢量三角形定则是从平行四边形定则中演绎出来的新的数学方法,解决共点力问题有很好的作用,特别是动态平衡问题、力的合成与分解中的多解分析,这样的方法非常严密。
矢量三角形的处理原则:1、抓住“定”量,比如重力的大小和方向对应矢量三角形的边长和方向,这点很重要,它直接确定了三角形的两个顶点和一个边;再比如墙壁上的弹力方向始终不变,这确定了动态三角形中的某个边的方向;mga b cO Nθ2、找到“变”量,往往以某个力的角度发生变化引起三角形另外两个边的变化,有时候是边长变化、有时候是方向发生变化。
【例2】(1)如下左图,ABC光滑固定轨道,A、B、E在同一水平面上,C点距水平面的高度为h,一滑块从A点以初速度v0分别沿两轨道滑行到C处后水平抛出。
若保持v o不变,当h = 时,其水平射程最远,最远射程为s max =。
(2)如上右图所示,处于匀强磁场中的光滑平行导轨的一端连接有电阻为R的电阻,导轨单位长度的电阻为R o,导轨间距为L。
放在其上的一根质量为m,电阻不计的导体棒在水平向右的拉力F的作用下,从t = 0时刻开始,由静止做匀加速运动,加速度为a。
磁感应强度为B。
则:当t = 时,拉力达到最大值,最大值为F max = 。
(3)(2012普陀区二模No.32)如图所示,A、B两小球用轻杆连接,A球只能沿内壁光滑的竖直滑槽运动,B球处于光滑水平面内。
开始时杆竖直,A、B两球静止。
由于微小的扰动,B开始沿水平面向右运动。
已知A球的质量与B球的质量均为m= 1kg,杆长为L = 0.2m。
则:①A球下落过程中,其机械能的变化情况是:,②当A球机械能最小时,杆与竖直方向夹角的余弦值为。
【答案】:(1)v28g,v24g,(2)RR o a,ma +B2L2aRR o2RR o【解析】:A B(l )在外面上离平板高度为h 0处放置一滑块A ,使其由静止滑下,滑块与平板间的动摩擦因数μ=0.2,为使平板不翻转,h 0最大为多少?(2)如果斜面上的滑块离平板的高度为h 1=0.45 m ,并在h 1处先后由静止释放两块质量相同的滑块A 、B ,时间间隔为Δt =0.2s ,则B 滑块滑上平板后多少时间,平板恰好翻转。
(重力加速度g 取10 m/s 2)【解】:(1)设A 滑到a 处的速度为v 0=02gh ①f =μN ,N=mg ,f =m a ,a =μg ②滑到板上离a 点的是大距离为v 02=2μgs 0,s 0=2g h 0/2μg=h 0/μ ③ A 在板上不翻转应满足条件;摩擦力矩小于正压力力矩,即M 摩擦≤M 压力 μmgR≤mg (L -s 0)④h 0≤μ(L -μR )=0.2(1-0.2)=0.16m ⑤(2)当h =0.45m ,s m gh v A /35.41022=⨯⨯==v A =v B =3m/s ⑥设B 在平板上运动直到平板翻转的时刻为t ,取△t=0.2s s A =v A (t+△t )-μg (t+△t )2/2 ⑦′ S B =v B t -μgt 2/2 ⑦ 两物体在平板上恰好保持平板不翻转的条件是 2μmgR=mg (L -S A )+mg (L -S B )⑧ 由⑦+⑦′式等于⑧式,得t=0.2S补充例题【例5】(2012浦东新区二模No.33)如图所示,高为0.3m 的水平通道内,有一个与之等高的质量为M =1.2kg 表面光滑的立方体,长为L =0.2m 的轻杆下端用铰链连接于O 点,O 点固定在水平地面上竖直挡板的底部(挡板的宽度可忽略),轻杆的上端连着质量为m =0.3kg 的小球,小球靠在立方体左侧,轻杆恰好处于竖直方向上。
若稍加一扰动,杆将靠在立方体左侧渐渐向右倒下,求最终立方体在通道内的运动速度多大?取g =10m/s 2。
【解析】:设当杆倾至与水平面成θ角度时,小球和立方体脱离,如图.此时小球的速度为v 1,立方体的速度为v 2.两者的速度满足:v 1.sin θ = v 2①开始到脱离,小球和立方体组成的系统机械能守恒:mg (L - L sin θ) = 12mv 12+ 12Mv 22②又两者刚脱离时,小球与立方体之间无挤压作用,杆对小球无支撑力,故小球仅受重力,向心力由重力沿半径方向的分力提供.即: mv 12L= mg sin θ③ 联立①②③,可解得:sin θ = 12, v 2 = 0.5m/s【点评】:本题中的难点是判断出小球和和立方体脱离瞬间杆对小球无弹力作用,因为刚脱离瞬间小球和立方体相接触但无挤压,说明杆对小球无沿杆身向上的支撑力,而在此之前杆对小球一直是支撑力——若杆对小球的力是拉力,则小球和立方体在水平方向上的加速度不可能相同,早就已经脱离了——故脱离瞬间为杆对小球的支撑力从有突变到无的时刻.此时向心力完全由重力沿半径方向的分力提供.过了这个时刻,由于小球继续下落,速度增大,所需的向心力增大,重力沿半径方向的分力反而减小,故杆转而提供指向圆心的拉力。