运算符号口诀
数学学习顺口溜

数学学习顺口溜1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n6、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.7、完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.8、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.9、“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)10、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.11、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.12、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.13、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.14、分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.15、最简根式的条件:最简根式三条件,幂指、根指号内不把分母含,(数)(数)要互质,幂指比根指小一点.16、特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y 为0,x 为0 在y 轴.17、象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.18、平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x 轴,纵坐标相等横不同;直线平行于y 轴,点的横坐标仍照旧.19、对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称y 相反,y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号.20、自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.21、函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次2函数的解析式写成y=a(x+h)+k 的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.22、一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k 与b,作用之大莫小看,k 是斜率定夹角,b 与y 轴来相见,k 为正来右上斜,x 增减y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.23、二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见,y 轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.24、反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.25、巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.26、三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30 度、45 度、60 度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.27、平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.28、梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.29、添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.30、圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.31、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.32、正多边形诀窍歌:份相等分割圆,n 值必须大于三,依次连接各分点,内接正n 边形在眼前.经过分点做切线,切线相交n 个点.n 个交点做顶点,外切正n 边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n 条对称轴都过圆心点,如果n 值为偶数,中心对称很方便.正n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n 个整,依此计算便简单.33、函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负k 经过二四限,x 增大y 在减,上下平移k 不变,由引得到一次线,向上加b 向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正k 落在一三限,x 增大y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y 的顺序可交换.二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小y 轴看,△的符号最简便,x 轴上数交点,a、b 同号轴左边,抛物线平移 a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.34、实数定义域:实数讲究定义域,四项原则须注意。
有理数计算法则口诀

有理数计算法则口诀一、加法运算法则口诀:1.同号相加,看绝对值,同记符号,总不差;2.异号相加,看绝对值,大减小,答案看被减数。
二、减法运算法则口诀:减去一个负数,等于加上这个数的绝对值。
三、乘法运算法则口诀:1.正负相乘,开心或忧,忧者取反,常用理掌握;2.两数同正或同负,积仍保持正,口诀易记,计算得当;3.两数一正一负,积必为负,口诀需记,才能不误。
四、除法运算法则口诀:1.正数与正数,保持正号不变;2.负数与负数,保持正号不变;3.正数与负数,得负号结果产生。
这些口诀可以帮助我们更好地理解和应用有理数的计算法则。
以下是口诀的详细解释:一、加法运算法则口诀:1.同号相加,看绝对值,同记符号,总不差。
同号表示两个数的符号相同,如果两个数的符号相同,那么相加时只需计算其绝对值并在结果中保持这个符号不变。
例如:(-2)+(-3)=-(2+3)=-52.异号相加,看绝对值,大减小,答案看被减数。
异号表示两个数的符号不同,我们可以直接计算两个数的绝对值,然后将较大的数减去较小的数的绝对值,答案的符号与绝对值较大的数的符号一致。
例如:5+(-2)=5-2=3二、减法运算法则口诀:减去一个负数,等于加上这个数的绝对值。
当减法运算中出现负数时,我们可以改写为加法运算,将减号变为加号,并将要减去的数取反,然后按照加法运算的法则进行计算。
例如:7-(-3)=7+3=10三、乘法运算法则口诀:1.正负相乘,开心或忧,忧者取反,常用理掌握。
当两个数相乘时,如果两个数的符号相同,那么结果为正;如果两个数的符号不同,那么结果为负。
如果结果为负数,需要将结果取反。
例如:(-2)×(-3)=62.两数同正或同负,积仍保持正,口诀易记,计算得当。
当两个数相乘时,如果两个数的符号相同,不论是正还是负数,结果都为正。
例如:(-2)×(-3)=63.两数一正一负,积必为负,口诀须记,才能不误。
当两个数相乘时,如果两个数的符号不同,不论是正负,结果都为负数。
C运算符优先级记忆口诀

优先级从上到下依次递减,最上面具有最高的优先级,逗号操作符具有最低的优先级。
所有的优先级中,只有三个优先级是从右至左结合的,它们是单目运算符、条件运算符、赋值运算符。
其它的都是从左至右结合。
具有最高优先级的其实并不算是真正的运算符,它们算是一类特殊的操作。
()是与函数相关,[]与数组相关,而->及.是取结构成员。
其次是单目运算符,所有的单目运算符具有相同的优先级,因此在我认为的真正的运算符中它们具有最高的优先级,又由于它们都是从右至左结合的,因此*p++与*(p++)等效是毫无疑问的。
接下来是算术运算符,*、/、%的优先级当然比+、-高了。
移位运算符紧随其后。
其次的关系运算符中,< <= > >=要比 == !=高一个级别,不大好理解。
所有的逻辑操作符都具有不同的优先级(单目运算符出外,!和~)逻辑位操作符的"与"比"或"高,而"异或"则在它们之间。
跟在其后的&&比||高。
接下来的是条件运算符,赋值运算符及逗号运算符。
在C语言中,只有4个运算符规定了运算方向,它们是&&、| |、条件运算符及赋值运算符。
&&、| |都是先计算左边表达式的值,当左边表达式的值能确定整个表达式的值时,就不再计算右边表达式的值。
如 a = 0 && b; &&运算符的左边位0,则右边表达式b就不再判断。
在条件运算符中。
如a?b:c;先判断a的值,再根据a的值对b或c之中的一个进行求值。
赋值表达式则规定先对右边的表达式求值,因此使 a = b = c = 6;成为可能。
初——单——算,关——逻,条——赋——逗断句如上。
怎么记忆呢?我是这样记忆的:“”内表示运算符的简称。
“初”次“单”独找你“算”账,(因为你和关羽有仇)“关”羽带着兵巡“逻”(因为你躲了起来)你跑到别处了,隐姓埋名,“挑”着“豆腐”卖。
数学顺口溜(大全)

初中数学顺口溜(大全)有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y 轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
初中数学(代数)知识口诀大全

初中数学(代数)知识口诀大全有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
减法口诀大全轻松记忆减法口诀

减法口诀大全轻松记忆减法口诀减法是基础数学运算之一,对于学生来说,熟练记住减法口诀是提高计算速度和准确性的重要步骤。
本文将介绍一些常见的减法口诀,帮助学生轻松记忆,提高减法计算能力。
一、个位数减法口诀1. 相减差为零,末位将其留。
例如:5减去5等于0,所以末位是0。
2. 从大到小减,末位不变。
例如:7减去4等于3,末位是3。
3. 相减不退位,借位减一位。
例如:8减去5等于3,借位后为7减去5等于2。
4. 减法借个位,加一变十位。
例如:6减去8等于-2,在十位上加1,变为5减去8等于7。
二、两位数减法口诀1. 个位数相减不退位,十位数相减借位。
例如:33减去18,个位3减去8为5,十位2减去1为1,所以答案是15。
2. 十位数相减不退位,个位数相减借位。
例如:48减去25,十位4减去2为2,个位8减去5为3,所以答案是23。
3. 两位数相减全减退位,借位加十减个。
例如:75减去38,个位5减去8借位后变成15减去8等于7,十位7减去3等于4,所以答案是47。
三、三位数及以上减法口诀1. 个位数相减不退位,十位数相减借位。
例如:427减去128,个位7减去8借位后变成17减去8等于9,十位2减去2等于0,百位4减去1等于3,所以答案是309。
2. 十位数相减不退位,个位数相减借位。
例如:874减去159,个位4减去9借位后变成14减去9等于5,十位7减去5等于2,百位8减去1等于7,所以答案是715。
3. 三位数减法借后两位分别减。
例如:943减去258,个位3借位后变成13减去8等于5,十位4借位后变成13减去5等于8,百位9减去2等于7,所以答案是785。
四、特殊减法口诀1. 减法变加法。
例如:12减去-5等于12加上5等于17。
2. 两个负数相减,先去符号再计算。
例如:-8减去-3等于-8加上3等于-5。
以上是一些常见的减法口诀,通过反复练习和记忆,可以帮助学生提高计算减法的能力。
除了口诀,使用计算器也是提高计算准确性和速度的有效工具,但在计算习惯养成初期,仍然需要通过记忆口诀来提高基础计算能力。
初中数学公式记忆口诀
初中数学公式记忆口诀初中数学公式记忆口决有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式) 因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解先想完全平方式,十字相乘是其次。
初中数学公式记忆口诀
初中数学公式记忆口诀一说到数学,很多同学就头疼,要记各种公式,定理,最后还要学会运用。
以下是店铺为你带来的初中数学公式记忆口决,希望能帮到你。
初中数学公式记忆口决有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式) 因式分解一提二套三分组,叉乘求根也上数。
初中数学口诀
有理数的加法运算同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)^2n+1=-(b - a)^2n+1, (a-b)^2n=(b - a)^2n平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)。
单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
解一元一次不等式的步骤去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组解集大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
不等式的解集大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
初中数学顺口溜汇总
初中数学顺口溜汇总1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n6、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.7、完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.8、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.9、“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)10、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.11、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.12、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.13、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.14、分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.15、最简根式的条件:最简根式三条件,幂指、根指号内不把分母含,(数)(数)要互质,幂指比根指小一点.16、特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y 为0,x 为0 在y 轴.17、象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.18、平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x 轴,纵坐标相等横不同;直线平行于y 轴,点的横坐标仍照旧.19、对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称y 相反,y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号.20、自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.21、函数图象的移动规律:若把一次函数解析式写成(0)y k x b=++,二次函数的解析式写成2=++的形式,则可用下面的口诀“左右平移在括号,()y a x h k上下平移在末稍,左正右负须牢记,上正下负错不了”.22、一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k 与b,作用之大莫小看,k 是斜率定夹角,b 与y 轴来相见,k 为正来右上斜,x 增减y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.23、二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见,y 轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.24、反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.25、巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.26、三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30 度、45度、60 度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.27、平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.28、梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.29、添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.30、圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.31、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.32、正多边形诀窍歌:份相等分割圆,n 值必须大于三,依次连接各分点,内接正n 边形在眼前.经过分点做切线,切线相交n 个点.n 个交点做顶点,外切正n 边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n 条对称轴都过圆心点,如果n 值为偶数,中心对称很方便.正n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n 个整,依此计算便简单.33、函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负k 经过二四限,x 增大y 在减,上下平移k 不变,由引得到一次线,向上加 b 向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正k 落在一三限,x 增大y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y 的顺序可交换.二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小y 轴看,△的符号最简便,x 轴上数交点,a、b 同号轴左边,抛物线平移 a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.34、实数定义域:实数讲究定义域,四项原则须注意。