分形与混沌

合集下载

分形和混沌的基本概念和应用

分形和混沌的基本概念和应用

分形和混沌的基本概念和应用在科学和数学领域中,分形和混沌是两个非常重要的概念。

它们不仅有着丰富的理论内涵,而且在实际应用中也有着广泛的用途。

本文旨在介绍分形和混沌的基本概念、性质以及其应用领域。

一、分形的基本概念和性质分形最初是由法国数学家Mandelbrot所提出的。

分形,定义简单点来说,就是在各种尺度下都表现出相似性的图形。

比如说,我们在放大树叶时,会发现树叶的分支和小结构上会有许多特征,在不断放大过程中,树叶上的分支和结构会产生类似于整个树叶的结构。

这个例子就是分形学的一个典型例子。

分形的最重要的特性是自相似性和不规则性。

自相似性是指,在分形中,任意一部分都与整个结构相似,这种相似性具有尺度不变性,即不会因为放大或缩小而改变。

不规则性是指,分形的形状十分奇特,与传统的几何图形相比,分形形状复杂多变,没有任何几何规律可循。

分形广泛用于科学研究、艺术美学、计算机图像处理等领域。

在生物学、地震学、天文学中也有广泛应用。

例如,在生物学中,许多生物组织和器官都具有分形结构,如肺组织、血管系统、神经元等。

利用分形理论可以更好地研究这些生物结构的形态和发展规律。

此外,在土地利用和城市规划领域,也可以应用分形理论来研究城市建筑的空间结构和空间分布规律。

二、混沌的基本概念和性质混沌又称为非线性动力学。

混沌指的是用微观因素推算出宏观效应的过程,该过程结果不可预测,但随着时间的推移,能够生成复杂、有规律的系统。

混沌体系可用方程式表示出来,但由于该方程式是个非线性方程式,所以其结果会随这方程式微小变化而产生巨大的差异。

混沌具有以下几个突出的性质:灵敏依赖于初始条件,长期不稳定,难以预测和控制。

混沌理论可以用于预测经济和金融领域中出现的一些紊乱现象,如股市波动。

混沌最初应用在天文学领域,例如研究太阳系中行星之间的轨道。

这些轨道不像我们所想的那样规律。

然而,混沌的发现不仅在天文学领域中应用,也在许多其它领域解决一些不规则的问题。

动力系统理论中的混沌与分形

动力系统理论中的混沌与分形

动力系统理论中的混沌与分形混沌与分形是动力系统理论中的两个重要概念,它们在探索非线性系统行为和描述自然界的复杂性方面发挥着关键作用。

本文将从混沌与分形的基本原理、实际应用以及研究方向等多个角度来探讨这两个重要的理论概念。

一、混沌混沌是指在动力系统中,即使系统的运动规律是确定的,但其行为却表现出极端敏感的特性,即微小的初始条件改变会导致系统演化出完全不同的轨迹。

混沌理论的起源可以追溯到20世纪60年代,当时Lorenz通过研究大气环流模型,意外地发现了这一现象,这也被称为“蝴蝶效应”。

混沌现象的数学描述是通过非线性动力学方程实现的,例如著名的洛伦兹方程和Logistic映射等。

混沌行为的特点是演化过程不断变化,但却不失稳定性。

这种看似矛盾的特性给动力系统理论的研究带来了很大的挑战和启示。

混沌理论的实际应用非常广泛。

在天气和气候预测、金融市场、生态系统、心脏疾病等领域,混沌理论都发挥着重要作用。

通过混沌理论,我们能够更好地理解和预测这些复杂系统中的行为,为实际问题的解决提供了新的思路和方法。

目前,混沌理论仍然是一个活跃的研究领域。

研究人员致力于发展更精确的混沌理论模型,深入探究混沌行为的内在规律,以及在实际应用中的更多可能性。

二、分形分形是指具有自相似性和尺度不变性的几何形状。

与传统几何学中定义的规则形状不同,分形具有复杂的结构和非整数维度。

分形理论最早由Mandelbrot提出,并得到了广泛的应用。

分形的自相似性意味着它的一部分与整体具有相似的结构,这种特性使得分形能够用于描述自然界中许多复杂的形状,如云朵、树枝、河流等。

分形的尺度不变性意味着它在不同的比例下具有相似的结构,这也是分形与传统几何形状的显著区别。

分形理论在各个领域有着广泛的应用。

在计算机图形学中,分形可以用于生成自然风景和仿真自然材料的纹理。

在金融市场中,分形理论可以用于预测和分析股票价格的波动。

在生物学中,分形可以用于描述复杂的生物结构,如血管网络和肺泡等。

上帝的指纹——分形与混沌

上帝的指纹——分形与混沌

上帝的指纹——分形与混沌来源:王东明科学网博客云朵不是球形的,山峦不是锥形的,海岸线不是圆形的,树皮不是光滑的,闪电也不是一条直线。

——分形几何学之父Benoit Mandelbrot话说在一个世纪以前,数学领域相继出现了一些数学鬼怪,其整体或局部特征难以用传统的欧式几何语言加以表述。

著名的数学鬼怪包括处处不稠密而完备的Cantor集,每段长度都无限而围成有限面积的Koch曲线,面积为零而周长无限的Sierpinski三角形。

Koch 曲线Sierpinski 三角形这些数学鬼怪曾缠绕数学家多年,直到20世纪后半叶,才被美籍法国数学家Benoit Mandelbrot创立的分形几何学彻底制服。

分形几何学是新兴的科学分支混沌理论的数学基础。

1967年Mandelbrot在美国《科学》杂志上发表了题为“英国的海岸线到底有多长”的划时代论文,该文标志着分形萌芽的出现。

在这篇文章中Mandelbrot证明了在一定意义上任何海岸线都是无限长的,因为海湾和半岛会显露出越来越小的子海湾和子半岛,他将这种部分与整体的某种相似称为自相似性,它是一种特殊的跨越不同尺度的对称性,意味着图案之中递归地套着图案。

事实上,具有自相似性的现象广泛存在于自然界中,这些现象包括连绵起伏的山川,自由漂浮的云彩,江河入海形成的三角洲以及花菜、树冠、大脑皮层等等。

Mandelbrot将具有自相似性的现象抽象为分形,从而建立了有关斑痕、麻点、破碎、缠绕、扭曲的几何学。

这种几何学的维数可以不是整数,譬如Koch曲线的维数约为1.26,而Sierpinski三角形的维数则接近1.585。

分形植物(在生成分枝形状和叶片图案时遵循简单的递归法则)分形闪电(经历的路径是逐步形成的)Mandelbrot研究了一个简单的非线性迭代公式xn 1=xn2 c,式中xn 1和xn都是复变量,而c是复参数。

Mandelbrot发现,对某些参数值c,迭代会在复平面上的某几点之间循环反复;而对另一些参数值c,迭代结果却毫无规则可言。

生物学中的混沌与分形

生物学中的混沌与分形

生物学中的混沌与分形生命是一种神秘而又复杂的存在,生物学作为探究生命奥秘的学科,也常常涉及到许多神秘和复杂的现象。

混沌与分形是生物学中的两个非常重要的概念,它们被广泛地应用于生物学的研究当中,帮助我们更好地理解生物系统内部的复杂性和耦合性。

一、混沌理论在生物系统中的应用混沌现象是指一些看似随机但却呈现出复杂规律性的现象。

在生物学中,混沌现象常常出现在神经系统、心血管系统、生物钟和遗传系统等方面。

比如,在心血管系统中,心跳的节律可以被认为是一种混沌现象,这是由于心跳周期的长短具有一定的随机性和不确定性,但是却呈现出一定的规律性。

混沌理论在生物学研究中的应用主要体现在以下几个方面:1. 生物信息处理在生物信息处理方面,混沌理论可以用于建立神经网络模型,帮助我们更好地模拟和理解神经元之间的交互过程。

此外,混沌理论还可以用于分析遗传密码子序列的随机性和复杂性,从而预测基因的功能和表达方式。

2. 生物节律研究在生物节律研究方面,混沌理论主要用于描述生物节律的复杂性和分层性。

例如,在赤潮生态学研究中,混沌现象被广泛应用于描述藻类群体的生长和迁移规律。

3. 生物系统稳定性分析混沌现象还可以用于分析生物系统的稳定性和复杂性。

生物系统中存在大量的非线性和随机性因素,例如,天气变化、食物链的变幻、天敌的侵袭等等,这些因素会影响生物群体的数量和分布。

混沌理论可以帮助我们更好地理解这些因素对生物系统稳定性产生的影响。

二、分形理论在生物系统中的应用分形是指一些看似简单却却具有内部复杂性和自我相似性的几何形状。

在生物学中,分形理论主要用于描述自然造型和空间分布的复杂性。

分形理论可以很好地表达生物体内部的分形结构、分形外表面以及分形空间分布等特征。

分形理论在生物学研究中的应用主要体现在以下几个方面:1. 生物形态研究在生物形态研究方面,分形理论主要用于描述生物体内部的分形结构和外表面的复杂性。

例如,分形理论可以很好地解释树枝结构、花瓣形态以及动物骨骼的结构等种种形态特征。

非线性动力学混沌和分形

非线性动力学混沌和分形

非线性动力学混沌和分形非线性动力学是研究非线性系统行为的学科,其中混沌和分形是两个重要的概念。

本文将从混沌和分形的定义、产生原因以及在自然界和科学领域的应用等方面,探讨非线性动力学中的混沌和分形现象。

一、混沌的定义和产生原因混沌是指在非线性系统中表现出的随机、不可预测的行为。

它与线性系统中稳定、可预测的行为形成对比。

混沌的产生是由于非线性系统的敏感依赖性和非周期性。

非线性系统中存在着参数的微小变化对系统行为的剧烈改变的敏感依赖性。

也就是说,微小的输入扰动会在系统中产生指数级的放大效应,导致系统行为出现不可预测的、随机的演化轨迹。

非周期性是混沌的另一个重要特征。

与周期行为不同,混沌系统的演化轨迹不会重复,而是具有无限多的轨迹。

这种非周期性导致了混沌系统的随机性和不可预测性。

二、分形的定义和产生原因分形是指具有自相似性质的几何结构。

这种自相似性是指无论在何种尺度上观察,都能看到相似的图形形态。

分形在数学上可以通过重复迭代、自身放缩等方式来构造。

分形的产生原因与非线性动力学中的迭代过程密切相关。

在迭代过程中,每一次迭代都会根据某种规则对前一次结果进行变换或修改。

这种迭代的特性导致了分形的自相似性质。

三、混沌和分形在自然界中的应用混沌和分形不仅存在于数学和物理领域,也广泛存在于自然界中的各种系统中。

1. 混沌天气模型气象系统是典型的非线性系统,其中存在着许多复杂的变量相互作用。

应用混沌理论来模拟天气系统,可以更好地理解和预测天气变化。

例如,洛伦茨模型是一个典型的混沌系统,通过该模型可以模拟大气环流的混沌行为。

2. 分形地貌自然界中的许多地貌形状具有分形的特征。

例如,河流的分岔结构、山脉的起伏形态都展现了自相似的分形结构。

分形地貌的研究有助于了解地壳运动和地表形态的演化机制。

3. 植物生长模型植物生长是一个既复杂又多变的过程,涉及到生理、环境和遗传等多个因素的交互作用。

应用非线性动力学的方法,可以通过建立植物生长模型,研究植物生长的混沌行为以及其对环境的响应。

分形和混沌

分形和混沌

作为非线性科学三大理论前沿之一的分形理论,具有 一些不同与整形(欧氏几何里具有整数维的几何图形) 的特点,概括有五个基本特征或性质.
形态的不规则性.它是如此的不规则,以致不能用传统的 数学语言来描述; 结构的精细性,即具有任意小的比例细节; 局部与整体的自相似性,即局部与整体具有自相似性(这 种自相似性可以是严格的,近似的或统计的); 维数的非整数性,它的维数一般是分数的,并且大于其拓 扑维数; 生成的迭代性,分形虽然具有复杂结构,但是通常可以用 迭代方法生成.
返回混沌主页
下面我们来讲混沌的特性。
(1)确定系统的内在随机性. 混沌现象是由系统内部的非线性因素引起 的,是系统内在随机性的表现,而不是外来随 即扰动所产生的不规则结果。混沌理论的研究 表明,只要确定性系统中有非线性因素作用, 系统就会在一定的控制参数范围内产生一种内 在的随机性,即确定性混沌。 混沌现象是确定性系统的一种“内在随机 性”,它有别于由系统外部引入不确定随机影 响而产生的随机性。为了与类似大量分子热运 动的外在随机性和无序性加以区别,我们称所 研
初值x0与x0’之差z= | x0’- x0 |=13/(7* 23002) =1/ 10900是 非常小的,但经过3002次迭代之后结果就完全不同了。这就是 说, x0小数的前900位(或二进制的3002位)信息完全丧失。 这里并没有在迭代中进行“舍入”处理,而完全是由于初值的 不确定性造成的。
分形结束返回主页
我们再看一个著名的例子——“蝴蝶效应”.洛仑兹有一 个形象的比喻“巴西的一只蝴蝶扇动几下翅膀,可能会改变3 个月后美国得克萨斯的气候”。他说明了天气演变对初值 的敏感依赖性。用混沌学的术语表述就是,系统的长期行 为对初值的敏感依赖性。
(1)混沌的定义 (2)混沌的特性:

分形数学和混沌动力学的应用

分形数学和混沌动力学的应用

分形数学和混沌动力学的应用分形数学和混沌动力学是当代科学中的两个重要分支,这两个科学领域一直在推动人类的科技和社会发展。

其中分形数学是指一种研究自相似和自校正的图形和模式的数学学科,而混沌动力学是研究复杂动态系统的定性和量化性质的数学分支。

在不同领域的应用中,这两个数学工具都有着非常广泛的应用。

一、分形数学的应用1. 绘图艺术分形可以作为一种绘图工具来创造出独特的图案和艺术作品。

利用计算机程序,可以轻松地绘制出各种奇妙的分形图形。

例如,曼德博集合是一种特殊的分形,可以用复数平面上的点作为初始值进行计算,最终得到一个有规律且具有吸引力的图案。

2. 经济学分形在经济学中有着广泛的应用。

某些市场中的价格变化和市场的行为可以通过分形来解释。

例如,股票价格和汇率的变化就具有分形特性。

研究这些分形模型可以帮助分析市场的变化和模式。

3. 生物学在生物学领域,分形被用于研究复杂的生物结构和系统,如血管分布、肺泡结构、心电图和DNA等。

通过分形分析,可以更深入地理解这些复杂系统的特性,并提供新的数据分析工具。

4. 地理学分形学可以用于研究地形地貌。

例如,分形分析可以帮助理解海岸线的弯曲程度和地质的形态,同时还可以用于海浪的形态和多汁沟谷的分形分析。

二、混沌动力学的应用1. 通讯加密混沌现象在通讯加密中被广泛应用。

通过使用混沌序列或流加密算法,可以有效地保护敏感数据的安全。

混沌动力学的特性,如无法预测、高度敏感性和随机性,可以用于建立高强度的加密算法。

2. 生物学混沌动力学的理论应用于生物学领域。

例如,生物钟的行动可以用混沌模型来模拟。

根据生物钟模型的预测,轻微的环境变化可以导致严重的失调。

此外,混沌动力学也用于研究心脏节律和癫痫发作。

3. 经济学混沌理论在经济学研究中也有着重要的应用。

例如,通过混沌模型可以研究金融市场的波动性和变化。

此外,混沌现象在个人财务规划和投资决策中也有广泛的应用。

4. 控制工程混沌现象可以用于设计混沌控制器,这种控制器可以将混沌动力学的随机性转换为稳定奇数。

动力系统理论中的混沌与分形

动力系统理论中的混沌与分形

动力系统理论中的混沌与分形本文旨在探讨动力系统理论中的混沌与分形现象。

混沌与分形是动力系统理论中的两个重要概念,它们帮助我们理解非线性系统中的复杂行为。

通过对混沌和分形的介绍和解释,可以更好地理解这些现象对于动力系统理论的重要性。

一、混沌现象1.1 混沌的定义与特征混沌是一种看似随机、无序的、复杂的系统行为,但实际上具有确定性的特点。

混沌系统的演化过程是高度敏感的,微小的初始条件变化会导致系统行为的巨大差异。

1.2 混沌系统的示例尽管混沌系统无法通过常规的数学方法进行精确描述,但它们在自然界和科学领域中广泛存在。

例如,洛伦兹吸引子和双拱摆动等系统都展现了混沌行为。

1.3 混沌在动力系统中的应用混沌现象在动力系统控制和信息处理等领域有着重要的应用。

通过对混沌现象的研究,可以开发出一些混沌控制方法和混沌加密算法等技术。

二、分形现象2.1 分形的定义与特征分形是一种具有自相似性的几何形状。

分形对象的局部部分与整体之间存在着相似的结构,无论是放大还是缩小都能看到相似的形态。

2.2 分形的分类与例子分形可以分为确定性分形和随机分形,分形的例子包括科赫雪花曲线、谢尔宾斯基三角形和曼德尔布罗集合等。

2.3 分形在动力系统中的应用分形几何在动力系统的建模和分析中有广泛应用。

例如,在天气系统中,分形几何可以用来描述云朵的形状和天气的变化规律。

三、混沌与分形的关系混沌和分形都是非线性动力系统中的重要现象,它们之间存在着紧密的联系。

3.1 分形维度与混沌系统混沌系统的分维度是一个重要的非线性度量指标,在描述混沌系统的复杂性和自相似性方面起着关键作用。

3.2 分形分析揭示的混沌机制分形分析方法能够揭示混沌系统中的规律和结构。

通过分形分析可以得到混沌系统的分维度、分形维数等重要参数,从而更深入地理解混沌现象。

结论混沌与分形是动力系统理论中的重要概念,它们对于我们理解非线性系统中的复杂行为起到了关键作用。

混沌现象展示了非线性系统的敏感依赖性和不确定性,而分形则展示了系统的自相似性和复杂性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可能有人感到,只有欧几里得几何的正 规形状才能应用在科学中,然而上述新的形 式却从不同的透视角度向我们提供了认识自 然的观点。分形是一个新的数学领域--有时 也把它归为自然界的几何,因为这些奇异而 混沌的形状,不仅描绘了诸如地震、树、树 枝、生姜根、海岸线等自然现象,而且在天 文、经济、气象、电影制片等方面也有广泛 应用。
曼德勃罗集是人类有史以来做出的最奇异,最瑰 丽的几何图形.这个点集均出自公式:Zn+1=Z2n+C,这 是一个迭代公式,式中的变量都是复数.这是一个大 千世界,从他出发可以产生无穷无尽美丽图案,他是 曼德勃罗教授在二十世纪七十年代发现的.
你看上图中,有的地方象日冕,有的地方象 燃烧的火焰,只要你计算的点足够多,不管你 把图案放大多少倍,都能显示出更加复杂的 局部.这些局部既与整体不同,又有某种相似 的地方,好像着梦幻般的图案具有无穷无尽 的细节和自相似性.曼德勃罗教授称此为"魔 鬼的聚合物".为此,曼德勃罗在1988年获得 了"科学为艺术大奖".请看如下的图形产生过 程,其中后一个图均是前一个图的某一局部 放大:
上图中的风景图片又是说明分形的另一很 好的例子。这张美丽的图片是利用分形技术生 成的。在生成自然真实的景物中,分形具有独 特的优势,因为分形可以很好地构建自然景物 的模型。
除了自相似性以外,分行具有的另一 个普遍特征是具有无限的细致性。上面的 动画所演示的是对Mandelbrot集的放大, 只要选对位置进行放大,就会发现:无论 放大多少倍,图象的复杂性依然丝毫不会 减少。但是,注意观察上图,我们会发现: 每次放大的图形却并不和原来的图形完全 相似。这告诉我们:其实,分形并不要求 具有完全的自相似特性。
不管你信不信,上面的这张月球表面的照片 也是用分形技术生成的。如果你把图片放大观看, 也可以看到更加细致的东西。因为,分形能够保 持自然物体无限细致的特性,所以,无论你怎么 放大,最终,还是可以看见清晰的细节。
Kohn雪花和Sierpinski三角形也是比较 典型的分形图形,它们都具有严格的自相 似特性(仔细看看,是不是这样?)。但 是在前面说述的Mandelbrot集合却并不严 格自相似。所以,用“具有自相似”特性来 定义分形已经有许多局限了。
分形几何
普通几何学研究的对象,一般都具有整数 的维数。比如,零维的点、一维的线、二维的 面、三维的立体、乃至四维的时空。最近十几 年的,产生了新兴的分形几何学,空间具有不 一定是整数的维,而存在一个分数维数,这是 几何学的新突破,引起了数学家和自然科学者 的极大关注。
严格地而且正式地去定义分形是一件非常 复杂而且困难的事情。但是,有一些不太正 规的定义却可以帮助我们理解分形的含义。 在这些定义中,最为流行的一个定义是:分 形是一种具有自相似特性的现象、图象或者 物理过程。也就是说,在分形中,每一组成 部分都在特征上和整体相似,只仅仅是变小 了一些而已。
让我们来看下面的一个例子。下图是 一棵厥类植物,仔细观察,你会发现,它 的每个枝杈都在外形上和整体相同,仅仅 在尺寸上小了一些。而枝杈的枝杈也和整 体相同,只是变得更加小了。那么,枝杈 的枝杈的枝杈呢?自不必赘言。
如果你是个有心人,你一定会发现在自 然界中,有许多景物和都在某种程度上存在 这种自相似特性,即它们中的一个部分和它 的整体或者其它部分都十分形似。其实,远 远不止这些。从心脏的跳动、变幻莫测的天 气到股票的起落等许多现象都具有分形特性。 这正是研究分形的意义所在。例如,在道· 琼 斯指数中,某一个阶段的曲线图总和另外一 个更长的阶段的曲线图极为相似。
ห้องสมุดไป่ตู้
研究对象
有一类问题却比较特别,Mandelbrot就提出 了这样一个问题:英国的海岸线有多长?
英国的海岸线地图
Koch 曲线
Koch 曲线(续)
Koch曲线曾经在数学界成为一个魔鬼。 同样的道理:长度无限、面积为零、而曲线 还有“界”。 另外,有一个特点:当取其中的一部分展开, 与整体有完全的自相似性,似乎是一个什么 东西的无数次的自我复制。
具有无限嵌套的自相似结构是混沌 现象的普遍特性。
Julia Set
Julia Set: Zn+1 = Zn2 + C
令複數 C 為一定值,將 Z 平面上任意一點代入,則 Z 平面上部分區域收斂,部分區域發散, 而發散與 收斂區域間的邊界,即為 Julia Set 的圖形。 根据C、Z0的不同会生成不同的Julia集合
Logistic集
所谓无限嵌套的自相似结构说得通俗 一些即局部与整体相似。对局部放大后的 形象与整体形象相同或近似相同。除上面 讲到的周期窗口外,以下一些时间或空间 序列的自相似结构实例也必将有助于我们 的理解。
雪花,(2)闪电,(3)血管系统,(4)海 岸线,(5)鹦鹉螺,(6)菜花,(7)雏型村, (8)谢尔宾斯基垫片,(9)某人在看电视, 电视中还是某人在看电视······, (10)布朗运动,(11)社会经济的许多演化 过程,(12)一个故事:从前有座山,山上 有座庙,庙里有一个老和尚给小和尚讲故 事:从前有座山······请大家充分 发挥想像力,举更多的例子。
混沌
混沌可以说他是确定性的行为; 或者,若考虑他出现在稍微有点随机性的实 际系统中,也可以说他是近似与确定性的, 然而却不是看起来像确定性的。 在某些动力系统中,两个几乎一致的状态经 过充分长的时间后会变得毫无一致性。
Mandelbrot Set
在复平面中,M集是通过下述迭代式产生的: Zn+1=Zn^2+C。 其中,Z和c都是复数,由各自的实部 和虚部组成 Xn+1+iYn+1 = (Xn+iYn)2+Cx+iCy
从严格意义上讲,分形是这样一种对象, 将其细微部分放大后,其结构看起来仍与原 先的一样。这与圆形成了鲜明的对比,把圆 的一部分放大后便变得比较平直。分形可分 为两类:一是几何分形,它不断地重复同一 种花样图案;另一种是随机分形。计算机和 计算机绘图能够把这些“畸形怪物”可靠地带 回到生活中,在计算机的屏幕上,几乎能够 立即产生分形,并显示出它们奇妙的形状、 艺术图案或细微的景观。
分形与混沌
分形几何的基本思想
分形的思想
多少世纪以来,人们总是用欧几里得几 何的对象和概念(诸如点、线、平面、空间、 正方形、圆……)来描述我们这个生存的世 界。而非欧几何的发现,引进了描画宇宙现 象的新的对象。分形就是这样一种对象。
分形的思想初见于公元1875至1925年数学 家们的著作。这些对象被贴上畸形怪物的标 签,人们深信它没有丝毫的科学价值。它就 是今天人们众所周知的分形。分形一词是曼 德勃罗于1975年创造的,曼德勃罗在该领域 有着广泛的发现。
如下是产生上图的出发点
自然界中的其他事物
取下一片蕨类植物叶子似 乎与整体有某种相似性。 England的海岸线从视觉 上也感觉有某种自相似性
自然界中的分形

星 云


天空中的云朵 植物的叶子
毛细血管分布
视乳头旁毛细血管瘤 视网膜中央动脉颞上支阻塞
河流分布图
自然界中的分形
股票价格曲线 岩石裂缝 金属损伤裂缝 道路分布 神经末梢的分布 …………
相关文档
最新文档