用待定系数法求一次函数解析式说课稿

合集下载

新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0

新人教版八年级数学下册《十九章 一次函数  19.2 一次函数 待定系数法求一次函数的解析式》教案_0

八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。

19.2.2一次函数——待定系数法求一次函数解析式教案2022-2023学年人教版八年级下册数学

19.2.2一次函数——待定系数法求一次函数解析式教案2022-2023学年人教版八年级下册数学

19.2.2 一次函数——待定系数法求一次函数解析式教案引言本教案旨在教授八年级下册数学课程中的一次函数待定系数法求解问题。

一次函数是初等数学中最基本的函数之一,待定系数法则是解决一次函数问题中常用的一种方法。

本教案将帮助学生掌握待定系数法的基本原理,并通过具体例题的讲解,引导学生能够独立解决一次函数问题,并运用所学知识解决实际生活中的问题。

目标•理解一次函数的概念及特征•掌握待定系数法求解一次函数的步骤和方法•能够独立解决一次函数相关问题•运用所学知识解决实际问题教学内容1.一次函数回顾2.待定系数法求一次函数解析式的步骤和方法3.实例分析与解题训练4.应用案例分析教学步骤一、一次函数回顾1.提问:什么是一次函数?2.引导学生回顾一次函数的定义和示例,并讨论函数的特征。

二、待定系数法求一次函数解析式的步骤和方法1.引入待定系数法的概念,解释其基本原理。

2.解释待定系数法的求解步骤:–步骤一:列方程–步骤二:解方程–步骤三:找到解析式3.用具体例子演示待定系数法的求解过程,并解释其中的关键步骤和技巧。

三、实例分析与解题训练1.展示一些具体的一次函数问题,并引导学生运用待定系数法解决这些问题。

2.让学生分组进行练习,相互交流并解答问题。

四、应用案例分析1.提供一些实际生活中的问题,要求学生运用所学知识解决这些问题。

2.引导学生思考如何用一次函数和待定系数法来建立模型和解决问题。

总结与反思通过本节课的学习,学生应该对一次函数的特点和待定系数法有较为全面的理解,并能够灵活运用待定系数法解决一次函数问题。

同时,学生应该能够将所学知识运用到实际生活中,解决与一次函数相关的问题。

希望学生们能够通过课后的复习和实践,进一步巩固所学内容,并提升自己的问题解决能力。

课后作业1.自选一个实际生活中的问题,并用一次函数和待定系数法解决。

2.阅读教材相关章节,复习一次函数的相关知识。

注意:以上内容仅供参考,老师可以根据班级实际情况和教学需要进行适当调整。

19.2.2待定系数法求一次函数的解析式(教案)

19.2.2待定系数法求一次函数的解析式(教案)
三、教学难点与重点
1.教学重点
(1)理解待定系数法的原理:使学生掌握待定系数法的基本原理,了解为何可以通过待定系数法求解一次函数的解析式。
举例:讲解待定系数法时,以一次函数y=kx+b为例,解释如何通过设定待定系数k和b,利用已知条件求解出k和b的值,从而得到一次函数的解析式。
(2)掌握待定系数法的步骤:指导学生按照步骤进行求解,提高解题能力。
2.教学难点
(1)从实际问题中抽象出一次函数模型:对于部分学生来说,将实际问题转化为数学模型具有一定难度。
难点解析:教师需要引导学生分析题意,找出已知条件和未知量,从而建立一次函数模型。
(2)列出方程组:在求解过程中,列出正确的方程组是关键。
难点解析:教师可以通过示例,讲解如何根据已知条件列出方程组,并强调方程组中每个方程的含义。
五、教学反思
在今天的教学中,我发现学生们对待定系数法的概念和求解过程的理解普遍较好。他们在分组讨论和实践活动中表现出较高的积极性,能够将所学知识应用到解决实际问题中。然而,我也注意到一些需要改进的地方。
首先,部分学生在构建方程组时,对于如何将已知条件转化为方程还存在一定的困扰。在今后的教学中,我需要更加注重引导学生分析题意,明确已知条件和未知量,以便他们能够更准确地构建方程组。
在课堂总结环节,学生们对于待定系数法的应用有了更加明确的认识。但我也意识到,对于一些基础较弱的学生,他们可能还需要更多的时间来消化和吸收所学知识。因此,我将在课后关注这部分学生的学习情况,提供有针对性的辅导,帮助他们弥补知识漏洞。
步骤包括:
①根据题意列出已知条件;
②设出待定系数,构建一次函数的一般形式;
③将已知条件代入,列出方程组;
④解方程组,求出待定系数的值;

《用待定系数法确定一次函数表达式》教案 (公开课)2022年湘教版数学

《用待定系数法确定一次函数表达式》教案 (公开课)2022年湘教版数学

4.4 用待定系数法确定一次函数表达式1.从题目中获取待定系数法所需要的两个点的条件;(难点)2.用待定系数法求一次函数的解析式.(重点)一、情境导入弹簧的长度y (厘米)在一定的限度内是所挂重物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.一次函数解析式怎样确定?需要几个条件?二、合作探究 探究点一:用待定系数法求一次函数解析式【类型一】 两点确定一次函数解析式 一次函数经过点A (3,5)和点B (-4,-9).(1)求此一次函数的解析式; (2)假设点C (m ,2)是该函数图象上的一点,求C 点的坐标.解析:(1)将点A (3,5)和点B (-4,-9)分别代入一次函数y =kx +b (k ≠0),列出关于k 、b 的二元一次方程组,通过解方程组求得k 、b 的值;(2)将点C 的坐标代入(1)中的一次函数解析式,即可求得m 的值.解:(1)设其解析式为y =kx +b (k 、b 是常数,且k ≠0),那么⎩⎪⎨⎪⎧5=3k +b ,-9=-4k +b ,∴⎩⎪⎨⎪⎧k =2,b =-1,∴其解析式为y =2x -1; (2)∵点C (m ,2)在函数y =2x -1的图象上,∴2=2m -1,∴m =32,∴点C 的坐标为(32,2).方法总结:解答此题时,要注意一次函数的一次项系数k ≠0这一条件,所以求出结果要注意检验一下.【类型二】 由函数图象确定一次函数解析式如图,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.解析:求出B 点的坐标,根据待定系数法即可求得函数解析式.解:∵OA =OB ,A 点的坐标为(2,0).∴点B 的坐标为(0,-2).设一次函数的解析式为y =kx +b (k ≠0),那么⎩⎪⎨⎪⎧2k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =1,b =-2,∴一次函数的解析式为y =x -2. 方法总结:此题考查用待定系数法求一次函数解析式,解题的关键是利用所给条件得到关键点的坐标,进而求得函数解析式. 【类型三】 由三角形的面积确定一次函数解析式如图,点B 的坐标为(-2,0),AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.解析:三角形AOB 的面积等于OB 与AB 乘积的一半,根据OB 与面积求出AB 的长,确定出A 点坐标,设直线l 的解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定直线l 的解析式.解:∵S△AOB=12OB·AB=3,即12×AB=3,AB=3,即A点坐标为(-2设直线l的解析式为y=kx,将A坐标代入得:-3=-2k,即k,那么直线l的解析式为yx.方法总结:解决此题的关键是根据直线与坐标轴围成的三角形的面积确定另一个点的坐标.【类型四】利用图形变换确定一次函数解析式一次函数y=kx+b的图象过点(1,2),且其图象可由正比例函数y=kx向下平移4个单位得到,求一次函数的解析式.解析:先把(1,2)代入y=kx+b得k+b =2,再根据y=kx向下平移4个单位得到y =kx+b得到b=-4,然后求出k的值即可.解:把(1,2)代入y=kx+b得k+b=2,∵y=kx向下平移4个单位得到y=kx+b,∴b=-4,∴k-4=2,解得k=6.∴一次函数的解析式为y=6x-4.方法总结:此题考查了一次函数的图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,向上平移m个单位,那么平移后直线的解析式为y=kx+b+m.探究点二:用待定系数法求一次函数解析式的应用【类型一】由实际问题确定一次函数解析式水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其局部刻度线不清晰(如图),表中记录的是该体温计局部清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的自变量的取值范围);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.解析:(1)设y关于x的函数关系式为y =kx+b,由统计表的数据建立方程组求出其解即可;(2)当x,代入(1)的解析式就可以求出y 的值.解:(1)设y关于x的函数关系式为y=kx+b,由题意,得⎩⎪⎨⎪⎧35k+b,40k+b,解得:⎩⎪⎨⎪⎧k=54,b,∴y=54x+29.75.∴y关于x的函数关系式为y =54x+29.75;(2)当x,y=54×+29.75=37.5.℃.方法总结:此题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.【类型二】与确定函数解析式有关的综合性问题如图,A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线P A交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=12.(1)求点A的坐标及m的值;(2)求直线AP的解析式;(3)假设S△BOP=S△DOP,求直线BD的解析式.解析:(1)由于S△POA=S△AOC+S△COP,根据三角形面积公式得到12×OA·2+12×2×2=12,可计算出OA =10,那么A 点坐标为(-10,0),然后再利用S △AOP =12×10×m=12求出m ;(2)A 点和C 点坐标,可利用待定系数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP ,PB =PD ,即点P 为BD 的中点,那么可确定B 点坐标为(4,0),D 点坐标为(0,245),然后利用待定系数法确定直线BD 的解析式.解:(1)∵S △POA =S △AOC +S △COP ,∴12×OA ·2+12×2×2=12,∴OA =10,∴A 点坐标为(-10,0),∵S △AOP =12×10×m =12,∴m =125;(2)设直线AP 的解析式为y =kx +b ,把A (-10,0),C (0,2)代入得⎩⎪⎨⎪⎧-10k +b =0,b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =15x +2;(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P 为BD 的中点,∵P 点坐标为(2,125),∴B点坐标为(4,0),D 点坐标为(0,245),设直线BD 的解析式为y =mx +n ,把B (4,0),D (0,245)代入得⎩⎪⎨⎪⎧4m +n =0,n =245,解得⎩⎨⎧m =-65,n =245,∴直线BD 的解析式为y =-65x+245. 三、板书设计用待定系数法求一次函数解析式 1.待定系数法的定义2.用待定系数法求一次函数解析式的步骤教学中,要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.4.5 一次函数的应用第1课时 利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图. (1)求a 的值,并求出该户居民上月用水8t 应收的水费; (2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式; (3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨? 解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量. 解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元; (2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t. 方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克? (2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元? 解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克; (2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克). 答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

19.2.2第3课时用待定系数法求一次函数的解析式教案

19.2.2第3课时用待定系数法求一次函数的解析式教案
作业布置与反馈
1. 作业布置:
- 基础巩固题:请学生完成教材第 chapter 页的练习题,重点在于运用待定系数法求解一次函数的解析式。
- 实践应用题:选取生活中的实际问题,要求学生运用一次函数的知识建立模型并求解,如“某商品的成本价与销售价之间的关系”。
- 拓展思考题:针对学有余力的学生,设计一些需要运用一次函数及其图象性质的综合性问题,提高学生的逻辑思维和问题解决能力。
2. 加强基础知识巩固:针对学生对理论知识的掌握不足,可以通过设计前置学习任务、开展小组互帮互学等活动,帮助学生夯实基础。
3. 丰富教学资源:利用信息化手段,如教育平台、在线资源等,为学生提供更多学习材料和拓展阅读,拓宽知识视野。
4. 加强个别辅导:关注学习困难的学生,提供个性化辅导,帮助他们克服学习中的困难,提高学习效果。
(二)存在主要问题
1. 教学评价方式单一:本节课的教学评价主要依赖于课堂提问和课后作业,缺乏多元化的评价手段,不能全面反映学生的学习情况。
2. 部分学生对理论知识的掌握不够扎实:在小组讨论中发现,部分学生对一次函数的基本概念和待定系数法的理解不够深入。
(三)改进措施
1. 多元化教学评价:在今后的教学中,可以引入课堂观察、小组展示、项目作业等多种评价方式,更全面地了解学生的学习进度和掌握程度。
- 着重讲解待定系数法中的关键步骤,如选择合适的点、列出方程组、求解未知系数等。
- 强调求解过程中可能遇到的困难,如方程组求解方法、符号的注意事项等。
3. 巩固练习(15分钟)
- 设计具有代表性的习题,让学生独立完成,巩固待定系数法的应用。
- 分组讨论,让学生相互交流解题思路,培养合作解决问题的能力。
- 观看视频资料时,建议学生关注讲解者对待定系数法的解题思路和技巧,以及如何将一次函数应用于实际问题。

待定系数法求一次函数解析式说课

待定系数法求一次函数解析式说课

待定系数法求一次函数解析式说课
待定系数法是一种求一次函数解析式的方法,它基于一次函数的线性性质,即一次函数的系数和截距都是常数,可以用待定系数法求解。

具体步骤如下:
1. 观察一次函数的特征,如是否存在常数项、一次项、常数因子等。

2. 列出一次函数的形式,包括系数和截距。

3. 选择一个未知常数,并根据一次函数的特征确定该常数的值。

4. 代入已知一次函数的形式中,计算出对应的 y 值。

5. 根据已知的 x 值和计算出的 y 值,验证所求得的一次函数解析式是否与已知一次函数的形式相符。

例如,假设要求一次函数 y = 2x + 1 的解析式,可以按照以下步骤进行: 1. 观察一次函数的特征,发现其存在一次项和常数项,因此可以列出形式为 y = 2x + b。

2. 确定未知常数 b 的值,可以通过计算一次函数的 y 值来求解。

例如,当 x = 0 时,y = 2(0) + 1 = 1。

3. 将确定的 b 值代入形式为 y = 2x + b 的函数中,计算出对应的 y 值。

例如,当 x = 3 时,y = 2(3) + 1 = 7。

4. 验证所求得的一次函数解析式是否符合已知一次函数的形式。

根据已知一次函数 y = 2x + 1,可以得出当 x = 0 时,y = 2(0) + 1 = 1;当 x = 3 时,y = 2(3) + 1 = 7,这些值与计算出的 y 值相符,因此可以确认所求得的一次函数解析式为 y = 2x + 1。

待定系数法是一种简单有效的求一次函数解析式的方法,可以用于解决各种
实际问题。

人教版八年级下册数学教案19.2.2用待定系数法求一次函数的解析式

19.2.2一次函数--------第三课时:用待定系数法求一次函数的解析式.学习目标:1.学会用待定系数法确定一次函数的解析式.2.了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式.3.掌握一次函数的简单应用.教学重难点重点:运用待定系数法求一次函数解析式.难点:能利用一次函数图象解决有关的实际问题.教学过程一、情镜引入思考:正比例函数y=kx(k≠0)解析式中,如果确定了k的值,正比例函数的解析式就确定了,那么必须知道什么样的条件?学生思考讨论交流后总结方法,学生回答:只需知道正比例函数的一对对应值或正比例函数图象上的一个点坐标代入解析式求出k的值.,本节课就是解决这一问题.(同时展示本节课的教学目标)二、新知探究,合作交流1.提问:当x=0时,y=6;当x=4时,y=7.2.你将如何求出上述问题中的函数关系式?学生独立完成后,交流展示:解:设y与x的函数关系式为y=kx+b.所以解得k=0.3 b=6因此这个一次函数的解析式为y=0.3x+6.方法总结:先设一次函数解析式,然后把两对对应值分别代入一次函数解析式,得到两个关于k,b的方程,构成方程组,解方程组求出k,b的值即可确定一次函数的解析式,这就是我们本节课要学习的求一次函数解析式的方法——待定系数法.2.用待定系数法求一次函数的解析式提问:用待定系数法确定函数解析式的一般步骤是怎样的?学生归纳:(1)设出函数解析式的一般形式为y=kx+b.(2)把自变量x与函数y的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(3)解方程或方程组,求出待定系数的值.(4)写出所求函数的解析式.例1.已知一次函数y=kx+b,当x=5时,y=4,当x=-2时,y=-3,求这个一次函数的解析式.分析:由于一次函数y=kx+b有k和b两个待定系数,因此用待定系数法,把x = 5时,y = 4和x=-2时,y=-3分别代入函数解析式,得到两个关于k和b的二元一次方程组成的二元一次方程组.解方程组后就能确定一次函数的解析式.解:由题意可知解得∴这个一次函数的解析式为y=x-1.例2.黄金1号”玉米种子的价格为5元∕kg,如果一次购买2 kg以上的种子,超过2 kg 部分的种子价格打8折.(1)填写下表:购买量∕kg0.5 11.522.533.54 …付款金额∕元…(2)写出付款金额关于购买量的函数解析式,并画出函数图象.探究:(1)付款金额与什么有关?种子价格是固定的吗?它与什么有关?种子的价格是如何确定的?(2)函数的图象是一条直线吗?为什么?学生独立思考,交流讨论,总结:(1)付款金额与种子价格相关.问题中种子价格不是固定不变的,它与购买量有关. 设购买种子数量为x kg,当0≤x≤2时,种子价格为5元/kg;当x>2时,其中有2 kg种子按5元/kg 计价,其余的(x-2)kg即超出2 kg的部分种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x≤2和x>2分段讨论.(2)在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.学生完成解题过程,教师点评:解:(1)购买量∕kg0.5 11.522.533.54 …付款金额∕元2.5 57.510 12 14 16 18 …(2)设购买种子数量为x kg,付款金额为y元.当0≤x≤2时,y=5x;当x>2时,y=4(x-2)+10=4x+2. 函数图象如图所示.进一步引导学生根据函数图象思考:(1)一次购买1.5 kg种子,需付款多少元?(2)一次购买3 kg种子,需付款多少元?三.巩固练习1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.2.已知一次函数y=kx+b的图象如图所示,则它的函数关系式为.3.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式. 四.总结拓展1.课堂小结:学生讨论交流回答下面的四个问题(1).求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入,得二元一次方程组,③解方程组求出k和b的值,④写出答案. (2).一次函数解析式的确定通常有下列几种情况:①利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.②根据图象上两点坐标求出一次函数的解析式.2.拓展延伸一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y轴的交点是.3.作业布置教材P99页习题7,8,9题.五.课堂效果测评1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,则此函数的解析式为( )A.y=x+1B.y=2x+3C.y=2x-1D.y=-2x-52.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.53.已知一次函数y=kx+b的图象经过点A(2,4)和点B(-2,-8),这个一次函数的解析式为.4.已知一次函数y=kx+b,当x=-4时y=9,当x=6时y=-1,则此函数的解析式为.5.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式.6.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.57.已知一条直线经过点A(0,6),且平行于直线y=-2x+1.(1)求这条直线的函数解析式;(2)若这条直线经过点B(m,2),求m的值.六.评价与反思(引导学生自己总结)1.你今天学习了什么?学到了什么?还有什么疑惑?有什么感受?在学生回答的基础上,教师点评并板书2.教学反思本节课主要学习了待定系数法及一次函数的应用,由前面的学习知道两点确定一条直线,以已知两点怎样确定这条直线即怎么样求出它的解析式.。

人教版数学七年级上册《用待定系数法求一次函数解析式》教学设计

人教版数学七年级上册《用待定系数法求一次函数解析式》教学设计一. 教材分析人教版数学七年级上册中,用待定系数法求一次函数解析式的教学内容安排在第一章“一次函数与不等式”中。

这部分内容是学生学习一次函数的基础知识,为后续学习一次函数图像和应用打下基础。

教材从实际问题出发,引导学生通过待定系数法求解一次函数的解析式,培养学生的数学思维能力和问题解决能力。

二. 学情分析七年级的学生已经掌握了初中数学的基础知识,对于函数的概念和一次函数的图像有一定的了解。

但在实际问题中,如何运用待定系数法求解一次函数解析式,将数学知识应用于解决实际问题,对学生来说还是一个新的挑战。

因此,在教学过程中,需要引导学生从实际问题中提炼出数学模型,运用待定系数法求解,并解释其实际含义。

三. 教学目标1.理解待定系数法的原理,学会用待定系数法求解一次函数的解析式。

2.能够将实际问题抽象为一次函数模型,并用待定系数法求解。

3.培养学生的数学思维能力和问题解决能力。

四. 教学重难点1.重难点:待定系数法的原理和运用。

2.难点:如何将实际问题抽象为一次函数模型,如何选择合适的待定系数。

五. 教学方法1.讲授法:讲解待定系数法的原理和步骤。

2.案例教学法:通过具体案例,引导学生学会用待定系数法求解一次函数的解析式。

3.讨论法:分组讨论,分享解题思路和方法。

4.实践教学法:让学生在实际问题中运用待定系数法,巩固所学知识。

六. 教学准备1.教学PPT:制作详细的PPT,展示待定系数法的原理、步骤和案例。

2.教学案例:准备几个实际问题,作为教学案例。

3.练习题:准备一些练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一次函数的实际应用场景,引导学生关注一次函数在实际问题中的应用。

2.呈现(10分钟)讲解待定系数法的原理和步骤,让学生了解待定系数法的基本概念。

3.操练(10分钟)分组讨论,让学生用待定系数法求解给定的实际问题,分享解题思路和方法。

用待定系数法求一次函数解析式教案

第3课时用待定系数法求一次函数解析式【知识与技能】1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数,一个条件确定一个正比例函数.【过程与方法】1.经历待定系数法的应用过程,提高解决数学问题的能力.2.体验一次函数中数形结合思想的运用.【情感态度】能把实际问题与数学问题相互转化,认识数学与生活的密切关系.【教学重点】待定系数法确定一次函数解析式.【教学难点】灵活运用有关知识解决实际问题.一、情境导入,初步认识已知两个函数的图象如图所示,请根据图象写出每条直线的表达式.【教学说明】从图象知,图1中直线表示的是正比例函数,其解析式为y=kx 形式,关键是如何求出k的值;由图可知图象过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线表示的是一次函数,其解析式为y=kx+b形式,代入直线上两点坐标(2,0)与(0,3),通过解方程组即可求出k、b,确定解析式.学生讨论后,由教师小结.确定正比例函数解析式需要1个条件,确定一次函数的解析式需要2个条件,先设出相应的解析式,然后将条件代入得到方程或方程组,求解后确定解析式.二、典例精析,掌握新知先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.例1 已知正比例函数的图象经过点(-4,3),求它的解析式.【分析】求解正比例函数的解析式,我们可以首先设它的解析式为y=kx,根据已知条件,求解出k的值即可.根据这个正比例函数图象经过点(-4,3),意味着当x=-4时,y=3,从而得到k的值.解:由题意可知3=-4k,k=-34所以,这个正比例函数解析式为y=-34x.例2 问点A(-1,3),B(1,-1),C(3,-5)是否在同一条直线上. 解:设直线AB的解析式为y=kx+b,由题意得3 1k b k b=-+⎧⎨-=+⎩解得21kb=-⎧⎨=⎩,∴直线AB:y=-2x+1;当x=3时,y=-2×3+1=-5,∴点C(3,-5)在直线AB上,因此,A、B、C三点共线.【教学说明】本题的实质是先求出过其中的两点确定的一条直线,再把第三点坐标代入直线解析式,如果该点坐标符合解析式,则表明该点在这条直线上,否则三点就不共线.例3 一次函数y=kx+4的图象与y轴交于点B,与x轴交于点A,O为坐标原点,且△AOB的面积为4,求一次函数的解析式.【分析】由于k的符号不确定,我们无法画出一次函数的大致图象,但由于题目的信息非常明确,而且条件也非常简单,由此希望同学们能够练成“纸上无图象,而心中有图象”的境界,我们分别用含k的代数式表示A、B两点的坐标,再把坐标转化为线段OA、OB的长度,根据△AOB的面积进而求出k的值.解法一:令x=0,y=4,∴B(0,4),OB=4.令y=0,x=-4k,∴A(-4k,0)∴OA=|4k|(一定要注意绝对值符号)∵S△AOB =4,∴12OA·OB=4.即12|4k|·4=4,∴k=±2.∴一次函数的解析式为y=±2x+4.【教学说明】解决问题时,应优先利用一些简单明了的条件.显然一次函数y=kx+4与y 轴交于点(0,4),与k 无关,从这一条件入手,我们也应有如下思路及解答.解法二:令x=0,y=4,∴B(0,4),OB=4.∵S △AOB =4,∴12OA·OB=4. ∴OA=2,∵点A 在x 轴上.[要把OA 的长度转化为A 点的坐标,要注意点A 到底在x 轴的正半轴上还是在负半轴上]∴A(2,0)或A (-2,0)当A (2,0)时,0=2k+4,k=-2,当A (-2,0)时,0=-2k+4,k=2,∴一次函数解析式为y=±2x+4.三、运用新知,深化理解1.已知A 是某正比例函数图象上一点,且点A 在第二象限,作AP⊥x 轴于P ,AQ⊥y 轴于Q ,且AP=3,AQ=4,求正比例函数的解析式.2.已知一次函数y=2x+m 与x 轴交于点A ,与y 轴交于点B ,O 是坐标原点,且S △AOB =4,求一次函数的解析式.【教学说明】上面两个习题对本节知识进行了拓展,教师应引导、鼓励学生自主解答,再互相交流,并由教师对在黑板上完成的结果进行评点.【答案】1.∵点A 在第二象限,AP=3,AQ=4.∴A(-4,3).设该正比例函数解析式为y=kx.则3=-4k ,解得k=-34所以这个正比例函数的解析式为y=-34x. 2.令x=0,y=m ,∴B(0,m ),OB=|m|令y=0,x=-2m ,则A (-2m ,0),OA= |2m | S △AOB =4,∴12OA·OB=4,1 2×|2m|·|m|=4.14m2=4,m2=16,∴m=±4.∴一次函数的解析式为y=2x±4.四、师生互动,课堂小结根据下列框图引导学生总结.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.本课时由图象上点的坐标求函数解析式,可利用图象的画法等已有经验认识到图象上点的坐标决定着解析式形式,这体现了“以旧推新”的方法,再引导学生由两个特殊点坐标求得一次函数解析式,从而形成,用待定系数法求函数解析式的技能,增加对“数形结合”思想的理解.。

第19章一次函数-待定系数法求一次函数解析式(教案)

在学生展示环节,我发现有些同学的表述不够清晰,可能是因为他们对知识的理解还不够深刻。为了提高同学们的表达能力,我计划在接下来的课程中增加一些课堂练习和讨论环节,让大家有更多机会表达自己的观点。
第19章一次函数-待定系数法求一次函数解析式(教案)
一、教学内容
第19章一次函数-待定系数法求一次函数解析式:本节课我们将围绕一次函数的解析式展开学习,运用待定系数法求解一次函数的解析式。教学内容主要包括以下两个方面:
1.理解一次函数的一般形式:y = kx + b,其中k、b为常数,掌握k、b的物理意义及其对函数图像的影响。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y = kx + b的表达式,其中k、b为常数。它描述了两个变量之间的线性关系,是解决实际问题时常用的一种数学模型。
2.案例分析:接下来,我们来看一个具体的案例。通过分析两个点的坐标,运用待定系数法求出一次函数的解析式,并探讨其在实际问题中的应用。
-将实际问题抽象为一次函数模型,找出已知量和未知量之间的关系;
-在求解过程中,注意符号的准确运用,避免运算错误。
举例解释:
(1)待定系数法求解过程中,学生可能会对如何列出方程组、如何选取待定系数感到困惑,需要教师通过具体例子进行详细解释和指导;
(2)对于如何从实际问题中抽象出一次函数模型,学生可能会感到难以入手,教师应引导学生分析问题,找出关键信息,建立数学模型;
五、教学反思
今天我们在课堂上探讨了一次函数的待定系数法求解解析式,整体教学过程还算顺利。我发现同学们对于一次函数的一般形式掌握得比较好,但是在运用待定系数法求解过程中,有些同学对于如何列出方程组、如何选取待定系数还存在一定的困惑。这也提示我在今后的教学中需要更加关注这部分内容的讲解和练习。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用待定系数法求一次函数解析式说课稿
刘文梅
本节课的教学内容为用待定系数法求一次函数解析式,是人教版八年级数学下册第十九章的教学内容。

下面我从教材分析、教法、学法、教学过程五个方面,谈谈我对这一节课教学的处理情况。

一、教材分析
一次函数这部分内容是在学生学习了变量与函数、一次函数的概念等基础上,继续对某些特殊的变量关系的考察和认识。

从知识衔接的角度看,有着承上启下的作用,符合学生的认知规律。

确定一次函数解析式,关键在于确定出一次函数y=kx+b中的k、b的值,用待定系数法确定一次函数解析式,不仅要求学生能正确地确定出解析式,还重在让学生对一次函数式与函数图象、函数式中的变量与函数图象上点的坐标之间关系的理解,将数与形联系起来,形成数形结合的思想意识。

为后面学习反比例函数、二次函数打下基础。

二、教学策略(教法)
回顾已学知识:求一次函数解析式的四个基本步骤:“一设、二列、三解、四还原”,即“设出一般式y=kx+b,由题设中给定条件写出关于k、b的方程(组),由方程(组)解出k、b,写出一次函数式。

数学思想方法小结:
从形到数:一次函数图象→选取满足条件的两点(x1,y1),(x2,
y2)→解出函数解析式(y=kx+b)
数学思想方法:数形结合
五、教学过程
1、教学目标
⑴了解待定系数法的思维方式与特点。

⑵会根据所给信息用待定系数法求一次函数解析式,发展解决问题的能力。

⑶进一步体验并初步形成“数形结合”的思想方法。

2、教学重点、难点
⑴教学重点:用待定系数法求一次函数解析式;
⑵教学难点:解决抽象的函数问题。

⑶教学关键:熟练应用二元一次方程组解一次函数中的待定系数。

流程
1.知识回顾,引入问题情景
用待定系数法求一次函数解析式的步骤:
基本步骤:设、列、解、写
⑴设:设一般式y=kx+b
⑵列:根据已知条件,列出关于k、b的方程(组)
⑶解:解出k、b;
⑷写:写出一次函数式
2.探索新知:
一.利用点的坐标求函数的解析式
例1.如果y+1与x成正比例,且x=1时,y=3
写出y与x之间的函数关系式.
变式练习:
已知一次函数的图象经过点(3,5)与(4,9),求这个一次函数的解析式.
将两个点的坐标代入所设函数式,列出k、b的方程组,求出k、b,写出函数解析式。

二.利用图象求函数的解析式
设法在函数图象上找出两个点的坐标,转化为基本形式。

由所求函数图象平行条件求解析式两条平行直线所对应的函数式中k值相等。

三.利用表格信息确定函数解析式
四.综合运用:
1.若经过点P(0,-1)的直线与x轴、y轴所围成的三角形的面积3,求这条直线的函数解系式.
2.已知第一象限内的动点P(x,y),且x+y=8,点A(6,0),设△AOP的面积为S.
(1)用含x 的解析式表示S,写出x的取值范围.
(2)当点P的横坐标为5时,△OPA的面积是多少?
(3)△AOP的面积能大于24吗?为什么?
跟踪练习:
已知点A(8,0)及在第一象限内的动点P(x,y),且x+y=10,设△AOP的面积为S.
(1)求S关于x的函数解析式;写出X的取值范围;
(2)求S=12时,点P的坐标;
(3)画出函数S的图象。

五.小结
⑴用待定系数法求一次函数的解析式的基本步骤。

⑵了解数与形的关系
⑶知道可以用数学知识解决生活中的问题。

六.反思。

相关文档
最新文档