一个系统的差分方程为

一个系统的差分方程为

一个系统的差分方程为() 2.5(1)(2)()5(1)6(2)y n y n y n x n x n x n =---+--+-。确定系统的单位冲击响应。我的解答如下: 方法一:121

121156 2.5()11 2.510.5z z z H z z z z

-------+==--+-,得出11()() 2.5()(1)2n h n n u n δ-=--。 方法二:在时域,系统齐次差分方程的解12()(2)(0.5)n n h y n C C =+。因为当()()x n n δ=时,系统的特解为0,因此()()h h n y n =。由原差分方程可知,y(0)=1,y(1)=-2.5,y(2)=-1.25.此时,根据y(0),y(1)求出的12,C C 不适合y(2)。且与方法一结论不一样。请问问题出在什么地方。谢谢各位解答。

实验3离散系统的差分方程、冲激响应和卷积分析

实验3离散系统的差分方程、冲激响应和卷积分析 一 一、实验目的 1 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统 ] [n x ] [n y Discrete-time systme 其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 0 ][][ 输入信号分解为冲激信号 ∑-=∞ -∞=m m n m x n x ][][][δ 记系统单位冲激响应 ] [][n h n →δ 则系统响应为如下的卷积计算式 ∑∞ -∞ =-= *=m m n h m x n h n x n y ][][][][][ 当 N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为 FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。 二、实验内容 编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。 ] 1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y ]}4[]3[]2[]1[{25.0][-+-+-+-=n x n x n x n x n y 程序1: A=[1,0.75,0.125];B=[1,-1]; x2n=ones(1,65); x1n=[1,zeros(1,30)]; y1n=filter(B,A,x1n); subplot(2,1,1);y='y1(n)'; stem(y1n,'g','.'); title('单位冲击响应') 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

设系统分别用下面的差分方程描述

因为x(n)以N 为周期,所以: x(n 中kN —m) =x(n -m) 第三套 1.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性时不变的。 (1) y(n)=2x( n)+3 n y(n)= Z x(m) m 鱼 解: (1 ) 令:输入为x(n- n o ),输出为y '(n) =2x(n-山)+3,因为 y(n- n o ) =2x( n- n o )+3= y '(n) 故该系统是时不变的。又因为 T[ax 1 (n) + bx 2( n)] = 2ax 1 (n) + 2bx 2( n) + 3 T[ax i (n)] =2ax i (n)+3,T[bx 2(n)] =2bx 2(n) + 3 T[ax 1(n) + bx 2(n)] h aTIxJn)] +bT[x 2(n)] 故该系统是非线性系统。 n 令:输入为x(n- n o ),输出为y(n)=2: x(m-r t ),因为 m=0 n 』0 I y(n - n 。)= S x(m)北 y (n) m zzO 故系统是时变系统。又因为 n T[ax 1 (n) + bx 2(n)]=送(ax 1 (m) + bx 2(m)^ aT[x 1(n)] +bT[x 2(n)] m =0 2. 故系统是线性系统。 如果时域离散线性时不变系统的单位脉冲响应为 为周期的周期序列, 证明: h(n),输入x(n)是以N 试证明其输出 y(n)亦是以N 为周期的周期序列。 y( n)=h( n)*x( n)= □C y( n+kN)= Z m z=-oc h(m)x(n+kN - m) , k 为整数

(完整版)差分方程模型(讲义)

差分方程模型 一. 引言 数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。 1. 确定性连续模型 1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2. 确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。但是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 1. 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i Λ=关联起来得到的方程,则称这个方程为差分方程。 2. 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x Λ, (1) 或者表示为 0),,,,(1=++k n n n x x x n F Λ (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21Λ为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a Λλλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21Λ称为(1)式的特征根。 2.1 差分方程的解 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出方程解的形式。 2.1.1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21Λ,则

离散序列的卷积和系统差分方程的MATLAB实现

信息工程学院实验报告 课程名称:数字信号处理 实验项目名称:离散序列的卷积和系统差分方程的MATLAB 实现 实验时间: 班级:电信131 姓名: 学号:201311404113 一、 实 验 目 的: 熟悉序列的卷积运算及其MATLAB 实现;熟悉离散序列的傅里叶变换理论及其MATLAB 实现;加深对离散系统的差分方程和系统频率响应的理解。 二、实 验 原 理 1、MA TLAB 提供了一个内部函数conv(x,h)来计算两个有限长序列之间的卷积。 2、对于时域离散系统,可用差分方程描述或研究输入、输出之间的关系。对于线性时不变系统,经常用的是线性常系数差分方程。一个N 阶线性常系数差分方程用下式表示: ()() N M i i i i b y n i a x n i ==-=-∑∑ 当 0,1,2,,i b i N == 时,[]h n 是有限长度的,称系统为FIR 系统;反之,称系统为IIR 系统。 在MA TLAB 中,可以用函数filter(a,b,x)求解差分方程,其中参数a,b 分别系统函数的分子和分母多项式的系数。 三、实 验 内 容 与 步 骤 实验内容: 1、已知 1(){1,1,1,1,1}x n =,2(){1,1,1,1,1,1,1}x n =,计算12()()*()y n x n x n =。 2、在0到π区间画出矩形序列 10()R n (其定义见例1-3)的离散时间傅里叶变换(含幅度和相位)。 3、求系统:()0.5((1)(2)(3)(4))y n x n x n x n x n =-+-+-+-的单位冲激响应和阶跃响应。 实验步骤: 1、

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

差分方程

差分方程

第九节差分方程 迄今为止,我们所研究的变量基本上是属于连续变化的类型. 但在经济管理或其它实际问题中,大多数变量是以定义在整数集上的数列形式变化的,银行中的定期存款按所设定的时间等间隔计息,国家财政预算按年制定等等. 通常称这类变量为离散型变量. 对这类变量,我们可以得到在不同取值点上的各离散变量之间的关系,如递推关系等. 描述各离散变量之间关系的数学模型称为离散型模型. 求解这类模型就可以得到各离散型变量的运行规律. 本节将介绍在经济学和管理科学中最常见的一种离散型数学模型—差分方程. 内容分布图示 ★引言★差分的概念★例1-5 ★差分方程的概念★例6 ★例7 ★一阶常系数线性齐次差分方程 ★一阶常系数线性非齐次差分方程 ★例9-14 ★例15 ★例16 ★二阶常系数线性差分方程

★ 二阶常系数线性齐次差分方程的通解 ★ 例17 ★ 例18 ★ 例19 ★ 二阶常系数线性非齐次差分方程的特解 ★ 例20-23 差分方程在经济学中的应用 ★ 模型1 ★ 模型2 ★模型3 ★ 内容小结 ★ 课堂练习 ★ 习题8-9 ★ 返回 内容要点: 一、 差分的概念与性质 一般地,在连续变化的时间范围内,变量y 关于时间t 的变化率是用dt dy 来刻画的;对离散型的变量y ,我们常取在规定的时间区间上的差商 t y ??来刻画变量y 的变化率. 如果 选择1=?t ,则 )()1(t y t y y -+=? 可以近似表示变量y 的变化率. 由此我们给出差分的定义. 定义 1 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分, 也称为函数t y 的一阶差分, 记为t y ?, 即 t t t y y y -=?+1 或 )()1()(t y t y t y -+=?. 一阶差分的差分称为二阶差分t y 2?, 即 t t t t y y y y ?-?=??=?+12)(

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

离散系统的差分方程、冲激响应和卷积分析

实验2 离散系统的差分方程、冲激响应和卷积分析 一、实验目的 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统可表示为 其输入、输出关系可用以下差分方程描述: ∑∑==-=-M k m N k k m n x b k n y a 00][][ 输入信号分解为冲激信号, ∑∞ -∞=-= m m n m x n x ][][][δ。 记系统单位冲激响应 ][][n h n →δ, 则系统响应为如下的卷积计算式: ∑∞ -∞=-= *=m m n h m x n h n x n y ][][][][][ 当N k a k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(b,a,N)求系统的冲激响应。 对于N 阶差分方程∑∑==-=-M k m N k k m n x b k n y a 00][][, 1) 当给定函数的系数和输入序列时,差分方程的递推过程在MA TLAB 中用函数y=filter(b,a,x)来实现,其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。求得的输出序列y 和输入序列x 的长度相等。若x 的长度太短,需要补零。用conv 函数计算能在输入序列后自动补零,而filter 函数不能。 2) MATLAB 中有一个求离散系统脉冲响应的专门函数y=impz(b,a,N),其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。N 为要求的点数。键入impz(b,a),程序将自动给出脉冲响应的曲线。 3) 当输入序列和脉冲响应序列都是以数值方式给出时,可以用MATLAB 中的卷积函数y=conv(x,h)来计算。

差分方程的基本知识(3)

差分方程模型的理论和方法 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

差分方程模型的理论和方法

差分方程模型的理论和方法 第一节 差分 一、 基本概念 1、差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向 前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为: ))((1n k n k x x -??=? 2、差分算子 、不变算子、平移算子 记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。 则有:n n n n x I E Ix Ex x )(-=-=? I E -=?∴ 由上述关系可得: i n k i i k i k n i k i i k i k n k n k x C x E C x I E x +=-=-∑∑-=-=-=?00)1()1()( (1) 这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。 反之, 由 n n n x x x -=?+1 得 n n n x x x ?+=+1: n n n n x x x x +-=?++1222,得:n n n n x x x x 2122?++-=++, 这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。 …….. ,)1(1 0k n i n k i i k i k n k x x C x ++-=-+-=?∑得: n k i n k i i k i k k n x x C x ?+--=+-=-+∑1 0)1( (2)

实验 离散系统的差分方程单位脉冲响应和卷积分析

实验2 离散系统的差分方程、单位脉冲响应和卷积分析 一、 实验目的 1、 熟悉并掌握离散系统的差分方程表示法; 2、 加深对单位脉冲响应和卷积分析方法的理解。 二、 实验原理 (一), 1. 单位采样序列 ???=01 )(n δ 0 0≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01 )(k n δ 0≠=n k n 2.单位阶跃序列 1()=0 u n ??? 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3.正弦序列 )/2sin()(?π+=Fs fn A n x 在MATLAB 中 ) /***2sin(*1:0fai Fs n f pi A x N n +=-=

4.复指数序列 n j e n x ?=)( 在MATLAB 中 ) **exp(1:0n w j x N n =-= 5.实指数序列 n a n x =)( 在MATLAB 中 n a x N n .^1:0=-= (二) 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 00()()N M i i i i a y n i b x n i ==-=-∑∑ 输入信号分解为单位采样序列的移位加权和,即: ()()()m x n x m n m δ∞ =-∞= -∑ 记系统单位脉冲响应 ()()n h n δ→ 则系统响应为如下的卷积计算式:

分歧理论及其应用

现代电路理论 -------分歧理论及其应用

分歧理论及其应用 引言:近二、三十年来,分歧现象(bifurcation phenomena)及理论(bifurcation theory)在数学及自然科学上受到格外的重视及研究。随着科学技术的迅速发展,非线性问题大量出现于自然科学、工程技术乃至社会科学的许多领域,成为当前科学研究的热点。分歧现象是普遍存在的,是非线性系统的重要特点之一,它普遍地存在于数学、物理学、化学、经济学、社会学、生态学等各个领域,像数学中的解不唯一、物理学中的相变、工程中的静力与动力失稳、经济学中的马太效应、电子学中的周期振荡等等,都可以从分歧的角度去研究[1]。 1.分歧理论概述 分歧理论是近半个世纪以来逐步形成的有重要应用价值的数学分支,它反映的是流的拓扑结构随参数的变化而引起的质的变异,不论在数学理论上还是在现实应用中都具有极为重要的意义。近半个世纪以来,分歧理论的研究一直受到人们的广泛关注,也得到了很大的发展。国际电力界从20世纪80年代开始研究和应用分歧理论,在电压稳定、轴系扭振以及低频振荡的研究中均取得了新的突破。在上个世纪七十年代初,Crandall和Rabinowitz的两个基本分歧定理是由隐函数定理证明的,至今在数学,生物,工程上广为应用[2]。 分歧的含义是:对于含参数的系统,当参数发生变动并经过某些临界值时,系统的定性性态(即其拓扑结构,例如平衡状态、解的数目、周期运动的数目以及稳定性等)发生突然变化的现象。从数学角度而言,分歧理论主要是研究非线性代数方程(微分方程、积分方程、差分方程等)中参数对解的定性性质的影响,其中参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究重点。 2. 分歧的定义 首先我们来看看一个经常可见到的现象。拿一根细长的金属棒。在棒的两头向内稍稍用力,此时棒不会弯曲。当力量够大时,则棒会弯起来。再继续加大压力,棒可能会弯了两弯。其变化如下图:

差分方程模型

差分方程模型 数学建模讲座 一、关于差分方程模型简单的例子 1. 血流中地高辛的衰减 地高辛用于心脏病。考虑地高辛在血流中的衰减问题以开出能使地高辛保持在可接受(安全而有效)的水平上的剂量处方。假定开了每日0.1毫克的剂量处方,且知道在每个剂量周期(每日)末还剩留一半地高辛,则可建立模型如下: 设某病人第n 天后血流中地高辛剩余量为n a , 则 1.05.01+=+n n a a (一阶非齐次线性差分方程) n n n n a a a a 5.01?=?=?+ 2. 养老金问题 对现有存款付给利息且允许每月有固定数额的提款, 直到提尽为止。月利息为1℅,月提款额为1000元,则可建模型如下: 设第n 月的存款额为n a ,则 100001.11?=+n n a a (一阶非齐次线性差分方程)

3. 兔子问题(Fibonacci 数) 设第一月初有雌雄各一的一对小兔,假定两月后长成成兔,同时(即第三个月)开始,每月初产雌雄各一的一对小兔, 新增小兔也按此规律繁殖,设第n 月末共有n F 对兔子,则建模如下: ==+=??12 12 1F F F F F n n n (二阶线性差分方程初值问题) 342 3214 3 21221 1 F F F F F F F F F F ≠+=+ 注意上月新生的小兔不产兔 (因第n 月末的兔子包括两部分, 一部分上月留下的为1?n F , 另一部分为当月新生的,而新生的小兔数=前月末的兔数) 4.车出租问题 A , B 两地均为旅游城市,游客可在一个城市租车而在另一个城市还车。 A , B 两汽车公司需考虑置放足够的车辆满足用车需要,以便估算成本。分析历史记录数据得出: n x : 第n 天营业结束时A 公司的车辆数 n y :第n 天营业结束时B 公司的车辆数 则 +=+=++n n n n n n y x y y x x 7.04.03.06.01 1 (一阶线性差分方程组) (问题模型可进一步推广)

差分方程及其应用

差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数 )(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+, 则等式两端就是相邻两月库存量的改变量。若记 ))()1()(t R t R t R -+=?, 并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。 按一阶差分的定义方式,我们可以定义函数的高阶差分。函数)(t f y t =在t 的一阶差

差分方程模型习题+答案

1. 一老人60岁时将养老金10万元存入基金会,月利率0.4%, 他每月取1000元作为生活费,建立差分方程计算他每岁末尚有多少钱?多少岁时将基金用完?如果想用到80岁,问60岁时应存入多少钱? 分析:(1) 假设k 个月后尚有k A 元,每月取款b 元,月利率为 r ,根据题意,可每月取款,根据题意,建立如下的差分方程: 1k k A aA b +=-,其中a = 1 + r (1) 每岁末尚有多少钱,即用差分方程给出k A 的值。 (2) 多少岁时将基金用完,何时0k A =由(1)可得: 01k k k a A A a b r -=- 若0n A =,01 n n A ra b a = - (3) 若想用到 80 岁,即 n =(80-60)*12=240 时,2400A =,240 0240 1 A ra b a =- 利用 MA TLAB 编程序分析计算该差分方程模型,源程序如下: clear all close all clc x0=100000;n=150;b=1000;r=0.004; k=(0:n)'; y1=dai(x0,n,r,b); round([k,y1']) function x=dai(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)-b; end (2)用MA TLAB 计算: A0=250000*(1.004^240-1)/1.004^240

思考与深入: (2) 结论:128个月即70岁8个月时将基金用完 (3) A0 = 1.5409e+005 结论:若想用到80岁,60岁时应存入15.409万元。 2. 某人从银行贷款购房,若他今年初贷款10万元,月利率0.5%,他每月还1000元。建立差分方程计算他每年末欠银行多少钱,多少时间才能还清?如果要10年还清,每月需还多少? 分析:记第k个月末他欠银行的钱为x(k),月利率为r,且a=1+r,b为每月还的钱。则第k+1个月末欠银行的钱为 x(k+1)=a*x(k)+b,a=1+r,b=-1000,k=0,1,2… 在r=0.005 及x0=100000 代入,用MA TLAB 计算得结果。 编写M 文件如下: function x=exf11(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)+b; end MA TLAB计算并作图: k=(1:140)'; y=exf11(100000,140,0.0005,-1000); 所以如果每月还1000元,则需要11年7个月还清。 如果要10年即n=120 还清,则模型为: r*x0*(1+r)^n/[1-(1+r)^n b=-r*x0*(1+r)^n/[1-(1+r)^n] 用MA TLAB 计算如下: >> x0=100000; >> r=0.005; >> n=120; >> b=-r*x0*(1+r)^n/[1-(1+r)^n] b= 1.1102e+003 所以如果要10年还清,则每年返还1110.2元。 3. 在某种环境下猫头鹰的主要食物是田鼠,设田鼠的年平均增长率为1r,猫头鹰的存在引起的田鼠增长率的减少与猫头鹰的数量成正比,比例系数为1a;猫头鹰的年平均减少率为

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

差分方程在经济学中的应用应用数学

本科毕业论文(设计) 论文题目:差分方程在经济学中的应用 学生姓名:雷晶 学号: 1004970226 专业:数学与应用数学 班级:数学1002班 指导老师:舒蕊艳 完成日期:2014年5月20日

差分方程在经济学中的应用 内容摘要 本文叙述了研究差分方程的意义和背景、差分方程的定义、常见的解法以及差分方程相关模型,重点介绍差分方程经济学中的应用模型—筹措教育经费模型,包括问题的提出、模型举例和分析、提出假设、模型建立、模型求解、结果分析等等步骤对模型进行了更深层次的分析,做了进一步的推广. 本文所介绍的筹措教育经费模型主要研究的是子女的教育费用,假定某家庭从孩子m岁起,每月拿出一部分钱存进银行,用于投资子女的大学教育,并计划n年后支出一些,直到孩子大学毕业,全部用完账户中的资金. 差分方程的理论研究近十年来发展十分迅速,尤其是在经济领域,帮助人们解决了很多实际问题,筹措教育经费模型的建立为广大中国家庭子女教育的费用问题提供了明确的解决方法,是差分方程理论最贴近实际的模型之一. 关键词:差分方程存款模型经济增长模型筹措教育经费模型

, . . , , , , . a . ’s . , ’s ’s m n , . , . a . a ’s . 目录 一、绪论 (1) (一)研究差分方程在经济学中的应用的目的意义 (1) (二)研究背景 (2) 二、研究的理论基础 (2) (一)差分 (2) (二)差分方程 (3) (三)差分方程的解 (4) (四)特征根法 (4)

三、差分方程的经济应用模型简介 (5) (一)贷款模型 (5) (二)存款模型 (6) (三)乘数-加速数模型 (7) (四)哈罗德-多马经济增长模型 (10) (五)投入产出模型 (11) (六)筹措教育经费模型 (12) 四、总结 (14) 参考文献 (16)

给定下述系统的差分方程

第四套 1. 给定下述系统的差分方程,试判定系统是否是因果、稳定系统,并说明理 由。 (1) 1 1()()N k y n x n k N -== -∑ (2) ()()(1)y n x n x n =++ (3) () ()x n y n e = 解: (1)只要N ≥1,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果|()|x n M ≤,则|()|y n M ≤,因此系统是稳定系统。 (2)该系统是非因果系统,因为n 时刻的输出还和n 时刻以后((n+1)时间)的输入有关。如果|()|x n M ≤,则|()||()||(1)|2y n x n x n M ≤++≤,因此系统是稳定的。 (3)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果 |()|x n M ≤,则() |()| |()|||x n x n M y n e e e =≤≤,因此系统是稳定的。 2. 工程实际中,经常采用数字滤波器对模拟信号进行滤波处理,处理系统框 图如图所示。图中T 为采样周期,假设T 满足采样定理(无频率混叠失真)。把从()a x t 到y(t)的整个系统等效成一个模拟滤波器。 (a)如果数字滤波器h(n)的截止频率为8 c w ra d π = , 1T =10 kHz ,求整个等 效系统的截止频率c Ω。 (b)对于1T =20 kHz ,重复(a)。 解: (a) 对采样数字滤波器,w T =Ω,所以

8 c c w T π =Ω= 8c c w T T π Ω= = 最后一级理想低通滤波器的截止频率为T π rad/s ,因此整个系统截止频 率由8c T π Ω= rad/s 确定。 110000625 21616 c c f T πΩ= = == Hz (b) 当1/T=20 Hz 时,与(a)同样道理得: 1200001250 1616 c f T = == Hz 3. 求以下序列x(n)的频谱()jw X e (1)1()()|1jw jw a jw z e X e X z e e --=== - (2) ()an e u n - 解: (1)0 0()[()][()]n X z Z x n Z n n z δ-==-= ()()|jw jn w jw z e X e X z e -=== (2)1 1()[()]1an a X z Z e u n e z ---==- 1()()|1jw jw a jw z e X e X z e e --=== - 4. 设h(n)为一个LSI 系统的单位采样响应,h(n)= 21 ()(2)3 n u n +-,求其频 率响应。 解:其频率响应为: 2 2 1 ()()() 3n jw jnw jnw n H e h n e e +∞ ∞ --=-∞ = = ∑ ∑ 改变这个和的下限以使其开始于n=0,得: 4 (2)4 20 1 1 1 ()() ()() 33 3n n jw j n w jw jw n n H e e e e +∞ ∞ -+--====∑∑ 利用几何级数,得

相关文档
最新文档