第四章 配位化合物

合集下载

第四章 配位化合物的理论

第四章 配位化合物的理论

Co 3d74s2: Co3+ 3d6: 在配位后, CoF63-:
6F-
sp3d2 在CoF63-中, 杂化轨道的类型为sp3d2, 配离子有4个单电子, 显 顺磁性, 为外轨型配合物(也叫电价配合物)。 6CN- Co(CN)63-: d2sp3 在Co(CN)63-中, Co3+中心离子以d2sp3杂化轨道成键, 配离子 没有成单电子, 显抗磁性, 为内轨型配合物(也叫共价型配合物)。
d 轨道的分裂并非纯粹的静电效应,
其中的共价因素也不可忽略。
2. 配合物高低自旋的预言
对于一个处于配位场中的金属离子, 其电子排布究竟采用高自 旋, 还是低自旋的状态, 可以根据成对能和分裂能的相对大小来进 行判断: ●当P>△时, 因电子成对需要的能量高, 电子将尽量以单电子 排布分占不同的轨道, 取高自旋状态;
3 拉长的八面体 在拉长八面体中, z轴方向上的两个配体逐渐远离中心原子, 排斥力下降, 即dz2能量下降。 同时, 为了保持总静电能量不变, 在x轴和y轴的方向上配体 向中心原子靠拢 , 从而 dx2 - y2 的能量升高 , 这样 eg 轨道发生分裂 。在t2g三条轨道中, 由于xy平面上的dxy轨道离配体要近, 能量升 高, xz和yz平面上的轨道dxz和dyz离配体远因而能量下降。结果, t2g轨道也发生分裂。①dx2-y2, ②dz2, ③dxy, ④dxz和dyz。
将一些常见配体按光谱实验测得的分裂能从小到大次序排列起来, 便得光 谱化学序:
这个化学序代表了配位场的强度顺序。由此顺序可见, 对同一金属离子, 造 成△值最大的是CN-离子, 最小的是I-离子, 通常把CN-、NO2-等离子称作强 场配位体, I-、Br-、F-离子称为弱场配位体。 须指出的是, 上述配体场强度顺序是纯静电理论所不能解释的。例如OH-比H2O 分子场强度弱, 按静电的观点OH-带了一个负电荷, H2O不带电荷, 因而OH-应 该对中心金属离子的 d轨道中的电子产生较大的影响作用 , 但实际上是OH- 的 场强度反而低, 显然这就很难纯粹用静电效应进行解释。这说明了

第4章 配位化合物

第4章 配位化合物
Page 23
⑵ 配合物的命名
服从一般无机化合物的命名原则:在 含配离子的化合物中,命名时阴离子名称 在前,阳离子名称在后。
(命名口诀:先无后有,先阴后中,先A后B,先少后多。)
Page 24
a) 若配合物的外界是H+,叫做“某酸”,如
H2[SiF6]称为六氟合硅(Ⅳ)酸; b) 若配合物的外界是OH-,叫做氢氧化某,如 [Ag(NH3)2](OH)称为氢氧化二氨合银(Ⅰ); c) 若配合物的外界是金属阳离子,叫做某酸某, 如K2[PtCl6]称为六氯合铂(Ⅳ)酸钾; d) 若配合物的外界是含氧酸根离子,叫做某酸某, 如[Cu(NH3)4]SO4称为硫酸四氨合铜(Ⅱ)。 e) 若配合物的外界是无氧酸根离子,叫做某化某,
Page 22
④同类配体的配位原子相同时,将含较少原子数的 配体排在前面; [Pt(NO2)(NH3)(NH2OH)(Py)]Cl
氯化硝基· 羟氨· 氨· 吡啶合铂(II)
④配位原子相同,配体中所含的原子数目也相同时,
按结构式中与配位原子相连的原子的元素符号的
英文顺序排列。 [Pt(NH2)(NO2)(NH3)2] 氨基· 硝基· 二氨合铂(II)
②. 五元环或六元环的张力较小,使螯合物稳定。 螯合物具有特殊的稳定性,在水中很难解离,且一 般具有特征颜色。
Page 18
③配位数
与中心原子直接以配位键结合的配位原
子的总数称为该中心原子的配位数。
中心原子的配位数与配体的齿数有关。
a) 若配体是单齿的,配位数=配体的数目,如 [Cu(NH3)4]2+中,配位数是NH3分子的数目4;
b) 若配体是多齿的,配位数=配体的数目×齿数,如 乙二胺是双齿配体,在[Pt(en)2]2+中,Pt2+的配位数 为 2×2=4。

第4章 配位化合物(修改稿)

第4章 配位化合物(修改稿)

cis — 二氯二氨合铂 棕黄色,µ > 0 棕黄色, S = 0.2523 g/100g H2O 具抗癌活性(干扰 具抗癌活性 干扰DNA复制 复制) 干扰 复制
trans — 二氯二氨合铂 淡黄色,µ = 0 淡黄色, S = 0.0366 g/100g H2O 不具抗癌活性
Ca 5 (PO 4 ) 3 F (磷灰石 )
Al 2 (SiO 4 )F2 (黄玉 )
配合物(络盐):若复盐在晶体中和水溶液中都有配离子存在, 则属于配合物。如:Na3AlF6(冰晶石)在水溶液和晶体中都存 在AlF63-,是配合物。
4-3 命名 命名(nomenclature)
命名原则 配酸:×××酸 配酸:×××酸 配碱:氢氧化××× 配碱:氢氧化××× 配盐:先阴离子后阳离子,简单酸根加“ 配盐:先阴离子后阳离子,简单酸根加“化”字,复杂酸根加“酸”字 复杂酸根加“ 配体数 以二、 以二、 三、四 表示 中心元素名称(氧化态值) 配体名称 合 中心元素名称(氧化态值 不同配 体“•” ” 分开 以罗马数字 Ⅱ、Ⅲ、 Ⅳ 表示 按照中国化学会无机专业委员会制定规则命名
第四章 配位化合物
本章学习要求
1.掌握配合物的基本概念和配位键的本质; 掌握配合物的基本概念和配位键的本质 配合物的基本概念和配位键的本质; 2.掌握配合物价键理论的主要论点,并能用它解释一些实例; 掌握配合物价键理论的主要论点,并能用它解释一些实例; 3.了解配合物的晶体场理论; 了解配合物的晶体场理论 配合物的晶体场理论; 4.了解配合物的稳定性; 了解配合物的稳定性; 配合物的稳定性 5.了解配合物的应用 。 了解配合物的应用
SiF62−
常见金属离子的配位数 1价金属离子 价金属离子 Cu+ 2,4 Ag+ 2 Au+ 2,4 2价金属离子 价金属离子 Ca2+ 6 Mg2+ 6 Fe2+ 6 Co2+ 4,6 Cu2+ 4,6 Zn2+ 4,6 3价金属离子 价金属离子 Al3+ Cr3+ Fe3+ Co3+ Au3+ 4,6 6 6 6 4

14第4章-配位化合物

14第4章-配位化合物

赤血盐
—— 银氨配离子
最后,可以指出,事实上往往不是用名称而是用 化学式来表明配合物。这样既简单又明白。
§4 -2
配合物的异构现象与立体异构
结构异构 配位异 构现象 立体异构 对映异构 几何异构
2 —1
结构异构
组成相同而结构不同的异构现象称为结构异构。
例如:组成为CrCl3· 6H2O,但它有三种不同结构:
例:[Pt(NH3)4]2+、[Pt(NH3)2Cl2]:
在配体作用下,2个成单d电子归并成对,腾出1个d轨道来 进行dsp2杂化,平面正方形。
5d 6s
dsp2杂化
Pt2+:
2+
6p
H3N H3N
Pt
NH3 NH3
H3N H3N
Cl Pt Cl
顺式
H3N Cl
Cl Pt NH3
反式
配位数、杂化类型、立体结构的关系
径式 面式
紫色
绿色
2 —3
对映异构
又称手性异构、旋光异构、光学异构。是一种立体异构现象。
§4-3 配合物的价键理论
3 -1 价键理论 1.配位键的本质
⑴.配位键形成条件:
①.中心离子(或原子)具有空轨道。 ②.配位体具有孤对电子(或π 电子)。
如:[Cr(NH3)6]3+
Cr:3d54s1
Cr3+ :
二乙二胺合镍(Ⅱ)
H
H
H
H
CaY2-
叶绿素
血红素
1 -4
配合物的命名
配合物的命名法服从一般无机化合物的命名原则:
a.酸根是简单的阴离子,便叫做“某化某”。 b.酸根是复杂的阴离子,则称为“某酸某”。 c.外界为氢离子、配阴离子的名称之后用“酸”字结尾。

无机分析化学第4章 习题答案

无机分析化学第4章 习题答案

第四章配位化合物习题参考解答1. 试举例说明复盐与配合物,配位剂与螯合剂的区别。

解复盐(如KCl·MgCl2·6H2O)在晶体或在溶液中均无配离子,在溶液中各种离子均以自由离子存在;配合物K2[HgI4]在晶体与溶液中均存在[HgI4]2-配离子,在溶液中主要以[HgI4]2-存在,独立的自由Hg2+很少。

配位剂有单基配位剂与多基配位剂:单基配位剂只有一个配位原子,如NH3(配位原子是N);多基配位剂(如乙二胺H2N-CH2-CH2-NH2)含有两个或两个以上配位原子,这种多基配位体能和中心原子M形成环状结构的化合物,故称螯合剂。

2. 哪些元素的原子或离子可以作为配合物的形成体?哪些分子和离子常作为配位体?它们形成配合物时需具备什么条件?解配合物的中心原子一般为带正电的阳离子,也有电中性的原子甚至还有极少数的阴离子,以过渡金属离子最为常见,少数高氧化态的非金属元素原子也能作中心离子,如Si(Ⅳ)、P(Ⅴ)等。

配位体可以是阴离子,如X-、OH-、SCN-、CN-、C2O4-等;也可以是中性分子,如H2O、CO、乙二胺、醚等。

它们形成配合物时需具备的条件是中心离子(或原子)的价层上有空轨道,配体有可提供孤对电子的配位原子。

3. 指出下列配合物中心离子的氧化数、配位数、配体数及配离子电荷。

[CoCl2(NH3)(H2O)(en)]Cl Na3[AlF6] K4[Fe(CN)6] Na2[CaY] [PtCl4(NH3)2]数。

K2[PtCl6] [Ag(NH3)2]Cl [Cu(NH3)4]SO4 K2Na[Co(ONO)6] Ni(CO)4[Co(NH2)(NO2)(NH3)(H2O)(en)]Cl K2[ZnY] K3[Fe(CN)6]二硫代硫酸合银(I)酸钠四硫氰酸根⋅二氨合铬(III)酸铵;四氯合铂(II)酸六氨合铂(II) 二氯⋅一草酸根⋅一乙二胺合铁(III)离子硫酸一氯⋅一氨⋅二乙二胺合铬(III)解Na3[Ag(S2O3)2] NH4[Cr(SCN)4(NH3)2] [Pt(NH3)6][PtCl4][FeCl2(C2O4)(en)]-[CrCl(NH3)(en)2]SO46. 下列配离子具有平面正方形或者八面体构型,试判断哪种配离子中的CO32-为螯合剂?[Co(CO3)(NH3)5]+[Co(CO3)(NH3)4]+[Pt(CO3)(en)] [Pt(CO3)(NH3)(en)]解[Co(CO3)(NH3)4]+、[Pt(CO3)(en)]中CO32-为螯合剂。

第四章 配位化合物的立体结构-zhou

第四章 配位化合物的立体结构-zhou

③含七个相同单齿配体的配合物数量极少, 含有两个或两个以上不
同配位原子所组成的七配位配合物更趋稳定, 结果又加剧了配位多
面体的畸变。
二、 高配位数配合物
八配位和八配位以上的配合物都是高配位化合物。
一般而言, 形成高配位化合物必须具行以下四个条件。 ①中心金属离子体积较大, 而配体要小, 以便减小空间位阻; ②中心金属离子的d电子数一般较少, 一方面可获得较多的配位 场稳定化能, 另一方面也能减少d电子与配体电子间的相互排斥 作用; ③中心金属离子的氧化数较高; ④配体电负性大, 变形性小。
一般而言5配位配合物属于 D3h和T4v 点群
四方锥 (square pyramid, SP) C4v
三角双锥 (trigonal bipyramid, TBP) D3h
[Fe(CO)5] D3h
BiF5 C4v
6、 六配位化合物
对于过渡金属, 这是最普遍 且最重要的配位数。其几何 构型通常是相当于6个配位 原子占据八面体或变形八面 体的角顶。
2、配位数为2的配合物
中心原子的电子组态:d10 如:Cu(I) Ag(I) Au(I) Hg(I)
直线形,D∞h如:Cu(NH3)2+, AgCl2, Au(CN)2,HgCl2–,
[Ag(NH3)2]+,
HgX2
S
S
Ag C
Ag C
N Ag
N C
N AgSCN晶体
S
二配位配合物的中心金属离子大都具有d0和d10的电子结构, 这类配合物的典型例子是Cu(NH3)2+、AgCl2+、Au(CN)2-等。
1、非对映异构或几何异构
凡是一个分子与其镜像不能重叠者即互为对映体,

第四章 配位键和配位化合物第一节 配位化合物的基本概念

第四章  配位键和配位化合物第一节 配位化合物的基本概念
A +∶B → A∶B(表示为A←B)
∶B称电子对给予体。A称电子对接受体。配离子中,中心离子是 电子对接受体,配体是电子对给予体。配位键用一个指向电子对 接受体的箭头“→”表示
●配位键的形成条件
——成键原子中的一个原子的价电子层有孤对电子
——另一原子的价电子层有可接受孤对电子的空轨道
2023/2/19
2023/2/19
3
Байду номын сангаас
一、配合物的定义 1980年, IUPAC (International Union of Pure
and Applied Chemistry,国际纯化学与应用化学联合会)
●由可以给出孤对电子或多个不定域电子的一定数目的离子或分 子(称为配体)和具有接受孤对电子或多个不定域电子原子或离 子(统称中心离子),按一定的组成和空间构型形成的化合物称 配位化合物,简称配合物
[Ag(NH3)2]OH
氢氧化二氨合银(Ⅰ)
[CoCl(NH3)5]Cl2
二氯化一氯•五氨合钴(Ⅲ)
[PtCl(NO2)(NH3)4]CO3
碳酸一氯•一硝基•四氨合铂(Ⅳ)
[CrCl2(NH3)4]Cl•2H2O
二水合一氯化二氯•四氨合铬(Ⅲ)
[Cr(NH3)6][Co(CN)6]
六氰合钴(Ⅲ)酸六氨合铬(Ⅲ)
例,Fe3+与SCN-配位,随着SCN-浓度增加,可形成配位数为1~6 的配离子
2023/2/19
12
(五)配离子的电荷
是中心离子电荷和配体总电荷的代数和
例,Zn2+与CN-形成[Zn(CN)4]x,电荷数x为x=2+4(-1)=-2,故为 [Zn(CN)4]2-配离子,[Zn(NH3)6]x的电荷x为+2

第4章 配位化合物

第4章 配位化合物
称为氢氧化四氨合铜(II)。 配合物内界即配离子,其命名方法一般按照如下顺序: 字—中心离子名称—中心离子氧化态(用带圆括号的罗马数字表
配体数--配体名称(不同配体名称之间以中圆点(· )分开)—“合”
示)。
1. 配阴离子配合物 氢配酸的命名次序是:⑴阴配离子⑵中性分子配 体 (3)中心离子 (4)词尾用氢酸,氢字通常略去。例如, H[PtCl3(NH3)]称三氯一氨合铂(II)氢酸,或略去氢字 称三氯一氨合铂(II)酸。 氢配酸盐的命名次序同上,但词尾用酸而不用氢 酸,酸字后面在附上金属名称。例如, K3[Fe(CN)6] Cu2[SiF6] 六氰合铁(III)酸钾 六氟合硅(IV)酸亚铜
K2[Co(SO4)2]
二硫酸根合钴(II)酸钾
2. 配阳离子配合物
命名次序是:(1)外界阴离子 (2)阴离子配体 (3)中性 分子配体 (4)中心离子。例如: [Pt(NH3)6]Cl4 四氯化六氨合铂(Ⅳ) [Co(NH3)5(H2O)]Cl3 三氯化五氨•一水合钴(Ⅲ)
[CrCl2(H2O)4]Cl•2H2O 二水合一氯化二氯• 四水合铬(Ⅲ)
离子,如I5-([I(I2)2]-)中的I-离子和S92-([S•S8]2-)中的S2-离子都
是阴离子形成体。
中心离子一般为过渡金属,特别是铁系、铂系、 第IB、IIB族元素。
此外具有高氧化态的P区非金属元素,如SiF62中的Si、PF6中的P、BF4-中的B也是较常见的中心离
子。具有8电子构型的S区元素的离子,如K+ 、Na+ 、
5. 配离子的电荷
配离子所带的电荷数等于中心离子电荷数与配
体总电荷数的代数和。
4-1-3
复盐与配合物的区别
复盐(double salt):由两种或两种以上的盐组成盐。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章配位化合物1、举例说明什么叫配合物,什么叫中心离子(或原子)。

答:配合物的定义是:由一个中心离子(或原子)和几个配位体(阴离子或原子)以配位键相结合形成一个复杂离子(或分子)通常称这种复杂离子为结构单元,凡是由结构单元组成的化合物叫配合物,例如中心离子Co3+和6个NH3分子以配位键相结合形成[Co(NH3)6]3+复杂离子,由[Co(NH3)6]3+配离子组成的相应化合物[Co(NH3)6]Cl3是配合物。

同理,K2[HgI4]、[Cu(NH3)4]SO4等都是配合物。

每一个配位离子或配位分子中都有一个处于中心位置的离子,这个离子称为中心离子或称配合物的形成体。

2、什么叫中心离子的配位数,它同哪些因素有关。

答:直接同中心离子(或原子)结合的配位原子数,称为中心离子(或原子)的配位数。

影响中心离子配位数的因素比较复杂,但主要是由中心离子和配位体的性质(半径、电荷)来决定。

(1)中心离子的电荷越高,吸引配位体的能力越强,因此配位数就越大,如Pt4+形成PtCl62-,而Pt2+易形成PtCl42-,是因为Pt4+电荷高于后者Pt2+。

(2)中心离子半径越大,其周围可容纳的配位体就越多,配位数就越大,例如Al3+的半径大于B3+的半径。

它们的氟配合物分别是AlF63-和BF4-。

但是中心离子半径太大又削弱了它对配位体的吸引力,反而配位数减少。

(3)配位体的负电荷增加时,配位体之间的斥力增大,使配位数降低。

例如:[Co(H2O)6]2+和CoCl42-。

(4)配位体的半径越大,则中心离子周围容纳的配位体就越小,配位数也越小。

例如AlF63-和AlCl4-因为F-半径小于Cl-半径。

2、命名下述配合物,并指出配离子的电荷数和中心离子的氧化数?根据配合物分子为电中性的原则,由配合物外界离子的电荷总数确定配离子的电荷数、中心离子氧化数。

解:配合物命名配离子电荷数中心离子氧化数[Co(NH3)6]Cl3三氯化六氨合钴(Ⅲ)+3 +3K2[Co(NCS)4] 四异硫氰合钴(Ⅱ)酸钾-2 +2Na2[SiF6] 六氟合硅(Ⅳ)酸钠-2 +4[Co(NH3)5Cl]Cl2二氯化一氯·五氨合钴(Ⅲ)+2 +3K2[Zn(OH)4] 四羟基合锌(Ⅱ)酸钾-2 +2[Co(N3)(NH3)5]SO4 硫酸一叠氮·五氨合钴(Ⅲ)+2+3[Co(ONO)(NH3)3(H2O)2]Cl2二氯化亚硝酸根·三氨·二水合钴(Ⅲ)+2 +33、指出下列配离子中中心离子的氧化数和配位数:配离子中心离子氧化数配位数(1)[Zn(NH3)4]2++2 4(2)[Cr(en)3]3+ +3 6(3)[Fe(CN)6]3-+3 6(4)[Pt(CN)4(NO2)I]2-+4 6(5)[Fe(CN)5(CO)]3-+2 6(6)[Pt(NH3)4(NO2)Cl]2+ +4 64、指出下列化合物中的配离子、中心离子及其配位数。

化合物 配离子 中心离子 配位数(1)3KNO 2·Co(NO 2)3 [Co(NO 2)6]3-Co 3+ 6(2)Co(CN)3·3KCN [Co(CN)6]3-Co 3+ 6(3)2Ca(CN)2·Fe(CN)2 [Fe(CN)6]4-Fe 2+ 6(4)2KCl ·PtCl 2 [PtCl 4]2-Pt 2+ 4(5)KCl ·AuCl 3 [AuCl 4]-Au 3+ 4 (6)CrCl 3·4H 2O [Cr(H 2O)4Cl 2]+ Cr 3+ 6 5、命名下列配合物和配离子。

(1) (NH 4)3[SbCl 6] 六氯合锑(Ⅲ)酸铵 (2)Li[AlH 4] 四氢合铝(Ⅲ)酸锂(3)[Co(en)3]Cl 3 三氯化三乙二胺合钴(Ⅲ) (4)[Co(H 2O)4Cl 2]Cl 氯化二氯四水合钴(Ⅲ)(5)[Co(NO 2)6]3-六硝基合钴(Ⅲ)配离子(6)[Co(NH 3)4(NO 2)Cl]+ 一氯一硝基·四氨合钴(Ⅲ)配离子 6、写出下列配合物的化学式。

(1)硫酸四氨合铜(Ⅱ) [Cu(NH 3)4]SO 4(2)氯化二氯一水三氨合钴(Ⅲ) [Co(NH 3)3(H 2O)Cl 2]Cl (3)六氯合铂(Ⅳ)酸钾 K 2[PtCl 6](4)二氯·四硫氰合铬(Ⅱ)酸铵 (NH 4)3[Cr(SCN)4·Cl 2] 7、有两种配合物A 和B ,她们的组成为21.95%Co ,39.64%Cl ,26.08%N ,6.38%H ,5.95%O ,并根据下面的实验结果,确定它们的配离子,中心离子和配位数。

(1) A 和B 的水溶液却呈微酸性,加入强碱并加热至沸时,有氨放出,同时析出Co 2O 3沉淀(2) 向A 和B 的溶液中加入硝酸银溶液时却生成AgCl 的沉淀(3) 过滤除去两种溶液的沉淀后,再加硝酸银均无变化,但加热至沸时,在B 的溶液中又有AgCl 沉淀生成,其质量为原来析出沉淀的一半。

解:首先求化学式,根据各元素在配合物中所占的百分比来求原子个数比。

Co ∶Cl ∶N ∶H ∶O =1695.5138.61408.265.3564.395995.21∶∶∶∶ = 0.37∶1.12∶1.86∶6.38∶0.37 = 1∶3∶5∶17∶1化学式为CoCl 3N 5H 17O 或CoCl 3(NH 3)5·H 2O(1)水溶液呈酸性,说明NH 3在内界,均与Co 3+配位,当加入碱并加热至沸时,配离子被破坏而放出氨气,同时析出Co 2O 3沉淀。

(2)说明在外界含有Cl -,所以加入AgNO 3都生成AgCl 沉淀。

(3)说明B 配合物中内界的Cl -仅为外界的一半,即两个Cl -在外界,一个Cl -在内界。

∴ 中心离子 配位数A :[Co(NH 3)5·(H 2O)]3+ Co 3+ 6B :[Co(NH 3)5·Cl]2+ Co 3+ 6 10 根据价键理论,指出下列配离子的成键情况和空间构型。

解:配合物的价键理论要点 (1) 要点:配合物的中心离子与配位体之间通过配位键相结合:①配位体必须具有孤对电 子,而中心离子(或原子)必须具有空的能量相近的价电子轨道。

以容纳配位体的孤电子对。

这是形成配合物的必要条件。

②在配位体的作用下,中心离子(或原子)的空轨道首先进行杂化,形成数目相同的,能量相等的具有一定方向性的杂化轨道。

杂化轨道接受配位原子上的孤对电子形成σ配键。

③杂化轨道的类型不同,其配离子的空间构型也不同,可以根据中心离子(或原子)提供的杂化轨道中d轨道能量不同,分为低自旋(内轨型)配合物和高自旋(外轨型)配合物。

低自旋配合物比高自旋配合物稳定。

(2)配离子的空间构型,配位数等,主要决定于中心离子(或原子)杂化轨道的数目和类型。

如sp3d2或d2sp3杂化,为八面体。

(3)价键理论在解释配离子空间构型,中心离子(或原子)的配位数、磁性、稳定性等问题上取得一定成就。

但存在着局限性。

①[Fe(CN)6]3-:Fe3+的价电子层结构为3d53d 4s 4pFe3+在配位体CN-的作用下,Fe3+的5个3d电子发生了重排,重配对,腾出2个空的3d轨道,此时Fe3+形成了d2sp3杂化轨道,6个CN-中配位原子碳的孤对电子对填入到杂化轨道成键,形成正八面体配离子[Fe(CN)6]3-d2sp3杂化③[Cr(H2O)5Cl]2+:Cr3+的价电子层结构为3d3:3d 4s 4pCr3+Cr3+的3d中有两个空轨道,Cr3+采取了d2sp3杂化,形成了6个能量相等的d2sp3杂化轨道。

5个H2O分子氧原子上的孤电子对和Cl-上的孤电子对分别填入杂化轨道中,形成八面体配离子。

[Cr(H2O)5Cl]2+d2sp3杂化⑤Ag+的价电子层结构为4d10:4d 5s 5pAg+[Ag(CN)2]-sp杂化由于Ag+的4d价轨道已全充满,所以只采取sp杂化与2个CN-形成直线型配离。

⑥Fe原子的价电子层结构为3d64s23d 4s 4pFe[Fe(CO)5]dsp3杂化(三角双锥)Fe原子在CO的影响下,4s的2个电子合并到3d轨道中,而3d轨道中另二个单电子合并到一个轨道里,此时3d 腾出一个空轨道,形成dsp 3杂化轨道与5个CO 的分子形成了三角双锥的配合物,而且Fe 原子的3d 轨道中有4对孤电子对,CO 分子中C 有空轨道,又形成了反馈键,使它们键间结合力更强些。

11、写出下列八面体构型或平面正方形构型的配合物的可能几何异构体。

(1)[Cr(H 2O)4Br 2]Br ·2H 2O 二水合一溴化二溴四水合铬(Ⅲ)顺式 反式(2)[Co(NH 3)3(NO 2)3] 三硝基三氨合钴(Ⅲ)(3)[PtPyNH 3ClBr] 一溴一氯一氨吡啶合铂(Ⅱ)补充题:根据实验测得的磁矩数据判断下列各配离子的未成对电子数,成键轨道,哪些属于内轨型,哪些属于外轨型。

(1)[Fe(H 2O)6]2+ μ= 5.3 B ·M(2)[Fe(CN)6]4-μ= 0 B ·M (3)[Ni(NH 3)4]2+ μ= 3.2 B ·M (4)[Co(NH 3)6]2+ μ= 4.26 B ·M(5)[CuCl 4]2-μ= 2.0 B ·M解:配合物中含有由(n -1)d ns np 组成的杂化轨道,这种配合物称为低自旋配合物或称内轨型配合物。

中心离子仍保持其自由离子状态的电子结构。

配位体的孤电子对仅进入外层空轨道而形成sp 、sp 3或sp 3d 2等外层杂化轨道的配合物,称为高自旋配合物或称外轨型配合物,用磁矩的降低来判断内轨型配合物的生成。

配合物磁性的大小以磁矩μ来表示,μ与成单电子数n 的关系:μ= )2(+n n(1)[Fe(H 2O)6]2+ μ= 5.3 B ·M μ=3.5)2(=+n n n = 4有4个未成成对电子,可见Fe 2+3d 轨道没有参加杂化,它的杂化轨道是sp 3d 2,是外轨型。

(2)[Fe(CN)6]4-μ= 0 B ·M n = 0 可见Fe 2+以d 2sp 3杂化,为内轨型 (3)[Ni(NH 3)4]2+ μ= 3.2 B ·M μ=2.3)2(=+n n n = 2Ni 2+杂化轨道是sp 3,是外轨型 (4)[Co(NH 3)6]2+ μ= 4.26 B ·M μ=26.4)2(=+n n n = 3Co 2+杂化轨道是sp 3d 2,是外轨型3d 4s 4p 4dCo 2+ [Co(NH 3)6] 2+sp 3d 2杂化如[Co(NH3)6] 3+u = 0 n = 0 Co 2+以d 2sp 3杂化,为内轨型(5)[CuCl 4]2-u = 2.0 B ·M n = 1 Cu 2+以dsp 2杂化,为内轨型 12、试用配合物化学知识来解释下列事实(1)为何大多数过渡元素的配离子是有色的,而大多数Zn(II)的配离子为无色的?解:由于大多数过渡金属离子的d 轨道未充满,当吸收一定光能后,就可产生从低能级的d轨道向高能级的电子跃迁,从而使配e 离子显颜色;而Zn(II)离子的d 轨道是全充满的,不能发生d-d 跃迁,因而无色。

相关文档
最新文档