汽轮机高中压缸负荷分配方法
汽轮机施工方案优化

汽轮机施工方案优化作者:张继东来源:《科学导报·科学工程与电力》2019年第23期【摘 ;要】嶺澳二期核电工程为国内首台百万千瓦半速汽轮机,设备(包括基础)形式与结构特点较大亚湾、岭澳一期有较大区别。
因岭澳二期设备供应状况不甚理想(整体拖期达8个月以上,且未在制造厂进行总装),原定的安装方案无法实施,为降低经济损失,节约工期,现场对安装方案及逻辑进行了大幅调整,对安装方案进行了多处优化,最终实现了系统的顺利移交,确保了后续汽轮机机盘车可用、真空可用、常规岛热试开始等重要里程碑的提前实现。
【关键词】汽轮机;施工方案;逻辑优化1、隔板及轴承箱内顶轴油管施工方案优化因遭遇不可抗力条件,汽轮机隔板无法在制造厂进行总装,轴承箱内的顶轴油管路也没有在厂内进行装配的条件,汽轮机安装、调试的一系列工程节点将大面积延误,进而严重威胁到机组的按期商运。
为此,总包方决定由供应商介入将汽轮机隔板与轴承箱内顶轴油管的总装工作转移到现场进行。
现场总装的劣势在于工机具配置不比制造厂内完备,隔板底键、悬挂销的配准需要外委加工,使工作难以连续开展。
为解决这一困境,现场重新组织施工计划,一方面安排三个汽缸的总装工作接续开展,另一方面安排轴承、转子调整、定位等安装工作与隔板总装工作交叉进行,最大限度的避免了停工待料情况的出现。
同时,现场总装也有有利的方面,即汽缸支撑方式与安装状态下完全相同(制造厂内总装时则有区别),这样产品底键、悬挂销的配准工作与汽轮机通流间隙的调整工作可以同步开展,基本上总装结束即安装结束。
与此同时,轴承箱内顶轴油管现场同步装配,保证了顶轴油管路的提前投用,进而确保了后续汽轮机扣缸等安装工作的顺利开展。
缸内部件转移到现场总装后,实际上与通流间隙的测量、调整一并成为汽轮机安装的关键路径,若按原计划在制造厂内进行,大致需要1个月的时间,而在现场开展,实际耗时约2.5个月,考虑到这2.5个月内汽轮机的正常安装工作与总装交叉开展,进度未受影响,因此,原定总装的1个月工期实际上是被消化在现场安装过程中了,保证了关键路径没有因为加入额外工作而变长。
300MW汽轮机高中压缸负荷分配

一般都采用垂弧法做负荷分配,就是看两个角的下沉量,先架上表,然后将猫爪垫片抽掉,看下沉多少,做记录,然后再把垫片加入,再用同样的方法做另一个,两个数的差值应不大于要求值,否则要调整垫片汽缸负荷分配是实测汽缸前后左右四个猫爪施加给相应猫爪横销的负荷,或汽缸施加给猫爪横销/台板的负荷,并根据测量值调整猫爪工作垫块的厚度,使汽缸重量均匀地分配在它的支承上.负荷分配应按制造厂规定的方式进行,通常有测力计法,猫爪垂弧法和猫爪抬差法.(后两者实质上是同一种方法.)负荷测量时是空缸还是实缸由制造厂规定.负荷分配的值应符合设计要求.一般规定:采用测力计法时,汽缸中心线两侧对称位置的负荷差应不大于两侧平均负荷的5%;采用猫爪垂弧法时,汽缸中心线两侧对称位置的垂弧值差不大于0.10mm.300MW汽轮机高中压缸负荷分配【摘要】300MW汽轮机高中压缸安装阶段必须在全实缸的情况下进行负荷分配,主要是保证整个汽缸的重力合理的分配到各个承力面上,从而避免因载荷不均而导致机组不均匀沉降、不均匀膨胀,增加机组的振动,影响到机组长周期安全运行。
1 目前,国产300MW汽轮机组均采用高中压缸合缸结构,整个高中压缸内包括了高压部分、中压部分。
高压部分部套有高压内缸、高压隔板套、高压进/排汽平衡活塞,中压部分部套有中压内缸、中压隔板套、中压进汽平衡活塞。
整个高中压部套的重力以及外接管道的重量全部通过搭在前箱和低压缸的四只猫爪支撑,不均匀的载荷直接作用在汽缸上会导致汽缸不均匀沉降和不规则变形。
因此,必须在安装阶段对这种猫爪结构的汽缸静定结构进行负荷分配,保证汽缸的重力合理的分配到各个承力面上,减小汽缸不规则变形和振动,确保机组安全、长周期的运行。
2 负荷分配的方法根据目前300MW机组高中压缸的特点,负荷分配通常有猫爪垂弧法和测力计法。
所谓负荷分配,即将汽缸的重力合理的分配到各个承力面上去。
猫爪垂弧法就是指每个支撑猫爪在无猫爪垫片支撑的情况下,汽缸猫爪自然下垂的高度,比较左右对称位置猫爪的垂弧,通过调整各猫爪下部垫片的厚度,使各对称点猫爪垂弧差在允许范围以内,此方法以猫爪垂弧(单位:mn1)间接的反映汽缸的负荷;测力计测量法,就是将专用的测力计拧入高中压缸猫爪处的专用螺孔内,当测力计受力时,根据测力计上端百分表指示的弹簧压缩值,即查知该猫爪的负荷,根据各猫爪的负荷值进行对称点负荷的调整,负荷差在范围以内时,用量纲表测量猫爪底部垫片的厚度,即为正式垫片的厚度值,此方法直接反映了各猫爪分配的负荷。
350MW机组汽轮机中压缸排汽供热改造分析

350MW机组汽轮机中压缸排汽供热改造分析在当今能源需求不断增长和环保要求日益严格的背景下,对现有350MW 机组汽轮机进行中压缸排汽供热改造成为了提高能源利用效率、减少环境污染、满足社会供热需求的重要举措。
本文将对 350MW 机组汽轮机中压缸排汽供热改造进行详细的分析。
一、改造背景随着城市化进程的加速,城市集中供热的需求不断增加。
传统的供热方式往往存在能源浪费、环境污染等问题。
而大型火电机组在发电的同时,其产生的余热如果能够得到有效利用,用于供热,将极大地提高能源综合利用率,实现节能减排。
350MW 机组汽轮机在运行过程中,中压缸排汽具有一定的压力和温度,具备供热的潜力。
通过对其进行改造,可以将这部分蒸汽引出,用于供热,从而提高机组的经济性和社会效益。
二、改造原理中压缸排汽供热改造的基本原理是在汽轮机中压缸与低压缸之间设置供热抽汽口,将部分中压缸排汽抽出,经过减温减压等处理后,输送至热网用于供热。
在改造过程中,需要对汽轮机的通流部分进行重新设计和优化,以确保机组在供热工况下的安全稳定运行。
同时,还需要配套建设供热管道、换热站等设施,将抽汽的热能传递给用户。
三、改造方案1、抽汽口位置的选择抽汽口位置的选择至关重要,需要综合考虑汽轮机的结构、运行参数以及供热需求等因素。
一般来说,抽汽口应选择在中压缸排汽压力和温度较为稳定的位置,以保证抽汽的品质和稳定性。
2、抽汽参数的确定抽汽参数包括压力、温度和流量等。
这些参数的确定需要根据热网的需求、汽轮机的运行特性以及热力系统的平衡进行计算和优化。
通常,抽汽压力应满足热网的压力要求,抽汽温度应经过减温处理后符合热网的温度标准。
3、供热管道系统的设计供热管道系统的设计应考虑管道的材质、直径、保温等因素,以减少热损失和提高输送效率。
同时,还需要合理规划管道的走向和布置,避免与其他设施发生冲突。
4、控制系统的改造为了实现机组在供热和发电工况之间的灵活切换,需要对汽轮机的控制系统进行改造。
安装过程中对影响汽轮机振动值的因素控制措施

安装过程中对影响汽轮机振动值的因素控制措施摘要安装过程中有可能影响到机组振动值的因素很多,轴承座台板滑动情况、轴封间隙、对轮找中心、转子本身的平衡情况(制造因素)等都是影响机组振动值的关键因素,为了在工程安装阶段消除这些因素,必须在汽机本体安装的工程中严把质量关,通过分析影响机组振动的因素,并采取相应的控制措施,做到在安装过程中尽量减少影响汽轮机振动的因素。
关键词汽轮机;安装;振动;控制措施中图分类号tm6 文献标识码a 文章编号 1674-6708(2012)81-0129-020引言汽轮机是现代火力发电厂中应用最广泛的热动力机械,它在火力发电厂中带动发电机发电,汽轮发电机组是担负发电厂发电任务的重要组成设备,轴系振动直接影响发电厂安全稳定运行。
1安装过程中影响轴系振动的因素安装工程中有可能影响到机组振动值的因素很多,轴承座台板滑动情况、轴封间隙、对轮找中心、转子本身的平衡情况(制造因素)等都是影响机组振动值的关键因素,为了在工程安装阶段消除这些因素,必须在汽机本体安装的工程中严把质量关。
现以新疆某电厂(2×300mw,上海汽轮机厂)为例,总结我们在施工过程中为减少机组振动的因素而做出的相应措施。
2 施工过程控制标准1)确保台板与轴承座、汽缸的接触面的间隙用0.05mm塞尺检查,不能塞入;2)用涂色法检查瓦枕与轴承洼窝的接触面积大于75%,且接触点分布均匀;3)安装前对转子进行检查,保证其最大弯曲度,轴颈椭圆度、不柱度、联轴器晃度、瓢偏等数据在厂家要求的范围内;4)联轴器中心严格按厂家标准执行,张口与中心值与厂家要求值的偏差在0.02mm以内;5)排汽装置膨胀节与低压缸焊接时汽缸变形控制在0.08mm以内;6)依照厂家提供的图纸和安装说明书认真调整汽封、及通流间隙,确保动、静间隙符合厂家要求;7)调整各轴瓦的间隙及轴瓦紧力在厂家要求范围内;8)确保推力瓦块与推力盘的接触为75%以上,推力间隙合格;9)在汽轮发电机组台板的二次浇灌时,确保基础上没有杂物和油污,同时对基础提前用清水浸润24小时以上;浇灌时水泥砂浆只从一端灌入确保浇灌密实没有气孔,振捣密实;浇灌后对混凝土砂浆进行精心养护;10)确保联轴器连接后对应点的晃度及总晃度的变化量都不超0.02mm;11)确保瓦温不超90℃,油温不超60℃。
上汽B191汽轮机高中压缸通流改造及效益分析 郑国强

上汽B191汽轮机高中压缸通流改造及效益分析郑国强发表时间:2017-12-23T21:24:16.057Z 来源:《电力设备》2017年第26期作者:郑国强[导读] 摘要:本文通过华电可门电厂高中压缸通流改造后汽轮机结构的改进,包括高中压缸缸体、转子及通流部分的改造,以及改造前后的效益对比,分析通流改造后的效果。
(福建省福州市连江县可门港区福建华电可门发电有限公司福建 350512)摘要:本文通过华电可门电厂高中压缸通流改造后汽轮机结构的改进,包括高中压缸缸体、转子及通流部分的改造,以及改造前后的效益对比,分析通流改造后的效果。
关键词:汽轮机;通流改造;高中压缸;热耗;供电煤耗华电可门电厂#3机组为600MW超临界机组汽轮机,原先为上海汽轮机有限公司引进美国西屋技术设计制造,2008年10月投产。
随着汽轮机技术的日新月益,当时引进的技术已不够先进,且机组自投产以来一直存在着运行效率偏低等问题。
1、汽轮机系统概况华电可门电厂#3机组为上海汽轮机厂生产的600MW超临界机组,汽轮机型号为N600-24.2/566/566,采用超临界、一次中间再热、单轴、三缸四排汽、反动凝汽式汽轮机,制造厂产品代号B191。
锅炉为上海锅炉厂有限公司制造的SG-1913/25.4-M956型超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、固态排渣、全钢悬吊Π型结构、露天布置燃煤锅炉。
发电机是上海汽轮发电机有限公司引进西门子技术制造的QFSN-600-2型发电机,为汽轮机直接拖动的隐极式、二极、三相同步发电机,采用水氢氢冷却方式。
#3机组于2008年8月投产发电。
根据《可门港经济区(一期)供热专项规划》和《可门港经济区(一期)热电联产专项规划》,可门电厂作为可门港经济区内集中供热热源点,拟通过对电厂一、二期四台凝汽式600MW机组分期供热改造实现热电联产对可门港经济区(一期)进行集中供热。
汽轮机本体大修重要工序控制

330MW机组汽轮机本体大修重要工序控制摘要:本文针对阿尔斯通330MW机组汽轮机本体的结构特点,结合达拉特发电厂三台机组A级标准性大修的实际经验,对大修网络进度主线上的几个重要关键工序如汽轮机轴系中心、通流间隙调整、扣缸、负荷分配、修后启动作了系统阐述,为同类型机组的大修提供借鉴和参考。
关键词:汽轮机大修重要工序控制蒙达发电有限责任公司现装四台GEC ALSTHOM公司与北京重型电机厂合作生产的汽轮发电机机组,汽轮机型号T2A·330·30·2F1080,为单轴、三缸、两排汽、中间再热、凝汽冲动式汽轮机。
该机组在结构上轴向长度短、滑销系统简单可靠、内外缸上猫爪支承对中性好、通流部分设计优化可靠、轴承座固定不动抗振能力强等特点。
从汽轮机本体大修的角度出发,要达到保持、恢复或提高设备性能的目的,必须对工艺复杂的大修工序统筹安排,对网络进度主线上的关键工序和难点工序严格控制。
根据蒙达公司#1、#2、#4汽轮机本体三次A级标准性大修的实践,考虑重要性、难度、主从关系等因素,大修中要控制好的工序有:汽轮机轴系中心、通流间隙调整、扣缸、负荷分配及修后启动。
1 汽轮机轴系中心1.1 汽轮机轴系中心的内容在ALSTHOM汽轮发电机组大修涉及的中心有:汽轮机高、中、低转子中心、高压转子与盘车中心、高压转子与主油泵中心、盘车与偶合器及电机中心、发电机转子与低压转子中心、发电机转子与发电机定子空气间隙、发电机转子与励磁机转子中心。
而这些中心按级别划分:基础中心只有汽轮机高中低转子中心,其他中心是在汽轮机转子中心确定后才进行,也就是在高中低对轮连接完成后才进行,汽轮机转子中心可以说是最重要的中心,其重要性还表现在:1)汽轮机本体大修上,汽轮机转子中心是静止部件的基准,直接影响到动静间隙的准确性,是静止部件检修调整的依据;2)汽轮机转子中心与机组振动密切相关。
1.2 汽轮机轴系中心的质量标准ALSTHOM汽轮机安装手册要求,本体大修轴系中心的质量标准为:1)联轴器的圆周和端面偏差均要求控制在0.02㎜以下;2)轴系扬度接近厂家给定的扬度标准。
汽轮机效率和功率

那ቤተ መጻሕፍቲ ባይዱ有2个问题:
1、高压缸入口压力与出口压力(高排压力)之差那么大,压差大不就意味着焓降也大吗,高压缸做功不也就多吗?
2、再热汽温一般不用减温水调节的目的就是减温水增加了中低压缸的蒸汽流量,使中低压缸做功加强,高压缸做功减弱,整机效率下降。怎么解释?
1.在进口(或出口)参数相同或相近时,压差增加焓降增加;以引进型亚临界300MW机组为例,其高、中、低压缸的焓降分别约为410kJ/kg、475kJ/kg和770kJ/kg;功率分配分别为29%、31%和40%。
A. 高压级组:高压级组中蒸汽容积流量不大,其变化相对较小。高压级组的通流部分叶栅高度一般不大,平均直径和叶栅高度变化比较平缓,其各级的能量损失中叶栅端部损失、级内间隙漏汽损失所占比例较大。当蒸汽容积流量较小,可采用部分进汽的措施来提高叶片高度。对于大容量汽轮机,高压级组通流部分叶栅高度虽较大,但为了保证必要的刚度和强度,往往采用较厚的高压隔板和较宽的喷嘴,这将导致喷嘴相对高度降低,端部损失较大。
B.中压级组:中压级组介与高压级组与低压级组之间,随着蒸汽的不断膨胀,其容积流量已较大。中压级组一般工作在过热蒸汽区,无湿汽损失,同时各级的端部损失和漏汽损失相对较小,级组中各级的级效率较高。
月17日汽轮机冲转、并网、升负荷至200MW总结二值(1)

12月17日汽轮机冲转、并网、升负荷至200MW总结12月17日,1号机汽轮机#8瓦翻瓦结束,机组重新启动,汽机冲转方式还是采用高中压缸联合启动模式,汽轮机定速3000rpm后并网成功,并成功升负荷至200MW,做机组电气试验,现将本次启动过程总结如下:一、冲转:本次冲转仍为高中压缸联合启动:1、冲转参数:主汽压力6.55MPa,主汽温度393℃,高旁阀开度9.44%,;再热汽压0.09 MPa,再热汽温377℃,低旁阀开度90%,;汽轮机偏心:28.79um,润滑油供油温度40℃给煤量34t/h,省前流量828t/h2、冲转步骤:⑴在汽轮机自动控制中选“高中压缸联合启动”,挂闸,检查高排逆止门联锁开启,V-V阀在开启位【注】本次启动前电科院进行逻辑修改为:高中压缸联合启动模式下,挂闸成功后,高排逆止门联锁开启;当CV开度达3%时,V-V阀联关(实际当CV开度达7%时,V-V阀才联关)⑵冲转:17:00目标转速500rpm,升速率100rpm,汽轮机开始升速,定速500rpm后,应东汽厂专家要求,汽轮机转速达500rpm时,暖机40分钟。
17:33,监盘发现高旁阀开度由9.44%突变至0,且远方无法动作,主汽压由6.14MPa逐渐降低至3.91MPa,再热汽压由0.09MPa,升至0.63MPa,判断高旁已开,就地检查高旁阀确已全开,联系厂家就地关闭高旁阀,远方关闭低旁阀,汽轮机升速至1500rpm,成功避免由于旁路关闭造成汽轮机进汽量突然增大而伤害汽轮机的事故发生,在1500rpm稳定10分钟后,应东汽厂专家要求,汽轮机继续升转速至3000rpm,18:17汽轮机定速3000rpm,升转速期间,各轴瓦振动,瓦温,回油温度均在正常范围内,#9瓦Y振动最大86um,#3瓦温度最高94.7℃,之前最高的#8瓦温度明显好转,最大为92.8℃。
⑶汽轮机定速3000rpm后,润滑油供油压力0.199MPa,停运MSP,TOP后供油压力为0.187MPa,电科院就地将润滑油压调至0.236MPa。