8轴测投影图

合集下载

正等测轴测图的画法

正等测轴测图的画法
复习导入
1. 轴测投影图旳形成
正投影图
P
斜轴测投影图 Z1
X
O1 X1
Y1
Z S
S0 O
Y
2、三视图与轴测图旳比较
三视图能够较完整地确切地体现出零件各部分旳形状,且作图以便,但这 种图样直观性差;
轴测图能同步反应形体长、宽、高三个方向旳形状,具有立体感强,形 象直观旳优点,但不能确切地体现零件原来旳形状与大小.且作图较复杂,
1、平行H面旳圆旳画法:四心圆法
Zo4
Байду номын сангаасo2
o3
o5
2. 圆柱体旳正等测图旳画法
3. 圆角旳正等测图旳画法
X1
O'
X' O1
Z' O
Z1 X
Y1 Z1
X1 Y
Y1
整顿、完毕作图
X1
O'
X'
O1 Z'
O
X Z1
Y1 Y
(三)、 组合体旳正等测轴测图旳画法
(1)切割法
例1:已知三视图,画轴测图。
Z
(2)能熟练地根据实物或投影图绘制物体旳正等 轴测图。
六、作业:习题集P26
新课:4.2 正等测轴测图旳画法
一、正等轴测投影图旳形成
P
Z1
正等轴测投影图
O1 X1
Y1 X
Z
S O
Y
二、 轴间角和轴向伸缩系数
投影线方向 轴向伸缩系数
特 简化轴向伸缩系数
投影线与轴测投影面垂直 p1=q1=r1=0.82 p=q=r=1
Z1

轴间角
120°O1 120°
X1
120°

建筑工程中常用的投影图

建筑工程中常用的投影图

建筑工程中常用的投影图
在建筑工程的建造中,由于所表达的对象不同、目的不同,对图样的要求所采用的图示方法也随着不同。

常用的投影图有三种:正投影图、轴测投影图、透视投影图
(1)、正投影图
它是用平行投影的正投影法绘制的多面投影图。

优点:作图较其他图示法简便,便于度量,工程上应用最广,但缺乏立体感。

这种图能反映形体各主要侧面的真实形状和大小,度量性好,作图简便,是工程中应用最广的一种图示方法,也是本课程讲述的主要内容。

但是,这种图缺乏立体感,需经过一定的训练才能看懂。

(2)、轴测投影图
也称立体图).它是用平行投影的正投影法绘制的单面投影图。

优点:立体感强,非常直观。

缺点:作图较繁,表面形状在图中往往失真,度量性差,只能作为工程上的辅助性图样。

这种图具有一定的立体感和直观性,常作为工程上的辅助性图样。

但这种图不能反映出形体所有可见面的实形,且度量性不好,绘制较麻烦。

(3)、透视投影图
它是用中心投影法绘制的单面投影图。

优点:图形逼真,直观性强。

缺点:作图复杂,形体的尺寸不能直接在图中度量,故不能作为施工依据,仅用于建筑设计方案的比较及工艺美术和宣传广告画等。

这种图与照相原理一致,它是以人眼为投影中心,故符合人们的视觉形象,因而图形逼真,直观性强。

但透视投影图绘制较复杂,形体的尺寸不能直接在图中度量,故不能作为施工依据,仅用于建筑设计方案的比较及工艺美术和宣传广告画等。

机械制图第4章

机械制图第4章

第4章轴测图 轴间角和轴向伸缩系数是画轴测图的两个主要参数。正 (斜)轴测图按轴向伸缩系数是否相等又分别有下列三种不同 的形式: 正轴测图 正等轴测图(p=q=r); 正二轴测图(p=r≠q); 正三轴测图(p≠q≠r)。 斜轴测图 斜等轴测图(p=q=r); 斜二轴测图(p=r≠q); 斜三轴测图(p≠q≠r)。 工程上常采用立体感较强, 作图较简便的正等轴测图( 工程上常采用立体感较强, 作图较简便的正等轴测图(简称 正等测)和斜二轴测图(简称斜二测图 。 正等测)和斜二轴测图(简称斜二测图)。
第4章轴测图 4.2.1 平面体正等测图的画法 平面体正等测图的画法 1. 正六棱柱画法 正六棱柱画法 分析如图4-3所示,正六棱柱的前后、左右对称,将坐标原点 O定在上底面六边形的中心, 以六边形的中心线为X轴和Y轴。 这样便于直接求出上底面六边形各顶点的坐标,从上底面开始 作图。
第4章轴测图
第4章轴测图 (3) 将圆心O1、O2下移平板的厚度h,再用与上底面圆弧 相同的半径分别作两圆弧,得平板下底面圆角的轴测图。在 平板右端作上、下小圆弧的公切线, 描深, 完成作图,如图47(d)所示。
第4章轴测图 例 4-1 作图4-8所示支架的正等轴测图。 分析 采用叠加法分别画出底板和竖板的轴测图。底板上 的圆孔和圆角可按图4-5和图4-7的方法求出; 竖板上的圆孔 和顶部圆柱面的轴线垂直于正面,可按图4-6(a)的方法绘制。 支架左右对称, 原点和坐标轴如图4-8所示。
第4章轴测图
图 4-9 支架的正等测
第4章轴测图
4.3 斜二轴测图的画法
4.3.1 斜二轴测图的特点 斜二轴测图的特点 轴测投影面平行于一个坐标面(V面),当投射方向倾斜于轴 测投影面时,即得斜二轴测图, 如图4-1(b)所示。由于XOZ坐标面 平行于V面, 因此轴间角∠X1O1Z1=90°, 轴向伸缩系数p=r=1, 这样,物体表面的正平面上的所有图形在斜二轴测图中反映的都 是真实形状, 作图时就比正等轴测图方便。斜二轴测图取q=0.5, OY轴与水平线夹角为45°,如图4-10(a)所示。

6.3-斜轴测投影图

6.3-斜轴测投影图
p=q=1 , r=1(0.5)
4
60° 60° 30° 30°
(a) (a)
(b) (b)
建筑小区的水平斜轴测图5源自例5] 作挡土墙的斜二测图。6
7
挡土墙的斜等测图
8
[例6] 作组合体的斜二测图。
9
10
11

正面斜二测的轴间角和轴向伸缩系数
1 1
1
1
Y1
45°
90°
1
1
O1
135°
1
1
45°
1
∠X1O1Z1=90°,∠X1O1Y1=∠Z1O1Y1=135°
p=r=1 , q=0.5
3

水平斜轴测的轴间角和轴向伸缩系数
Z1
r=1(0.5)
90° O1 30°
p=1
X1
q=1
90°
Y1
∠X1O1Y1=90°,∠X1O1Z1=120°,∠Y1O1Z1=150°
第6章 轴测投影图
6.1 轴测投影的基本知识 6.2 正等轴测图的画法
6.3 斜轴测图的画法
1
6.3 斜轴测投影图
不改变形体对投影面的位置,而使投影方向与投影面倾斜 而得到的轴测图称为斜轴测投影图,简称斜轴测图。 6.3.1 正面斜轴测图 —— 以V面作为轴测投影面所得到的斜轴测图。 因XOZ坐标面平行于P面,因而p=r=1。 1.(正面)斜等测图:q=1 2.(正面)斜二测图:q=0.5 [例5] [例6] 6.3.2 水平斜轴测图 —— 以H面作为轴测投影面所得到的斜轴测图。 因XOY坐标面平行于P面,因而p=q=1。 1. 水平斜等测:r=1 [例7] 2. 水平斜二测:r=0.5 作图时通常将Z1轴画成铅直方向,∠XOY=90°,使X1、 Y1轴分别与水平线成30°、60°角。 2

机械工程图学-投影理论的基础知识(2)

机械工程图学-投影理论的基础知识(2)
1
轴测投影面
轴测投影面
(a) 正轴测图
轴测图的形成
Wang chenggang
(b) 斜轴测图
2-2/132
2.4 轴测图及其他投影图简介—2.4.1 轴测图的基本概念
用正投影法得到的轴测投影图称为正轴测投影图,简称正轴测 图,能表示物体三个方向的形状,接近于人的视觉习惯,立体感较强。
用斜投影法得到的轴测投影图,称为斜轴测投影图,简称斜轴测 图,也能表示物体三个方向的形状,立体感也较强。
2.4 轴测图及其他投影图简介
2.4 轴测图及其他投影图简介
在工程中主要应用的是多面正投影图,但在某些工程 领域有时也用到单面投影图。单面投影图(简称单面投影) 是将物体投射到单一的投影面上所得到的图形。利用中心 投影法或平行投影法都能得到单面投影图。
按照投射线的类型(平行或汇交),投影面与投射线 的相对位置(垂直或倾斜)及物体的主要轮廓与投影面的 相对关系(平行、垂直或倾斜),国家标准《技术制图 投影法》(GB/T 14692-2008)定义了透视投影、标高投 影、轴测投影三种单面投影图及镜像投影图。
(a)画轴测轴OX、OY ,作菱形EFGH。
(b)作菱形两钝角的顶点E、G与其两对边中点的连线ED、EC和 GA、GB(亦为菱形各边的中垂线),交于1、2两点。
(c)分别以G 、E、1、2为圆心,画圆弧,即完成作图。
( a)
G
G
DCD源自CHOFH
O 1
2
H F
XA
BY
E
XA
E
B
Y
( b)
( c)
平行于水平面的圆的正等轴测图
2-10/132
2.4 轴测图及其他投影图简介—2.4.2 正等轴测图的画法

第5章轴测图

第5章轴测图
由于平行于XOY、YOZ坐标面的圆的斜二测投影——椭圆的画法 比较繁琐,所以,当物体上除与XOZ坐标面平行的圆,还有其它圆 时,应避免选用斜二测图。 斜二测图的基本画法仍然是坐标法,利用坐标法画斜二测 图的方法与正轴测图相似。 在斜二测图中,由于XOZ坐标面平行于轴测投影面,所以 凡是平行于这个坐标面的图形,其轴测投影反映实形,这是斜 二测图的一个突出的特点。当物体只有一个方向有圆或单方向 形状复杂时,可利用这一特点,使其轴测图简单易画。
轴测图的缺点
轴测图的度量性差,作图复杂,因此在机械图样中只能作为辅助图样
(机工高职多学时)机械制图
第五章 轴测图
二、轴间角和轴向伸缩系数
轴测轴 直角坐标轴在轴测投影面上的投影 轴间角 轴测投影中,任意两根坐标轴在轴测投影面上的 投影之间的夹角 轴向伸缩系数 直角坐标轴的轴测投影的单位长度,与相应直角坐标 轴上的单位长度的比值 X、Y、Z轴的轴向伸缩系数,分别用p1、q1、r1表示,即 p1=O1X1/OX; q1=O1Y1/OY; r1=O1Z1/OZ
6.2.2 画轴测图的基本画法--坐标法 坐标法的一般步骤: 1)先根据物体形状的特点,选定适当的坐标轴;
2)再根据物体的尺寸坐标关系,画出物体上某些点
的轴测投影; 3)最后通过连接点的轴测投影作出物体上某些线和 面的轴测投影,从而逐步完成物体的轴测投影。
6.2 正等轴测图的画法
上一页
下一页
1.棱柱的正等测画法
例5-1 根据正六棱柱的两视图,画出其正等测
n
Z
1


m h
O
2 3
X

n
m
Y
(机工高职多学时)机械制图
第五章 轴测图

轴测图的基本知识(精)

9-1
轴测图的基本知识
一、轴测图的形成
轴测图是将物体连同其直角坐标系,沿不平行于任一坐标平面的 方向,用平行投影法将其投射在单一投影面上所得到的图形,也称 轴测投影 。 P平面称为轴测投影面
二、轴向伸缩系数和轴间角
Z r
1
p= p1=OA1 /O0A0 q= q1=OB1 /O0B0 r= r1=OC1 /O0C0
轴测轴:
坐标轴 O0X0、O0Y0 、O0Z0 轴测轴OX、OY 、OZ。
轴向伸缩系数: p1
O
q1
Y
Z0

X
投射 方向
C0
轴测轴的单位长度与相应 直角坐标轴上的单位长度的比 值,分别称为X、Y 、Z 轴的 轴向伸缩系数,分别用p1、q1、 r1表示;简化伸缩系数(简化 系数)分别用p、q、r表示。
X0
正轴测图
正二轴测图
正三轴测图
斜等轴测图
斜轴测图
斜二轴测图
正三轴测图
三个轴向伸缩系数均相等 轴测投影面平行于一个坐标平面,且平行 于坐标平面的两个轴的轴向伸缩系数相等 三个轴向伸缩系数均不相等
四.轴测图的画法
平行轴(坐标轴、轴测轴)取线:即平行于坐 标轴的线,我们取线 沿轴取(坐标轴、轴测轴)点:倾斜于坐标轴 的线,我们取其端点

A0
轴间角:
B0 Y0
两根轴测轴之间的夹角 ∠XOY 、 ∠XOZ 、 ∠YOZ
Z
r1
p= p1=OA1 /O0A0 q= q1=OB1 /O0B0 r= r1=OC1 /O0C0
轴测图的投影特性:
1.平行直线段的轴测投影 仍保持平行。
p1
O
q1
Y
Z0

轴测图教程


[例3]绘制如图所示立体的斜二轴测剖视图 画轴测剖视图的方法有两种 第一:是先画立体外形,然 后剖切,再擦掉多余的外形轮廓, 并在剖面部分画上剖面线,最后 描深
第二:先画出剖面形状的轴测图,然后补全内、 外轮廓,最后画剖面线并描深
剖面线的画法
轴测剖视的正等轴测图 其上有肋板,按不剖绘制
1.5.2 轴测图尺寸注法
三棱锥的正投影图
三棱锥的轴测投影图 p=r=1,q=0.5
1.2 正等轴测投影的轴向伸缩系数和轴间角
1.2.1轴向伸缩系数
在正轴测投影(p=q=r)中,无论坐标系与轴测投影 面的相对位置如何,而三个轴向伸缩系数平方之和总等于2
p2+q2+r2=2
p=q=r=2/3≈0.82
实际作图常采用简化轴向伸缩系数
1.6 轴测图画法举例与尺寸标注
1.6.1 组合体轴测图画法举例
[例1]绘制如图所示组合体的正等轴 测图 1)作形体分析:该组合体由底板和 立板堆积而成,左右对称。轴测图 上有两个方向上的椭圆,且有半椭 圆和四分之一圆弧的轴测椭圆弧。
2)选坐标轴
3)画底板和立板的外切长立方 体图,注意保持其相对位置
1.5.1 轴间角和轴向伸缩系数
斜二等轴测投影的伸缩系数为
p=r=1,q=0.5
轴间角为:
∠XOZ=90° ∠XOY=∠YOZ=135°
1.5.2 斜二等轴测投影中平行于坐标面的圆的投影
标准斜二等轴测投影 水平或侧面椭圆的近似画法
采用轴向伸缩系数分别为 p=r=1,q=0.5
1.5.3 斜二轴测图的画法
1.1.3
轴测投影的基本性质
1)空间平行两直线,其投影仍保持平行 2)空间平行于某坐标轴的线段,其投影长度等于该坐标轴 的轴向伸缩系数与线段长度的乘积

非常实用的轴测图知识

请勿在未经授权的情况下上传任何涉及版权侵权的文档,除非文档完全由您个人创作或您得到了版权所有者的授权"权利提示"页面可帮助您确定您的文档是否侵犯了他人的版权等合法权益点击上传文档即表示您确认该文档不违反文库协议和权利提示等百度文库帮助条款如果在上传文档过程中有任何问题,请查看文库帮助。

教案首页第八章轴测图本章重点1)掌握轴测图的形成和基本作图原理。

2)掌握正等测的作图原理和作图方法3)掌握斜二测的作图原理和作图方法4)用CAD绘制轴测图本章难点1)掌握正等测和斜二测的作图方法2)掌握CAD绘制轴测图的方法本章要求1)已知物体的三视图,作其正等测立体图。

2)已知物体的三视图,作其斜二测立体图。

3)CAD绘制轴测图四、本章内容:§8-1 轴测图的基本知识一、轴测图的形成及投影特性用平行投影法将物体连同确定物体空间位置的直角坐标系一起投射到单一投影面,所得的投影图称为轴测图。

由于轴测图是用平行投影法得到的,因此具有以下投影特性:1、空间相互平行的直线,它们的轴测投影互相平行。

2、立体上凡是与坐标轴平行的直线,在其轴测图中也必与轴测轴互相平行。

3、立体上两平行线段或同一直线上的两线段长度之比,在轴测图上保持不变。

二、轴向伸缩系数和轴间角投影面称为轴测投影面。

确定空间物体的坐标轴OX、OY、OZ在P面上的投影O1X1、O1Y1、O1Z1称为轴测投影轴,简称轴测轴。

轴测轴之间的夹角∠X1O1Y1、∠Y1O1Z1、∠Z1O1X1称为轴间角。

由于形体上三个坐标轴对轴测投影面的倾斜角度不同,所以在轴测图上各条轴线长度的变化程度也不一样,因此把轴测轴上的线段与空间坐标轴上对应线段的长度比,称为轴向伸缩系数。

三、轴测图的分类轴测图分为正轴测图和斜轴测图两大类。

当投影方向垂直于轴测投影面时,称为正轴测图;当投影方向倾于轴测投影面时,称为斜轴测图。

由些可见:正轴测图是由正投影法得来的,而斜轴测图则是用斜投影法得来的。

机械制图- 第三章-轴测图


斜二测 轴夹角90°和 135 °
4. 轴向伸缩系数
轴测轴上的单位长度,与相应投影轴上的单位长度的比值,称为轴向 伸缩系数
《机械制图》 机械类专业 第5版 第四章 轴测图
第一节 轴测图的基本知识
二、轴测图的基本性质
1 物体上与坐标轴平行的线段,它的轴测投影必与相应的轴测轴平行。 2 物体上相互平行的线段,它们的轴测投影也相互平行。
《机械制图》 机械类专业 第5版 第四章 轴测图
第二节 几何体的轴测图
球的正等测画法
圆球的正等测是一个圆,采用轴向伸缩系数0.82画图时,圆的直径等于球的直 径,用简化伸缩系数画图时,则圆的直径为球的直径的1.22 倍。为了增强图形的 直观性,可在圆内过球心画出三个与坐标面平行的椭圆,并常采用剖切1/8(球)的 方法来表示。
s'
s"
ZS
X'
a' Xa
c' Xa
O'
b' a"(b") bO
画平面1.立确定体坐标的轴轴,画测出轴图测常
坐标轴法。用,画2.图确定时底面首三先角形应的三选个好角点坐。 3.画出底面三角形。
标轴并Z画出4.轴确定测棱锥轴顶,点。然后根据 5.由顶点向底面三点连线。
坐S标画出物6.体整理上绘出各三点棱锥的轴 图, c" 测 再轴图由测。 点连成线,由线连成面,
第三章 轴测图
轴测图是一种单面投影图, 由于用轴测图表达物体的三维形 象,比正投影图直观,所以常把 它作为辅助性的图样来使用。
一、基本概念
第一节 轴测图的基本知识
将物体连同其参考直角坐标体系,沿不平行于任一坐标平面的方向,
用平行投影法将其投射在单一投影面上所得到的具有立体感的图形,称为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正等轴测图的画法 坐标法
端面延伸法 切割法 叠加法
例1 :画三棱锥的正等轴测图----坐标法
s
Z Z
s S● Z1 O1 C
c O c O
Y
b
Y

b
A● X1
Y1

B
画空间轴 画轴测轴 画底面 画顶面 画侧棱线 检查、描深
例2 根据主、俯视图,用坐标法画出它的正等轴测图
凡是与坐标轴平行的线段,就可以在轴测图上 沿轴向进行度量和作图。
P
Z c
d
a X
g
o
空间相互平行的 线段
Z0 O E H Y G B Y0
eg = EG * p cg = CG * q ad = AD * r
e h
D X0 A
b C
其轴测图仍 平行
轴测图的种类
正轴测图 轴测图
斜轴测图 斜等轴测图 p = q = r 斜二轴测图 p = r q 斜三轴测图 p q r 正等轴测图 正二轴测图 正三轴测图 p=q=r p=rq pqr
正等轴测图与斜二轴测图对比
轴间角和轴向伸缩系数
正等轴测图
投射线方向 投射线与轴测投影面垂直
p1=q1=r1=0.82
p=q=r=1
斜二轴测图
投射线与轴测投影面倾斜
p1=r1=1 q1=0.5

轴向伸缩系数
简化轴向伸缩系数


轴间角
边长为L的正 方体的轴测图
按轴向伸缩系数画 按简化轴向 伸缩系数画
例1:已知两视图,画斜二轴测图。
16
(2). 叠加法
24
6 Z Z
步骤1
6
20
28
8
Y
Z
X X
32
O O 24
O O Y
X
Y
步骤2
24 6 Z Z
6
Z
20
28
8 X X 32 O O 24 O
Y
O X Y
Y
步骤3
24 6
Z
Z 6 Z 28
20
8 X X 32 O O 24 O
Y
O X Y
Y
完成
24 6 Z Z 6
20
28
8 X 32 O O 24 O
画空间坐标轴 画轴测轴 画后方的正平面 向前量取宽度的1/2 画前方的正平面 连侧棱线 判别可见性,描深
例2 画出形体的正面斜二测图
正等轴测图
斜二轴测图
轴测图的基本知识
正等轴测图 斜二等轴测图
轴间角与轴向伸缩系数
正等轴测图的画法
轴间角与轴向伸缩系数
Z1
轴向伸缩系数:p = q = r = 0.82
X1
O1 Y1
简化轴向伸缩系数:p = q = r = 1 轴间角: X1O1Y1 = X1O1Z1 = Y1O1Z1 = 120°
所得的具有立体感的图形。
投射方向垂直于轴测投影面 ——正轴测图。 投射方向倾斜于轴测投影面
——斜轴测图。
轴测图的形成---正轴测图的形成
投影面
Z1 O1 X1 Y1
▲ 物体与投影面倾斜
▲ 用正投影法
Z O X Y
轴测图的形成---斜轴测图的形成
Z 投影面 Z1
X
Y
O
X1
O1
Y1
▲ 用斜投影法 ▲ 不改变物体与投影面的相对位置(物体正放)
Y
X
Y
轴测图的基本知识
正等轴测图 斜二等轴测图
正面斜轴测图 1. 正面斜二测图的轴间角和伸缩系数
Z1 1 Y1 X1 45° Y1
X1
1
1
1
O1
O1 Z1
45°
轴向伸缩系数:p = r = 1 ,q = 0.5 轴间角: X1O1Z1 = 90° X1O1Y1 = Y1O1Z1 = 135°




例3:已知三面投影图,画正等轴测图。---切割法
例4 画出组合体的正等测轴测图 (1). 切割法
Z Z 10 18 Z
25
8
16 Y
X
36
O O
O
8
O Y
X 20 X
Y
步骤1
25
步骤2
Z 18 Z 10 Z
25
8
16 Y O
X
36
O
16 Y
O
O
X
20 X
Y
完成
18 10
25
8
36
20
轴测轴和轴间角 建立在物体上的坐标轴在投影面上的投影叫做轴测轴,轴
测轴间的夹角叫做轴间角。
投影面
Z O X Y X1 Z1
X Z Z1 O Y X1
投影面
O1
Y1
O1
Y1
坐标轴 轴测轴 轴间角
物体上 OX, OY, OZ 投影面上 O1X1,O1Y1,O1Z1 X1O1Y1, X1O1Z1, Y1O1Z1
轴向伸缩系数
物体上平行于坐标轴的线段在轴测图上的长度与实际长度之比。
Z X
投影面
Z X A
C1 Z1
C
O
Z1
投影面
C1 B1
Y1
X1
C
A1
A
Y
O1
B1
Y1
B
A1
X1
O1
O B Y
O1A1 OA O1B1 OB O1C1 OC
= p = q = r
X轴轴向伸缩系数
Y轴轴向伸缩系数 Z轴轴向伸缩系数
轴测投影的特性 ★ 两线段空间平行,其轴测投影也平行。 ★ 两平行线段的轴测投影长度与空间长度的 比值相等。
轴测投影图
主讲
曹晓冶
轴测图的基本知识
正等轴测图 斜二等轴测图
轴测图的基本知识
正等轴测图 斜二等轴测图
一.轴测图的形成
二.轴测投影的特性 三.轴测投影的种类
轴测图---将物体连同确定其空间位置的直角坐标系,沿不平行 于任一坐标面的方向,用平行投影法将其投射在单一投影面上
相关文档
最新文档