第六章 半导体陶瓷

合集下载

半导体陶瓷现状及发展趋势

半导体陶瓷现状及发展趋势

半导体陶瓷现状及发展趋势半导体陶瓷是一种新型的材料,它具有优异的物理、化学和机械性能,被广泛应用于电子、光电、航空航天、医疗等领域。

本文将从半导体陶瓷的现状和发展趋势两个方面进行探讨。

一、半导体陶瓷的现状半导体陶瓷是一种由氧化铝、氮化硅、碳化硅等材料制成的陶瓷材料。

它具有高硬度、高强度、高温稳定性、耐腐蚀性、绝缘性等优异性能,被广泛应用于电子、光电、航空航天、医疗等领域。

在电子领域,半导体陶瓷被用作电子元器件的基板、封装材料、热散射材料等。

在光电领域,半导体陶瓷被用作激光器、光纤连接器、光学窗口等。

在航空航天领域,半导体陶瓷被用作发动机部件、热障涂层、航天器外壳等。

在医疗领域,半导体陶瓷被用作人工关节、牙科修复材料等。

半导体陶瓷的生产技术已经相对成熟,国内外许多企业都能够生产出高质量的半导体陶瓷产品。

其中,日本、美国、德国等发达国家的半导体陶瓷产业比较发达,产品质量和技术水平较高。

而我国的半导体陶瓷产业起步较晚,但随着技术的不断提升和市场需求的增加,我国的半导体陶瓷产业也在逐步发展壮大。

二、半导体陶瓷的发展趋势随着科技的不断进步和市场需求的不断增加,半导体陶瓷的发展趋势也在不断变化。

以下是半导体陶瓷的几个发展趋势:1. 多功能化随着半导体陶瓷的应用领域越来越广泛,对其性能要求也越来越高。

未来的半导体陶瓷将不仅具有高硬度、高强度、高温稳定性、耐腐蚀性、绝缘性等基本性能,还将具有多种功能,如磁性、光学、电学、热学等功能。

2. 精细化随着微电子技术的不断发展,半导体陶瓷的制造工艺也在不断精细化。

未来的半导体陶瓷将具有更高的制造精度和更小的尺寸,以适应微电子器件的发展需求。

3. 绿色化随着环保意识的不断提高,半导体陶瓷的生产也将越来越注重环保。

未来的半导体陶瓷将采用更环保的生产工艺和材料,以减少对环境的污染。

4. 智能化随着物联网、人工智能等技术的不断发展,未来的半导体陶瓷将具有更多的智能化功能,如传感、识别、控制等功能,以适应智能化时代的需求。

(完整word版)半导体陶瓷的研究现状与发展前景

(完整word版)半导体陶瓷的研究现状与发展前景

半导体陶瓷的研究现状与发展前景摘要:半导体陶瓷是当今世界迅速发展的一项高新技术领域。

随着电子工业的高速发展, 发展半导体陶瓷正面临着许多急待解决的重要问题。

本文对热敏、气敏、湿敏、压敏、光敏等五类半导体陶瓷的基本原理, 主要陶瓷材料以及优越特性的应用进行了简要叙述, 对半导体陶瓷现状及发展趋势进行了分析探讨, 并针对共性问题提出了某些看法和建议。

关键词:半导体陶瓷; 现状; 发展前景引言:半导体陶瓷是敏感元器件及传感器技术的关键材料, 是当今世界迅速发展的一项高新技术领域, 它与现代信息技术、通讯技术、计算机技术密切相关,它的研究开发乃至生产, 涉及到物理、化学、材料科学与工程等多种学科,因此,半导体陶瓷属技术密集和知识密集型产业。

日本产品在世界市场上占绝对优势地位。

美国, 欧洲也占有相当数量。

相比之下我国半导体陶瓷起步较晚,产品性能、生产水平和国际先进水平相比还有明显差距。

改革开放以来, 随着电子工业的高速发展, 对半导体陶瓷的要求愈来愈高,发展半导体陶瓷正面临着许多急待解决的重要问题, 本文就半导体陶瓷国内外现状及发展趋势进行探讨, 提出一些粗浅的看法进行商榷, 以期推动我国半导体陶瓷产业进一步发展。

1 现状及发展前景半导体陶瓷品种繁多, 具有产业规模生产的主要有: 热敏、气敏、湿敏、压敏及光敏电阻器等。

1. 1 热敏热敏电阻器一般可分为正温度系数( PTC) , 负温度系数(NTC) 和临界温度电阻器(CTR) 三类。

PTC 热敏电阻器以BaTiO3或BaT iO3固溶体为主晶相的半导体陶瓷元件。

在一定的温度范围内,其阻值随温度的增加而增加, 表现出所谓的PTC 效应。

按材料居里点(T c) 可分为低温、高温, 按阻值可分为低阻、高阻, 按使用电压可分为低压、常压和高压, 按曲线陡度可分为缓变型和开关型。

PTC 热敏电阻器的实用化基本上是从20 世纪60 年代开始的, 到70 年代中期得到了很大的发展, 各种不同用途的PTC 热敏电阻元件相继出现。

陶瓷半导体的原理及应用

陶瓷半导体的原理及应用

陶瓷半导体的原理及应用一、引言陶瓷半导体是一种重要的功能材料,具有优异的电子性能和耐高温特性,在众多领域中有广泛的应用。

本文将介绍陶瓷半导体的基本原理以及其在各个领域中的应用。

二、陶瓷半导体的基本原理陶瓷半导体具有电阻率介于导体与绝缘体之间的特性,其导电机理主要是基于电子和空穴的运动。

在陶瓷半导体中,通过外加电压或加热等方式,可以激发电子从价带跃迁到导带,从而形成导电通道。

同时,陶瓷半导体的晶格结构也会对电子的运动产生影响。

三、陶瓷半导体的应用3.1 电子器件领域陶瓷半导体在电子器件领域中有广泛的应用,例如陶瓷半导体电容器、陶瓷半导体电阻器等。

由于陶瓷半导体具有高温稳定性和耐腐蚀性,可以在恶劣环境下长时间工作,因此在航空航天、军事和工业领域中得到广泛应用。

3.2 光电子领域陶瓷半导体在光电子领域中也有重要的应用。

例如,陶瓷半导体材料可以制成高效的光电转换器件,用于太阳能电池和光电传感器等。

陶瓷半导体材料的高温稳定性和耐辐射性使其在航天器和核能领域中有广泛应用。

3.3 医疗领域陶瓷半导体在医疗领域中的应用也越来越广泛。

例如,陶瓷半导体材料可以制成生物传感器,用于检测血糖、血压等生理参数。

此外,陶瓷半导体材料还可以制成人工关节和牙科修复材料,用于骨科和牙科手术。

3.4 环境保护领域陶瓷半导体在环境保护领域中也有重要的应用。

例如,陶瓷半导体材料可以制成高效的气体传感器,用于检测空气中的有害气体。

此外,陶瓷半导体材料还可以制成光催化剂,用于光催化降解有机污染物。

四、结论陶瓷半导体作为一种重要的功能材料,具有优异的电子性能和耐高温特性,在电子器件、光电子、医疗和环境保护等领域中有广泛的应用。

随着科技的不断发展,陶瓷半导体的应用前景将会更加广阔。

我们有理由相信,陶瓷半导体将在未来的科技创新中发挥越来越重要的作用。

6 功能陶瓷(1)导电及超导陶瓷

6 功能陶瓷(1)导电及超导陶瓷

6.1.2 超导陶瓷
6.1.2.4 Bi-Sr-Ca-Cu-O
6.1.2 超导陶瓷
6.1.2.5 MgB2
⑴ 二硼化镁是常规超导体, 其超导机制可以用BCS理论解 释。目前,二硼化镁是这类超 导体中临界温度最高的。 ⑵ 硼元素和镁元素的价格低 廉,并容易制成线材。 ⑶ 氧化物高温超导体是由氧 元素和两种以上金属元素组成 的复杂化合物,自发现以来, 人们就放弃了在简单化合物中 寻找具有较高临界温度超导体 的想法,忽略了对金属间化合 物的研究。二硼化镁超导体的 发现,使冷落了近30年的简单 化合物超导体研究升温。
6.1.2 超导陶瓷
6.1.2.5 MgB2
6.1.2 超导陶瓷
6.1.2.6 应用
6.1.2 超导陶瓷
6.1.2.6 应用
6.1.2 超导陶瓷
6.1.2.6 应用
Pure O2 - - - - - - - - - ++++++++++
O2 + other
6.1.1导电陶瓷
6.1.1.2 b-Al2O3隔膜材料和钠硫电池瓷
使用温度:300-500oC
6.1.1导电陶瓷
6.1.1.3 TiO2氧传感器
TiO2-x
6.1.2 超导陶瓷
6.1.2.1 发展历史
特种陶瓷
第6章 功能陶瓷 第1节 导电及超导陶瓷
内容
本讲主要 内容
1 导电陶瓷
2 超导陶瓷
6.1.1导电陶瓷
6.1.1.1氧化锆导电陶瓷
纯氧化锆是绝缘体,电阻率高达1013-1015Ω•cm 进行异价离子掺杂:
氧空位电离,形成带正电的空穴:

探究半导体陶瓷的介电性能与介电常数

探究半导体陶瓷的介电性能与介电常数

探究半导体陶瓷的介电性能与介电常数半导体陶瓷是一种具有特殊电子结构和导电性能的陶瓷材料,因其在半导体领域具有重要应用而备受关注。

介电性能与介电常数是衡量半导体陶瓷性能的重要指标之一。

本文将探究半导体陶瓷的介电性能与介电常数,并介绍其在电子器件和能源领域的应用。

首先,介电性能是描述材料在外电场作用下的响应能力。

半导体陶瓷的介电性能可通过介电常数来表征。

介电常数是材料对电磁场响应的能力,是材料中电磁波传播速度和电场分布的重要性质。

半导体陶瓷的介电常数的大小和频率有关,一般可分为静态介电常数和复介电常数。

静态介电常数是材料在零频率下的介电常数,而复介电常数则包括实部和虚部。

实部反映了材料的介电极化行为,虚部则与材料的电导行为相关。

半导体陶瓷具有较高的介电常数,这一特性使其在电子器件中具有重要的应用价值。

由于半导体陶瓷具有导电性能,可调节介电常数的大小,使其适用于电容器、电感器等元件的制造。

此外,半导体陶瓷的介电性能也使其成为微波器件、天线设备、超声电池等领域的理想材料。

在电子器件制造中,半导体陶瓷的介电常数对元器件的性能起着重要作用。

例如,在电容器中,介电常数决定了电容器的储能能力。

较高的介电常数意味着更高的储能密度,从而实现更高的电容值。

这对于大容量电容器和电储能装置具有重要意义。

同时,半导体陶瓷具有低损耗的特点,能够降低能量损失,提高装置的效率。

在能源领域,半导体陶瓷的介电性能也发挥着重要作用。

例如,光伏电池是将光能转化为电能的电池装置,其中的半导体陶瓷材料的介电常数与发电效率密切相关。

较高的介电常数意味着更高的光吸收能力,从而提高光伏电池的转换效率。

此外,半导体陶瓷的介电性能在燃料电池、超级电容器和储能装置等领域也具有重要应用。

需要注意的是,半导体陶瓷的介电性能受到多种因素的影响。

首先,材料的晶体结构、成分和制备工艺对介电性能具有重要影响。

不同的晶体结构和成分会影响电子结构和电子跃迁,从而改变介电常数的数值。

半导体精密陶瓷材料-概述说明以及解释

半导体精密陶瓷材料-概述说明以及解释

半导体精密陶瓷材料-概述说明以及解释1.引言1.1 概述半导体精密陶瓷材料是一种关键的材料,具有优异的电性能、热性能和化学稳定性。

随着半导体行业的发展,对于高性能、高可靠性的材料需求越来越迫切,半导体精密陶瓷材料因其独特的性能被广泛应用于半导体制造领域。

本文将介绍半导体材料的特点及精密陶瓷的应用领域,重点讨论半导体精密陶瓷材料的制备方法。

最后,文章将总结半导体精密陶瓷材料在半导体行业中的重要性,展望其未来发展方向。

通过本文的阐述,读者将能够深入了解半导体精密陶瓷材料的现状和未来发展趋势。

1.2 文章结构:本文将首先介绍半导体材料的特点,包括其在电子行业中的重要性和特殊性。

接着将探讨精密陶瓷在各个应用领域中的作用,重点分析其在半导体行业中的应用。

最后,将详细介绍半导体精密陶瓷材料的制备方法,包括制备工艺和技术要点。

通过本文的阐述,读者将能够更深入地了解半导体精密陶瓷材料在电子行业中的重要性和广泛应用,同时也能够了解其制备方法和未来发展方向,为相关领域的研究和应用提供参考和借鉴。

1.3 目的本文的主要目的是介绍和探讨半导体精密陶瓷材料的重要性和应用领域。

通过对半导体材料特点、精密陶瓷的应用领域和制备方法等方面的深入探讨,旨在帮助读者深入了解这一领域的知识和技术。

同时,也旨在强调半导体精密陶瓷材料在现代科技领域的重要作用,以及展望未来该领域的发展方向,为相关研究和应用提供参考和启示。

通过本文的阐述和总结,希望能够激发读者对半导体精密陶瓷材料的兴趣,促进该领域的进一步研究和应用。

2.正文2.1 半导体材料的特点半导体材料是一种介于导体和绝缘体之间的材料。

其特点主要包括以下几个方面:1. 高阻值:半导体材料的电阻值比金属导体高,但比绝缘体低,具有一定的导电性能。

2. 负温度系数:半导体材料在特定温度范围内,随温度的升高,电阻值会减小,且升温对其导电性具有促进作用。

3. 非线性电阻特性:半导体材料在一定范围内,电阻值不随电压的变化而线性变化,呈现出非线性电阻特性。

半导体陶瓷

半导体陶瓷
第六章 半导体陶瓷
§6-1 概述
§6-2 BaTiO3瓷的半导化机理
§6-3 PTC热敏电阻
§6-4 半导体陶瓷电容器
§6-1 概述
• 1. 装置瓷、电容器瓷、铁电压电瓷: ρV> 1012Ω•cm , 防止半导化,保证高绝缘电阻率; 半导体瓷:ρV<106Ω•cm • 2. 半导体瓷:传感器用,作为敏感材料,电阻型敏 感材料为主:
3 2x

x O V O2 2
2 3 x Ox
V
o
取决于气氛与温度
§6-2 BaTiO3瓷的半导化机理
• 强制还原法往往用于生产晶界层电容器,可使晶粒电阻 率很低,从而制得介电系数很高(ε>20000)的晶界层 电容器。 • 强制还原法所得的半导体 BaTiO3 阻温系数小,不具有 PTC特性,虽然在掺入施主杂质的同时采用还原气氛烧 结可使半导化掺杂范围扩展,但由于工艺复杂(二次气 氛烧结:还原-氧化)或PTC性能差(只用还原气氛), 故此法在PTC热敏电阻器生产中,目前几乎无人采用。
3 3 Ba2Ti 4 O32 xLa3 xFe3 Ba12x Lax Ti14x Fex O32 xBa2 xTi 4

2 3
4
Ti3+=Ti4+· e, 其中的e为弱束缚电子, 容易在电场作用下运动而形成电导
§6-2 BaTiO3瓷的半导化机理
电导率与施主杂质含量的关系
• I区:电子补偿区 • II区:电子与缺位混合补偿区偿区
§6-2 BaTiO3瓷的半导化机理
实验发现:施主掺杂量不能太大,否则不能实现半导化, 原因:(1 ) 若掺杂量过多,而Ti的3d能级上可容的电子数有限, 为维持电中性,生成钡空位,而钡空位为二价负电中心,起 受主作用,因而与施主能级上的电子复合,ρv↑。 可表示为:

陶瓷半导体的原理及应用

陶瓷半导体的原理及应用

陶瓷半导体的原理及应用介绍在电子设备的制造中,半导体材料起着至关重要的作用。

陶瓷半导体作为一种特殊的半导体材料,具有独特的性质和广泛的应用。

本文将探讨陶瓷半导体的原理及其在各个领域的应用。

陶瓷半导体的基本原理陶瓷半导体是一种由陶瓷材料制成的半导体材料。

与传统的半导体材料相比,陶瓷半导体具有许多独特的性质和优势。

1.硬度和耐高温性陶瓷材料具有出色的硬度和优异的耐高温性能。

这使得陶瓷半导体在高温环境下能够稳定工作,并且对于各种机械和热应力有着良好的抵抗能力。

2.绝缘性陶瓷材料具有良好的绝缘性能,能够有效地阻挡电流的流动。

这使得陶瓷半导体在电气绝缘和绝缘电子器件中得到广泛应用。

3.化学稳定性陶瓷材料对化学物质的侵蚀性较低,具有良好的化学稳定性。

这使得陶瓷半导体能够在恶劣的化学环境中长期稳定工作。

陶瓷半导体的应用领域1. 电子器件陶瓷半导体在电子器件中有广泛的应用。

•陶瓷半导体用于高功率电子器件,如功率电子管和晶闸管。

其良好的耐高温性和化学稳定性使得陶瓷半导体能够承受高功率和复杂的工作环境。

•陶瓷半导体也用于电子陶瓷电容器,其绝缘性能和化学稳定性能确保了电容器的可靠性和长寿命。

2. 燃料电池陶瓷半导体在燃料电池领域的应用越来越广泛。

•陶瓷半导体可以用作燃料电池的电解质材料,如固体氧化物燃料电池(SOFC)中的电解质层。

其绝缘性能和耐高温性能使其能够稳定传导离子,并且长期稳定工作。

•陶瓷半导体还可用于燃料电池的催化层材料,如燃料电池阴极氧化物材料,用于提高燃料电池的效率和稳定性。

3. 传感器陶瓷半导体在传感器领域中广泛用于各种类型的传感器。

•陶瓷半导体用于气体传感器,如氧气传感器和氨气传感器。

其化学稳定性和绝缘性能使其能够稳定地检测和测量气体浓度。

•陶瓷半导体还用于热敏电阻温度传感器,其对温度的灵敏度和稳定性能确保了精确的温度测量。

4. 其他应用陶瓷半导体还可在其他领域中得到广泛应用。

•陶瓷半导体用于陶瓷底片和磁性材料的制备,如陶瓷磁体和磁性储存介质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章半导体陶瓷
一、教学基本要求
了解半导体瓷的种类,掌握BaTiO3陶瓷的半导化机理,PTC效应机理,了解半导体陶瓷电容器的分类及其性能,理解表面层、晶界层电容效应。

掌握金属与半导体的接触形式及原因。

二、基本内容概述
6.1 半导体陶瓷的基本概念
1、装置瓷、电容器瓷、铁电压电瓷:ρV>1012Ω•cm ,防止半导化,保证高绝缘电阻率;半导体瓷:ρV<106Ω•cm
2、半导体瓷:传感器用,作为敏感材料,电阻型敏感材料为主:
ρV或ρS对热、光、电压、气氛、湿度敏感,故可作各种热敏、光敏、压敏、气敏、湿敏材料。

3、非半导体瓷——体效应(晶粒本身)
半导体瓷——晶界效应及表面效应
6.2 BaTiO3瓷的半导化机理
1、原子价控制法(施主掺杂法)
在高纯(≥99.9%)BaTiO3中掺入微量(<0.3%mol)的离子半径与Ba2+相近,电价比Ba2+离子高的离子或离子半径与Ti4+相近而电价比Ti4+高的离子,它们将取代Ba2+或Ti4+位形成置换固溶体,在室温下,上述离子电离而成为施主,向BaTiO3提供导带电子(使部分Ti4++e→Ti3+),从而ρV下降(102Ω•cm),成为半导瓷。

2、强制还原法
在还原气氛中烧结或热处理,将生成氧空位而使部分Ti4+→Ti3+,从而实现半导化。

3、AST法
当材料中含有Fe、K等受主杂质时,不利于晶粒半导化。

加入SiO2或AST玻璃(Al2O3·SiO2·TiO2)可以使上述有害半导的杂质从晶粒进入晶界,富集于晶界,从而有利于陶瓷的半导化。

6.3 PTC热敏电阻
1、PTC效应:半导体BaTiO3陶瓷,当温度超过居里温度时,在几十度的范围内,电阻率会增大4~10个数量级,即PTC效应。

2、电阻-温度特性、电压-电流特性,电流-时间特性。

3、PTC机理:
●海旺模型
●丹尼尔斯模型
6.4 半导体陶瓷电容器
1、分类及性能
半导体陶瓷电容器按其结构、工艺可分为三类:
●表面阻挡层型
●表面还原-再氧化型
●晶界层型。

2、表面型半导体陶瓷电容器
3、晶界型半导体陶瓷电容器
三、重点、难点分析
1、BaTiO3陶瓷的半导化机理
纯BaTiO3陶瓷的禁带宽度2.5~3.2ev,因而室温电阻率很高(>1010Ω•cm),然而在特殊情况下,BaTiO3瓷可形成n型半导体,使BaTiO3成为半导体陶瓷的方法及过程,称为BaTiO3瓷的半导化。

BaTiO3陶瓷的半导化方法主要包括原子价控制法和强制还原法。

●原子价控制法
在高纯(≥99.9%)BaTiO3中掺入微量(<0.3%mol)的离子半径与Ba2+相近,电价比Ba2+离子高的离子或离子半径与Ti4+相近而电价比Ti4+高的离子,它们将取代Ba2+
或Ti4+位形成置换固溶体,在室温下,上述离子电离而成为施主,向BaTiO3提供导带电子(使部分Ti4++e→Ti3+),从而ρV下降(102Ω•cm),成为半导瓷。

●强制还原法
在还原气氛中烧结或热处理时,氧以分子状态逸出,将生成氧空位,氧空位带正电,为维持电中性氧空位可束缚电子。

这些多余的电子被Ti4+捕获,而使部分Ti4+→Ti3+,从而实现半导化。

2、PTC效应机理
实验发现,掺杂BaTiO3半导体陶瓷在居里点以下无PTC效应,电阻率很低,在T c
以上ρv随T升高呈指数的增加。

这与BaTiO3铁电体的ε在T c以下很高,T c以上迅速降低相对应。

因此,PTC效应必然与铁电性有关。

实验还发现:单晶BaTiO3无PTC特性,强制还原法所得半导体BaTiO3的PTC特性很小或没有PTC特性。

因此,PTC效应与晶界有关。

根据以上的实验现象,海旺提出了PTC效应模型:BaTiO3半导体陶瓷晶粒内部为n型半导体,在晶界处,由于吸附氧或受主杂质偏析,在晶界上形成“电子陷阱”,因此从导带或施主能级上来的电子,首先填充在表面态中,从而在晶界形成受主电荷,并在晶粒内距晶界一定宽度形成相反电荷的空间电荷层(阻挡层),从而出现晶界势垒。

晶界势垒与ε存在以下关系:
因此,当T>T c时,T↑,ε↓,φ0↑↑,即势垒高度φ0随温度T↑而迅速升高。

∴ρ随T↑呈指数式迅速升高,显示出PTC特性。

然而,海旺模型本身存在一定的局限性,有一些实验现象难以用海旺模型进行解释,因此丹尼尔斯提出了改进后的模型。

丹尼尔斯模型认为当材料从高温冷却时,晶粒表面形成富钡缺位层,从而补偿了晶粒表面的施主,而晶粒内部的施主未得到完整的补偿,从而晶粒间形成了n-i-n结构,即形成了晶界势垒。

相关文档
最新文档