江苏省高三数学一轮复习典型题专题训练:平面向量

江苏省高三数学一轮复习典型题专题训练:平面向量
江苏省高三数学一轮复习典型题专题训练:平面向量

江苏省高三数学一轮复习典型题专题训练

平面向量

一、填空题

1、(南京市2018高三9月学情调研)在△ABC 中,AB =3,AC =2,∠BAC =120?,→BM =λ→

BC .若

→AM ·→

BC =-173

,则实数λ的值为 ▲ .

2、(南京市2019高三9月学情调研)在菱形ABCD 中,∠ABC =60°, E 为边BC 上一点,且AB →·AE →

=6,AD →·AE →=32

,则AB →·AD →

的值为 ▲ .

3、(南京市六校联合体2019届高三上学期12月联考)ABC ?中,0

6034=∠==ACB ,BC ,AC ,

E 为边AC 中点,21

33

AD AB AC =

+,则CD BE ?的值为 ▲ . 4、(南师附中2019届高三年级5月模拟)已知等边三角形ABC 的边长为2,AM 2MB =,点N 、

T 分别为线段BC 、CA 上的动点,则AB NT BC TM CA MN ?+?+?取值的集合为 . 5、(南京市13校2019届高三12月联合调研)在等腰三角形ABC 中,底边

2BC =,AD DC = ,12AE EB =

, 若1

2

BD AC ?=-, 则CE AB ?= ▲ . 6、(苏州市2018高三上期初调研)已知平面向量(),2,110a a b =?=,若52a b +=,则b 的值是 .

7、(盐城市2019届高三上学期期中)已知向量(1m =,1)-,(cos n α=,sin )α,其中

[0α∈,]π,若m ∥n ,则α= .

8、(苏州市2019届高三上学期期中)已知向量(2,)m =a ,(1,2)=-b ,且⊥a b ,则实数m 的值是 ▲ .

9、(苏州市2019届高三上学期期中)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,

60BCD ∠=?,23CB CD ==. 若点M 为边BC 上的动点,则AM DM uuu r uuu u r

?的最小值为 ▲ .

10、(无锡市2019届高三上学期期中)已知向量a ,b 的夹角为120°,|a|=4,|b|=3,则|2a +b|的值为 11、(徐州市2019届高三上学期期中)在平行四边形ABCD 中,3AB =,1AD =,60BAD ∠=?,

若2CE ED = ,则AE BE ?的值为 ▲ .

12、(常州市2019届高三上学期期末)平面内不共线的三点,,O A B ,满足||1,||2OA OB ==,点C 为线段AB 的中点,AOB ∠的平分线交线段AB 于D ,若|3

||2

OC =

,则||OD =________. 13、(海安市2019届高三上学期期末)在△ABC 中,已知M 是BC 的中点,且AM =1,点P 满足 P A =2PM ,则P A →·(PB →+PC →)的取值范围是 .

14、(苏北三市(徐州、连云港、淮安)2019届高三期末)在ABC △中,2AB =,3AC =,60BAC ∠=?,

P 为ABC △所在平面内一点,满足3

22

CP PB PA =+,则CP AB ?的值为 .

15、(苏州市2019届高三上学期期末)如图,在边长为2的正方形ABCD 中,M ,N 分别是边BC ,

CD 上的两个动点,且BM +DN =MN ,则AM AN ?的最小值是 .

16、(泰州市2019届高三上学期期末)已知点P 为平行四边形ABCD 所在平面上任一点,且满足

20PA PB PD ++=,0PA PB PC λμ++=,则λμ=

17、(苏锡常镇四市2019届高三教学情况调查(二))如图,在等腰直角三角形ABC 中,∠ABC =90°,AB =2,以AB 为直径在△ABC 外作半圆O ,P 为半圆弧AB 上的动点,点Q 在斜边BC 上,若AB AQ ?=

8

3

,则AQ CP ?的最小值为

18、(苏锡常镇四市2019届高三教学情况调查(一))在△ABC 中,已知AB =2,AC =1,∠BAC =90°,D ,E 分别为BC ,AD 的中点,过点E 的直线交AB 于点P ,交AC 于点Q ,则BQ CP ?的最大值为

19、(盐城市2019届高三第三次模拟)已知⊙O 的半径为2,点A.B.C 为该圆上的三点,且AB=2,0>?→

BC BA ,则)(→

+?BA BO OC 的取值范围是_____.

20、(江苏省2019年百校大联考)在平面凸四边形ABCD 中,22AB =,3CD =,点E 满足

2DE EC =uuu r uu u r ,且2AE BE ==.若8

5

AE EC =uu u r uu u r g ,则AD BC uuu r uu u r g 的值为 .

21、(南京市、盐城市2019届高三第二次模拟)已知AD 时直角三角形ABC 的斜边BC 上的高,点

P 在DA 的延长线上,

且满足()42PB PC AD +?=.若2AD =,则P B P C ?的值为 . 22、(南通、如皋市2019届高三下学期语数英学科模拟(二))在平面四边形OABC 中,已知||3OA =,

OA ⊥OC ,AB ⊥BC ,∠ACB =60°,若OB AC =6,则||OC =__

二、解答题

1、(苏锡常镇2018高三3月教学情况调研(一))已知向量(2sin ,1)a α=,(1,sin())4

b π

α=+.

(1)若角α的终边过点(3,4),求a b ?的值; (2)若//a b ,求锐角α的大小.

2、((南京市13校2019届高三12月联合调研)在如图所示平面直角坐标系中,已知点(1,0)A 和点

(1,0)B -,||1OC =,且AOC x ∠=,其中O 为坐标原点.

(Ⅰ)若3

4

x π=

,设点D 为线段OA 上的动点,求||OC OD +的最小值; (Ⅱ)若[0,]2

x π

∈,

向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ?的最小值及对应的x 值.

3、(苏州市2018高三上期初调研)在平面直角坐标系中,设向量

(

)()

3,,cos ,3m cosA sinA n B sinB =

=-,其中,A B 为ABC ?的两个内角.

(1)若m n ⊥,求证:C 为直角; (2)若//m n ,求证:B 为锐角.

4、(泰州市2019届高三上学期期末)已知向量(sin ,1)a x =,1

(,cos )2

b x =,其中(0,)x π∈。 (1)若a b ,求x 的值;

(2)若tanx =-2,求|a b +|的值。

5、(无锡市2019届高三上学期期末)在 △ABC 中,设 a ,b ,c 分别是角 A ,B ,C 的对边,已知向

m = (a ,sin C -sin B ),

n = (b + c ,sin A + sin B ),且m n

(1) 求角 C 的大小

(2) 若 c = 3, 求 △ABC 的周长的取值范围.

6、(无锡市2019届高三上学期期中)已知A (-2,4),B (3,-1),C (-3,k ).

(1) 若 AB → 与 BC →

垂直,求实数k 的值;

(2) 若A ,B ,C 三点构成三角形,求实数k 的取值范围.

7、(扬州市2019届高三上学期期中)在△ABC 中,已知3AB AC AB AC ?=,设∠BAC =α.

(1)求tan α的值; (2)若3cos 5β=,β∈(0,2

π

),求cos(β﹣α)的值.

8、(苏锡常镇四市2019届高三教学情况调查(一))已知向量a =(2cos α,2sin α),b =(cos sin αα-,cos sin αα+).

(1)求向量a 与b 的夹角;

(2)若()b a λ-⊥a ,求实数λ的值.

9、(盐城市2019届高三第三次模拟)设向量)sin 2,cos 2(x x a =→,)cos ,cos 3(x x b =→

,函数3)(-?=→

→b a x f .

(1)求)(x f 的最小正周期;

(2)若,5

6)2(-=αf 且)2(ππα,∈,求αcos 的值.

10、(江苏省2019年百校大联考)设向量(cos ,sin )θθ=m ,(22sin ,22cos )=θθ+-n ,

3(π,π)2θ∈--,若12

?=m n .

(1)求π

sin()4θ+的值; (2)求7π

cos()12

θ+的值.

参考答案

一、填空题

1、1

3 2、-92 3、-4

4、答案:{﹣6}

解析:建立如图所示的平面直角坐标系

则A(0,3),B(﹣1,0),C(1,0) 由AM 2MB =得M(2

3-

,33

),设N(n ,0),直线AC 为:33y x =-+,设T(t ,

33t -+) 所以AB NT (1,3)(,33)23t n t t n ?=--?--+=+-, 224BC TM (2,0)(,33)2333

t t t ?=?-

--=--,

235CA MN (1,3)(,)333

n n ?=-?+

-=-- 则45

AB NT BC TM CA MN=232633t n t n ?+?+?+-----=-

5、4

3-

6、5

7、

34

π 8、1 9、21

4 10、7

11、32- 12、2

3

13、

14、-1 15、82-8 16、-

34

17、

18、9

4

- 19、(6,43]- 20、2 21、2 22、3

二、解答题

1、解:(1)由题意4sin 5α=,3cos 5

α=, 所以2sin sin()4a b a πα?=

++2sin sin cos 4παα=+cos sin 4

π

α+ 4242552=

+?3232

522

+?=. (2)因为//a b ,所以2sin sin()14

a π

α+

=,即2sin α(sin cos

cos sin )144

π

π

αα+=,所以

2sin sin cos 1ααα+=,

则2

sin cos 1sin ααα=-2

cos α=,对锐角α有cos 0α≠,所以tan 1α=, 所以锐角4

π

α=

.

2、解:(Ⅰ) 设(,0)D t (01t ≤≤),又22

(,)22

C -

所以22(,)22OC OD t +=-

+ 所以 22

211||22122

OC OD t t t t +=-++=-+……………3分

221

()(01)22

t t =-

+≤≤ 所以当22t =

时,||OC OD +最小值为2

2

………………6分 (Ⅱ)由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+

则2

2

1cos sin 2sin cos 1cos 2sin 2m n x x x x x x ?=-+-=-- 12sin(2)

4x π

=-+ ……………9分 因为[0,]2x π∈,所以52444x πππ

≤+≤ ……………10分

所以当24

2

x π

π

+=

,即8

x π

=

时,sin(2)4

x π

+

取得最大值1

所以8

x π

=

时,12sin(2)4

m n x π

?=-+

取得最小值12-

所以m n ?的最小值为12-,此时8

x π

=

…………………………14分

3、(1)易得()()cos cos sin sin 3cos m n A B A B A B ?=-=+, 因为m n ⊥,所以0m n ?=,即()cos cos

2

A B π

+=.

因为0A B π<+<,且函数cos y x =在()0,π内是单调减函数, 所以2

A B π

+=

,即C 为直角.

(2)因为//m n ,所以()

3cos 3sin sin cos 0A B A B ?--=, 即sin cos 3cos sin 0A B A B +=.

因为,A B 是三角形内角,所以cos cos 0A B ≠, 于是tan 3tan A B =-,因而,A B 中恰有一个是钝角,∴2

A B π

π<+<,

从而()2

2tan tan 3tan tan 2tan tan 01tan tan 13tan 13tan A B B B B

A B A B B B

+-+-+=

==<-++, 所以tan 0B >,即证B 为锐角

注:(2)解得tan 3tan A B =-后,得tan A 与tan B 异号, 若tan 0B <,

则()2

2tan tan 3tan tan 2tan tanC tan 01tan tan 13tan 13tan A B B B B

A B A B B B

+-+=-+=-

=-=<-++ 于是,在ABC ?中,有两个钝角B 和C ,这与三角形内角和定理矛盾,不可能 于是必有tan 0B >,即证B 为锐角 4、解:(1)因为a b ,所以,sinxcosx =1

2

,即sin2x=1, 因为(0,)x π∈,所以,4

x π=;

(2)因为tanx =

sin cos x

x

=-2,所以,sinx =-2cosx , 1

(sin ,1cos )2

a b x x +=++,

221||(sin )(1cos )2a b x x +=+++=9sin 2cos 4x x ++=3

2

5、(1)由m n ,得:a (sin A + sin B )=(b + c )

(sin C -sin B ) 由正弦定理,得:a (a + b )=(b + c )(c -b ) 化为:a 2+b 2-c 2=-a b ,由余弦定理,得:cosC =-1

2

, 所以,C =

3

π (2)因为C =

3π,所以,B =3π-A ,由B >0,得:0<A <3

π, 由正弦定理,得:

23sin sin sin a b c

A B C

===, △ABC 的周长为:a + b +c =23(sin sin )3A B ++=23[sin sin(

)]33

A A π

+-+

=3sin 3cos 3A A ++=2

3sin()33

A π

++,

由0<A <

3π,得:3sin()123

A π<+≤, 所以,周长C =2

3sin()33

A π

++∈(6,323)+

6、解:(1) 因为AB →=(5,-5),BC →

=(-6,k +1),(2分)

若AB →与BC →垂直,则AB →·BC →

=-30-5k -5=0,(4分) 解得k =-7.(6分)

(2) 若A ,B ,C 三点不构成三角形,则 AB →=λBC →

,(8分) 即(5,-5)=λ(-6,k +1).(10分) 所以5=-6λ,-5=λ(k +1), 解得k =5.(12分)

所以若A ,B ,C 三点构成三角形,则k 的取值范围是k ≠5.(14分) 7、解:(1)由3AB AC AB AC ?=?,得3cos AB AC AB AC α?=?,

所以1cos 3

α=,又因为0α<<π,所以2212sin 1cos 1(

)3

3

αα=-=-=

∴tan 2α= …………6分 (2)∵3cos 5β=,(0,)2πβ∈ ∴4

sin 5

β= ………8分

由(1)知:2

sin 3

α=

,∴31423346

cos()cos cos sin sin 551533βαβαβα+-=+=?+?=. 8、(1)设向量a 与b 的夹角为θ,

因为2=a ,22(cos sin )(cos sin )2αααα=-+-=b ,………………………4分 所以cos θ?=

?a b a b (2cos ,2sin )(cos sin ,cos sin )

22

αααααα?-+=

222cos 2sin 2

222

αα+==. …………………………………………………………7分

考虑到0πθ剟,得向量a 与b 的夹角

4

π

. ………………………………………9分 (2)若()λ-⊥b a a ,则()0λ-?=b a a ,即20λ?-=b a a , ………………………12分 因为2?=b a ,24=a ,

所以240λ-=,解得2λ=. ……………………………………………………14分 9、解:(1)因为()3(2cos ,2sin )(3cos ,cos )3f x a b x x x x =?-=?-

223cos 2sin cos 3x x x =+-3cos 2sin 2x x =+2sin(2)3

x π

=+. …………4分

所以)(x f 的最小正周期为22

T π

π==. ……………………6分 (2)因为6()25f α=-,所以62sin()35πα+=-,即3

sin()35πα+=-, ………………8分

又因为(,)2παπ∈,所以54(,)363πππ

α+∈,

故2234

cos()1sin ()1()3355

ππαα+=--+=---=-, …………10分

所以13cos cos(())cos()sin()332323

π

πππ

αααα=+

-=+++ 1433()()2525=?-+?-433

10+=-. ……………………14分

10、(1)因为1

2

?=

m n 所以,1(22sin )cos (22cos )sin 2

θθθθ++-= 化简,得:122cos 22sin 2

θθ+=, 即1sin()48π

θ+

= (2)3

(π,π)2

θ∈--

53(,)444

πθππ+∈--

由1sin()48πθ+=,5

(,)44

πθππ+∈--,

所以,2137

cos()1()488

π

θ+

=--=-, 7π

cos()12

θ+

=cos()43ππθ++=cos()cos sin()sin 4343ππππθθ+++

=37113373828216

+-?-?=-

2014年高三数学选择题专题训练(12套)有答案

高三数学选择题专题训练(一) 1.已知集合{}1),(≤+=y x y x P ,{ }1),(22≤+=y x y x Q ,则有 ( ) A .Q P ?≠ B .Q P = C .P Q P = D .Q Q P = 2.函数11)(+-=x x e e x f 的反函数是( ) A .)11( 11)(1<<-+-=-x x x Ln x f B .)11(11)(1-<>+-=-x x x x Ln x f 或 C .)11( 11)(1 <<--+=-x x x Ln x f D .)11(11)(1-<>-+=-x x x x Ln x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =, 则6b 的值 ( ) A .24 B .24- C .24± D .无法确定 4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要 条件是 ( ) A . αα??m 且 ∥β m ∥β B .βα??m 且 ∥m C .βα⊥⊥m 且 ∥m D . ∥α m ∥β 且 ∥m 5.已知n n n x a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-509121,则n 的 值 ( ) A .7 B .8 C .9 D .10 6.已知O ,A ,M ,B 为平面上四点,则)1(λλ-+=,)2,1(∈λ,则( ) A .点M 在线段A B 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,M ,B 四点共线 7.若A 为抛物线24 1x y = 的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则AC AB ?等于 ( ) A .31- B .3- C .3 D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色, 则共有涂色方法 ( ) A .24种 B .72种 C .96种 D .48种 9.若函数x x a y 2cos 2sin -=的图象关于直线π8 7=x 对称,那么a 的值 ( ) A .2 B .2- C .1 D .1-

(完整版)平面向量练习题集答案

平面向量练习题集答案 典例精析 题型一向量的有关概念 【例1】下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: a?; ①|a|=a ②(a?b) ?c=a?(b?c); ③OA-OB=BA; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为() A.1 B.2 C.3 D.4 a?正确;(a?b) ?c≠a?(b?c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=a MN=MD+DC+CN且MN=MA+AB+BN, 两式相加可得2MN=AB+DC,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确.

题型二 与向量线性运算有关的问题 【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM = DO 31,点N 在线段OC 上,且ON =OC 3 1 ,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN . 【解析】在?ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=1 2 (a -b ), AO =OC =12AC =12(AB +AD )=1 2(a +b ). 又DM =13DO , ON =1 3OC , 所以AM =AD +DM =b +1 3DO =b +13×12(a -b )=16a +56 b , AN =AO +ON =OC +1 3OC =43OC =43×12(a +b )=2 3(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16 b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=1 2 时,则PA ?(PB +PC )的值为 . 【解析】由已知得OP -OA =λ(AB +AC ), 即AP =λ(AB +AC ),当λ=12时,得AP =1 2(AB +AC ), 所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC , 所以PB +PC =PB +BP =0, 所以PA ? (PB +PC )=PA ?0=0,故填0.

平面向量练习题(附答案)

平面向量练习题 一.填空题。 1. BA CD DB AC +++等于________. 2.若向量=(3,2),=(0,-1),则向量2-的坐标是________. 3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________. 4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________. 5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与CD 共线,则|BD |的值等于________. 7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______. 8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______ 9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______ 10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____ 11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 . 14.将圆22 2=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 . 二.解答题。 1.设平面三点A (1,0),B (0,1),C (2,5). (1)试求向量2+的模; (2)试求向量与的夹角;

高三数学数列专题训练(含解析)

数列 20.(本小题满分12分) 已知等差数列{}n a 满足:22,5642=+=a a a ,数列{}n b 满足n n n na b b b =+++-12122 ,设数列{}n b 的前n 项和为n S 。 (Ⅰ)求数列{}{}n n b a ,的通项公式; (Ⅱ)求满足1413<

(1)求这7条鱼中至少有6条被QQ 先生吃掉的概率; (2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ. 18.解:(1)设QQ 先生能吃到的鱼的条数为ξ QQ 先生要想吃到7条鱼就必须在第一天吃掉黑鱼,()177 P ξ== ……………2分 QQ 先生要想吃到6条鱼就必须在第二天吃掉黑鱼,()61667535 P ξ==?= ……4分 故QQ 先生至少吃掉6条鱼的概率是()()()1166735P P P ξξξ≥==+== ……6分 (2)QQ 先生能吃到的鱼的条数ξ可取4,5,6,7,最坏的情况是只能吃到4条鱼:前3天各吃掉1条青鱼,其余3条青鱼被黑鱼吃掉,第4天QQ 先生吃掉黑鱼,其概率为 64216(4)75335P ξ==??= ………8分 ()6418575335 P ξ==??=………10分 所以ξ的分布列为(必须写出分布列, 否则扣1分) ……………………11分 故416586675535353535 E ξ????= +++=,所求期望值为5. (12) 20.∵a 2=5,a 4+a 6=22,∴a 1+d=5,(a 1+3d )+(a 1+5d )=22, 解得:a 1=3,d=2. ∴12+=n a n …………2分 在n n n na b b b =+++-1212 2 中令n=1得:b 1=a 1=3, 又b 1+2b 2+…+2n b n+1=(n+1)a n+1, ∴2n b n+1=(n+1)a n+1一na n . ∴2n b n+1=(n+1)(2n+3)-n (2n+1)=4n+3,

高中数学:空间向量

空间向量 一、向量的基本概念与运算 1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且 等长的有向线段表示同一向量或相等的向量. 2.零向量:起点与终点重合的向量叫做零向量,记为0或0. 3.书写:在手写向量时,在字母上方加上箭头,如a ,AB . 4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a 5.方向:有向线段的方向表示向量的方向. 6.基线:有向线段所在的直线叫做向量的基线. 7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平 行向量.a 平行于b 记为a b ∥. 8.向量运算:与平面向量类似; 二、空间向量的基本定理 1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =. 2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量. 3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是, 存在唯一的一对实数x ,y ,使c xa yb =+. 4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.

注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c , ,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 三、向量的数量积 1.两个向量的夹角 已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b ??, .通常规定0πa b ??≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a ??=??, ,.如果90a b ??=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积 已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ?=??, 空间两个向量的数量积具有如下性质: 1)||cos a e a a e ?=??,;(2)0a b a b ??=; (3)2||a a a =?;(4)a b a b ?||≤||||. 空间两个向量的数量积满足如下运算律: 1)()()a b a b λλ?=?;(2)a b b a ?=?;(3)()a b c a c b c +?=?+?. 四、空间向量的直角坐标运算 前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;, ,. 1.坐标 在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,, 方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,. 若123()a a a a =, ,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++, ,;112233()a b a b a b a b -=---,,;

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

平面向量简单练习题

试卷第1页,总5页 一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥,则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+= ,则向量b 与a 的夹角为( ) 6.设向量(0,2),==r r a b ,则, a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→→b a ( ) 8.已知()()0,1,2,3-=-=b a ,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a = ,(2,)b y =- ,若向量,a b 共线,则3a b + =( ) 10.平面向量a 与b 的夹角为60 ,(2,0)a = ,1b = ,则2a b + = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→→?b a 等于 13.若1,2,,a b c a b c a ===+⊥ 且,则向量a b 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB =(cos120°,sin120°),AC =(cos30°,sin30°),则△ABC 的形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--= 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b 满足0,1,2,a b a b ?=== 则2a b -= ( ) 21.设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos 2θ等于 ( ) 23.化简AC - BD + CD - AB = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF ( )

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

高三数学专项训练:函数值的大小比较

高三数学专项训练:函数值的大小比较 一、选择题1.设112 4 50.5,0.9,log 0.3a b c ,则c b a ,,的大小关系是(). A. b c a B. b a c C. c b a D. c a b 2.设2 lg ,(lg ),lg ,a e b e c e 则( ) A .a b c B .a c b C .c a b D .c b a 3.设 a b c ,,分别是方程1122 2 11 2=log ,() log ,() log ,2 2x x x x x x 的实数根, 则有( ) A. a b c B.c b a C.b a c D.c a b 4.若1 3 (1)ln 2ln ln x e a x b x c x ,,,,,则( ) A . a < b < c B .c

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

高三数学选择题专题训练(17套)含答案

专题训练(一) (每个专题时间:35分钟,满分:60分) 1 .函数y = 的定义域是( ) A .[1,)+∞ B .2 3(,)+∞ C .2 3[,1] D .23(,1] 2.函数221 ()1x f x x -=+, 则(2)1()2 f f = ( ) A .1 B .-1 C .35 D .3 5- 3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( ) A .2 B C .1 D 4.不等式2 21 x x + >+的解集是 ( ) A .(1,0)(1,)-+∞U B .(,1)(0,1)-∞-U C .(1,0)(0,1)-U D .(,1)(1,)-∞-+∞U 5.sin163 sin 223sin 253sin313+=o o o o ( ) A .12- B .12 C . D 6.若向量r r a 与b 的夹角为60o ,||4,(2).(3)72b a b a b =+-=-r r r r r ,则向量a r 的模为( ) A .2 B .4 C .6 D .12 7.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( ) ① ////m m αββα? ???? ② //////m n n m ββ? ??? ③ ,m m n n αβ?? ???? 异面 ④ //m m αββα⊥? ?⊥?? 其中假命题有:( ) A .0个 B .1个 C .2个 D .3个 9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .4008 10.已知双曲线22221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此 双曲线的离心率e 的最大值为 ( ) A .43 B .53 C .2 D .73 11.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮 使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( ) A .2140 B .1740 C .310 D .7120 12. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形 孔,则这个有孔正方体的表面积(含孔内各面)是

高三数学空间向量一轮复习

第十三章空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a +b =. (2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使. 基础过关 知识网络 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量 (1) 共面向量:平行于的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论:. 5.空间向量基本定理 (1) 空间向量的基底:的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使. 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使. 6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:. (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ?a ?2=; (c) a ⊥b ?. (4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=. ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0,2 1 =-∴==y x y x 变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A 1c ,则下列向量中与B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则 A B C D A 1 B 1

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

2020年高三数学解答题专题训练题精选(含答案解析)(25)

2020年高三数学解答题专题训练题精选25 1.已知集合,,. Ⅰ若,求实数a的取值范围; Ⅱ设函数,若实数满足,求实数取值的集合. 2.甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是, 乙能答对其中的8道题.规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选; (Ⅰ)求甲恰有2个题目答对的概率; (Ⅱ)求乙答对的题目数X的分布列; (Ⅲ)试比较甲,乙两人平均答对的题目数的大小,并说明理由. 3.设f(x)=log2-x为奇函数,a为常数. (1)求a的值; (2)判断并证明函数f(x)在x∈(1,+∞)时的单调性; (3)若对于区间[2,3]上的每一个x值,不等式f(x)>2x+m恒成立,求实数m 取值范围. 4.如图,在四边形ABCD中,AC平分∠DAB,已知∠B=60°,AC=7.AD=6,面积

(1)求sin∠DAC和cos∠DAB的值; (2)求边BC,AB的长度. 5.等差数列{a n}中,a2=4,a4+a7=15. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设,求b1+b2+b3+…+b10的值. 6.设,函数. 当时,求函数的单调区间; 若函数在区间上有唯一零点,试求a的值. 7.四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=2,, PD=4,∠PDA=60°,且平面PAD⊥平面ABCD.

(1)求证:AD⊥PB; (2)在线段PA上是否存在一点M,使二面角M-BC-D的大小为,若存在,求出的 值;若不存在,请说明理由. 8.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°, PA=,∠ACB=90°,M是线段PD上的一点(不包括端点). (Ⅰ)求证:BC⊥平面PAC; (Ⅱ)求二面角D-PC-A的正切值; (Ⅲ)试确定点M的位置,使直线MA与平面PCD所成角θ的正弦值为. 9.已知函数f(x)=(a-)x2-2ax+ln x,a∈R (1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值; (2)求g(x)=f(x)+ax在x=1处的切线方程;

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

2019-2020学年度最新人教版高考数学总复习(各种专题训练)Word版

2019-2020学年度最新人教版高考数学总复习 (各种专题训练)Word版(附参考答案) 一.课标要求: 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 三.要点精讲 1.集合:某些指定的对象集在一起成为集合。 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体 (对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排 列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法:

相关文档
最新文档