认识三角形3导学案
八级直角三角形整章导学案教案共节(新湘教版)

长乐中学八年级数学导学训练案教课设计编制人:周浩雄审查人:日期:第1课时课题:直角三形的性质和判断( 1)教课目的1. 使学生理解和掌握直角三角形的性质边和角; 2. 能应用直角三角形性质和判断解决简单的实质问题; 3. 经过研究,察看,猜想,实验,交流,推理等过程,提升数学思想、解决问题的能力和合作学习的精神;教课要点:直角三角形中线性质的推导及应用教课难点:定理的理解和运用、几何语言和逻辑的正确运用一、引自学内容:教材 P2-3二.探一)回首:三角形的内角和;二) . 合作沟通:1.研究一:直角三角形的两个锐角有什么特别的关系。
2.直角三角形的判断:假如直角三角形的两个锐角互余,那么这个三角形是直角三角形。
3.研究二:直角三角形斜边上的中线等于斜边的一半。
上述定理用几何语言表示。
三).练习1、教材练习三.结师生小结直角三角形的判断及性质四 .用1、若直角三角形的两个锐角之差是22°,则较小内角的度数是°。
2.如下图,已知 AB ⊥ BD ,AC ⊥ CD ,∠ A=35 °,则∠ D 的度数为()A 、 35°B 、65°C、55°D、 45°3.如下图, Rt△ ABC 中,∠ BCA=90 °, CD ⊥ AB 于 D,E 是 AC 中点,以下结论必定正确的选项是()A、∠ 4=∠5B、∠ 1=∠2C、∠ 3=∠4D、∠ B=∠24、如图,在△ ABC 中,∠ B= ∠C,D , E 分别是BC,AC中点,AB=8,求DE的长。
A5、如图, AB ∥CD ,∠ A 和∠ C 的均分线订交于H 点, AC=6(1)△ AHC 是直角三角形吗?为何?(2)求 GH 的长。
BAGHC D6、如图,在四边形 ABCD 中,∠ DAB= ∠BCD=90 °, M 为 BD 中点,N为AC中点,求证:MN⊥AC。
八年级数学勾股定理直角三角形三边的关系学案

课堂教学导学案年级:八学科:数学课题勾股定理直角三角形三边的关系课型新授课时学习目标1.掌握勾股定理,会用勾股定理进行简单的计算;2.会用勾股定理解决简单的问题.重点掌握勾股定理,会用勾股定理进行简单的计算难点会用勾股定理解决简单的问题教学过程创设情境目标导航某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?设问导读自学检测1.如果一个正方形的边长是a,那么它的面积是 .2.如果一个直角三角形的两直角边分别为a,b,那么它的面积是 .3.如图是用正方形瓷砖铺成的地面.(1)正方形P的面积为(用AC表示);(2)正方形Q的面积为(用BC表示);(3)正方形R的面积为(用AB表示);(4)正方形P、Q、R的面积关系,写出AC、BC、AB之间的关系为 .思考:在上述图中随便找一个直角三角形,画出上图,它的三边都存在(4)中的关系吗?交流展示精讲点拨探究点1:勾股定理的初步认识操作作图:(1)画∠A=90°;(2)在两边上以A为一个端点,分别截取长为3 cm、4 cm的线段a、b,连接两线段的另一端点,使其组成三角形,连线的长度为c.问题1 量一量c的长度,分别计算a2、b2、c2的值,你发现了什么?问题2 改变a、b的长度,分别计算a2、b2、c2的值,你发现了什么?【要点归纳】对任意的直角三角形,如果它的两条直角边分别为a,b,斜边为c,那么一定有,这种关系我们称为,即直角三角形两直角边的平方和等于斜边的 .例1如图,已知在Rt△ABC中,∠C=90,(1)若5,12,a b则c===;(2)若10,8,c b a则===;(3)若25,24,c a b===则;(4)若35a:=:c,2b=,a=则,c=.【方法总结】由勾股定理的基本关系式a2+b2=c2,还可以得到一些变形式.如:222222,a cb bc a c a b=-=-=+,等.【针对训练】若直角三角形的两直角边边长分别为8、15,则第三边长为.【变式题】已知直角边→未知直角边若直角三角形的两边长分别为8、15,则第三边长的平方为.探究点2:利用勾股定理求面积例2求下列图中正方形的边长x、y的值:【针对训练】如图,以Rt△ABC的三边为斜边分别向外作三个等腰直角三角形,试探索这三个等腰直角三角形的面积之间的关系.【方法总结】由等腰直角三角形的性质可得:S△ABE =AB2,S△BCF=BC2,S△ACH=AC2,由AC2+BC2=AB2,即可得出结论.同样的以三边长为直径的三个半圆的面积,也存在一定关系.1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中,两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22.如图,图中阴影部分是一个正方形,则此正方形的面积为_________cm2.第2题图第3题图3.如图,直线同侧有三个正方形a、b、c,若a、c的面积分别为5和12,则b的面积为 .4.如图,△ABC中,AB=AC=13,BC=10.(1)求高AD的长;(2)求△ABC的面积.。
三角形三条边长度关系

《三角形三条边长度关系》导学案班级:姓名:设计人:王钰娜教学目标:通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。
一、诱思导学1.举例:生活中哪些物体的面是三角形的?2.复习三角形的各部分名称。
提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?引导学生回忆三角形的特点:有()条边、()个角、()个顶点、()条高……二、质疑研学1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?2.操作交流。
(1)从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。
(2)小组交流。
将各自的操作情况在四人小组内进行交流。
(3)全班交流:你选择的是哪三根小棒,是否能围成一个三角形?①选择8cm、5cm、4cm三根小棒,能吗?②选择5cm、4cm、2cm三根小棒,能吗?③选择8cm、4cm、2cm三根小棒,能吗?④选择8cm、5cm、2cm三根小棒,能吗?追问:第③种情况和第④种情况为什么不能围成三角形?小结:因为4cm+2cm<8cm,5cm+2cm<8cm,所以不能围成三角形。
3.探索规律。
师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。
那能围成三角形的三根小棒的长度又有什么特点呢?(1)从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?小结:任意两根小棒长度的和一定()第三根小棒。
4.验证规律。
提问:三角形任意两边长度的和一定大于第三边吗?(1)画一画:用三角尺画一个三角形。
(2)量一量:量出三角形的各边长度。
(单位:毫米)(3)算一算:算出任意两边之和与第三边长度的关系。
(4)总结规律。
提问:通过验证,你发现三角形三边的长度有哪些关系?师生共同总结得出:三角形任意两边长度的和()第三边。
追问:对于“任意两边”这四个字,你是怎么理解的?5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?三、达标评学:1、三角形两边之和()第三边,两边之差()第三边。
最新人教版八年级数学上册导学案

新人教版八年级数学上导学案(全册)第十一章三角形11.1 与三角形有关的线段课题 11.1.1三角形的边【教学目标】1、通过观察、操作、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;2、通过具体实例,进一步认识三角形的概念及其基本要素;3、学会三角形的表示及掌握对边与对角的关系;4、掌握三角形三条边之间关系.【重点难点】重点:了解三角形定义、三边关系。
难点:理解"首尾相连"等关键语句。
【教学准备】教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
【教学过程】一、提出问题展示实物,播放课件,特别突出屋顶结构图,问题:1、请仔细观察实物与课件,找出不同的三角形。
2、与同伴交流各自找到的三角形。
3、这些三角形有什么特点?设计意图:通过观察课件,尤其是屋顶的框架结构图实例,使学生经历从现实世界抽象出几何模型的过程,认识三角形要素。
二、探究质疑1、三角形的概念:(1)通过学生间交流,师生共同得出,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形有哪些基本要素,师生共同得出:边、角、顶点.2、三角形表示:(1) 教师强调,为了简单起见:三角形用符号"△"表示,如图2的三角形ABC就表示成△ABC,三个顶点为:A,B、C,三边分别为:AB,BC,AC。
通常顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C 所对的边AB用。
(2)请同学们找出图3中的三角形,并用符号表示出来,同时说出各个三角形要素,并指出AD是哪些三角形的边。
3、动手操作:请小组同学们画一个△ABC,分别图3量出AB,BC,AC的长,并比较下列各式大小:AB+BC_AC; AB+AC_BC; AC+ BC AB,从中你有何启发?小组合作后,对你们的结论加以解释。
师生共同得出结论:三角形任意两边之和大于第三边。
设计意图:在识别中加深认识,巩固对三角形概念及三角形要素的理解,更加深刻理解三角形表示的必要性.三、巩固新知1、指出图4中有几个三角形并用符号来表示2、有两根长度分别为5 cm, 8 cm的木棒,用长度为2 cm的木棒与它们能摆成三角形吗?为什么?长度为13 cm的木棒呢?设计意图:(1)是巩固三角形的表示方法;(2)渗透反证法思想,借助小组操作讨论,得出组成三角形的条件。
三角形全等的判定导学案(HL) 人教版数学

三角形全等的判定导学案(HL)人教版数学课题:《11.2三角形全等的判定》(HL)导学案
使用说明:学生利用自习先预习课本第13、14页10分钟,然后35分钟独立做完学案。
正课由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、理解直角三角形全等的判定方法HL,并能灵活选择方法判定三角形全等;
2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力;
3. 极度热情、高度责任、自动自发、享受成功。
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
【学习过程】
一、自主学习
1、复习思考
(1)、判定两个三角形全等的方法:、、、
(2)、如图,Rt△ABC中,直角边是、,斜边是
(3)、如图,ABBE于B,DEBE于E,
①若D,AB=DE,
则△ABC与△DEF (填全等或不全等 )
根据 (用简写法)
②若D,BC=EF,
则△ABC与△DEF (填全等或不全等 )
根据 (用简写法)
③若AB=DE,BC=EF,
则△ABC与△DEF (填全等或不全等 )根据 (用简写法)
④若AB=DE,BC=EF,AC=DF
则△ABC与△DEF (填全等或不全等 )根据 (用简写法) 2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(1)动手试一试。
已知:Rt△ABC。
《三角形全等 “边角边”》教案、导学案、同步练习

《12.2 第2课时“边角边”》教学设计=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证AB=DE,只需证△ABC≌△DEC△ABC与△DEC全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.《12.2 第2课时“边角边”》教学设计教学过程设计CBD全等吗?AB DC三、课堂训练1.已知:点D分别是AD,BC的中点,求证:AB∥CDABOCD2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.四、小结归纳1.用“边角边”来判定两个三角形全等;2.用三角形全等来证明线段的相等或角的相等。
五、作业设计1.习题11.2第3、4题;2.下面四个三角形中,全等的两个三角形是( ) A.①与② B.①与③ C.①与④ D.②与③《第2课时 “边角边”》教案3.已知:如图,AB ∥DE ,AB =DE ,且BE =CF ,若∠B =35°,∠A =75°,则∠F =( ) A .70° B .65° C .60° D .55°4.如图,已知,AB =AD ,AC =AE ,∠BAD =∠CAE , 求证:BC =DE5.如图,AC 、BD 交于点O ,且互相平分,则该图中共有几对全等三角形?为什么?学生独自完成证明过程,之后由同学互相释疑解惑。
学生归纳本节内容,归纳已学过的证明三角形全等的方法有哪些?系统归纳本节知识点,提高归纳问题的能力。
总课题全等三角形总课时数第 11 课时课 题 三角形全等判定(SAS ) 主 备 人 课型 新授教学 目标 1.领会“边角边”判定两个三角形的方法.2.经历探究三角形全等的判定方法的过程,学会解决简单的推理问题. 3.培养合情推理能力,感悟三角形全等的应用价值. 教学 重点会用“边角边”证明两个三角形全等.到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中 CA=CDCB=CE∴△ABC ≌△DEC (SAS ) ∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写. 【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决. 三、学以致用【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.12CA CDCB CE=∠=∠=操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC 的端点B 重合,适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来,出现一个现象:△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT ;(2)以A 为圆心,以适当长为半径,画弧,交BT 于C 、C ′;(3)•连线AC ,AC ′,△ABC 与△ABC ′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件. 【教学形式】观察、操作、感知,互动交流. 四、巩固练习课本P10练习第1、2题. 五、课堂总结1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等. 六、布置作业《第2课时“边角边”》教案教学目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.4.能运用“SAS”证明简单的三角形全等问题.教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:△ABD≌△ACE,AB与AC是对应边;图(2)中:△ABC≌△AED,AD与AC是对应边.4.三角形全等的判定Ⅰ的内容是什么?二、导入新课1.三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB=∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3.边角边公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三、例题与练习1.填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).2、例1 已知:AD∥BC,AD= CB(图3).求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF = CE或AE =CF)?怎样证明呢?例2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.四、小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.五、作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.第十二章 全等三角形 12.2 全等三角形的判定 《第2课时 “边角边”》导学案学习目标:1.掌握三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获 得数学结论的过程.3.能运用“S AS ”证明简单的三角形全等问题. 重点:掌握一般三角形全等的判定方法S AS.难点:运用全等三角形的判定方法解决证明线段或角相等的问题.一、要点探究探究点1:三角形全等的判定定理2--“边角边”问题:两个三角形的两边和一角分别相等有几种情形?列举说明.活动:先任意画出一个△A′B′C′,使A′B′=AB ,A′C′=AC ,∠A′=∠A ,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?你能得出什么结论?追问1:你是如何使∠A’=∠A 的? 结合这个问题,给出画△A’B’C’的方法.追问2:回忆作图过程,这两个三角形全等是满足哪三个条件?A BCAB ED要点归纳:相等的两个三角形全等(简称“边角边”或“SAS ”). 几何语言:如图,如果典例精析例1:【教材变式】已知:如图,AB=CB,∠1= ∠2. 求证:(1) AD=CD ;(2) DB 平分∠ADC.变式:已知:AD=CD ,DB 平分∠ADC ,求证:∠A=∠C.例2:如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到点D ,使CD =CA ,连接BC 并延长到点E ,使 CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?方法总结:证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应DEF ABC ∆∆⇒⎪⎭⎪⎬⎫===________________________________________边或对应角来解决.针对训练如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB.探究点2:“边边角”不能作为判定三角形全等的依据做一做:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?画一画:画△ABC 和△DEF,使∠B =∠E =30°, AB =DE=5 cm ,AC =DF =3 cm .观察所得的两个三角形是否全等?把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?要点归纳:有两边和其中一边的对角分别相等的两个三角形_________全等.典例精析例2:下列条件中,不能证明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DFD.BC=EF,∠C=∠F,AC=DF方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的.针对训练如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( ) A.AB∥CD B.AD∥BCC.∠A=∠C D.∠ABC=∠CDA二、课堂小结全等三角形判定定理2简称图示符号语言有两边及夹角对应相等的两个三角形全等“边角边”或“SAS”∴△ABC≌△A1B1C1(SAS).注意:“一角”指的是两边的夹角.1.在下列图中找出全等三角形进行连线.2.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是 ( )A.∠A=∠DB.∠E=∠C⎪⎩⎪⎨⎧=∠=∠=,,,11111CAACAABAABC.∠A=∠CD.∠ABD=∠EBC3.已知:如图2,AB=DB,CB=EB,∠1=∠2,求证:∠A=∠D.4.已知:如图,AB=AC,AD是△ABC的角平分线,求证:BD=CD.【变式1】已知:如图,AB=AC, BD=CD,求证:∠ BAD= ∠ CAD.【变式2】已知:如图,AB=AC, BD=CD,E为AD上一点,求证:BE=CE.拓展提升5.如图,已知CA=CB,AD=BD, M,N分别是CA,CB的中点,求证:DM=DN.《第2课时“边角边”》导学案学习目标1.探索三角形全等的“边角边”的条件,理解满足边边角两三角形不一定全等2.应用“边角边”证明两个三角形全等,进而证明线段或角相等.学习重点:应用“边角边”证明两个三角形全等,进而得出线段或角相等.学习难点:寻找判定三角形全等的条件学习过程一、学习准备1.全等三角形的性质?2.“SSS”的内容是什么?二、合作探究探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等结论:两边和分别相等的两个三角形全等.(可以简写成“边角边”或“”)例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?思考:“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?三、巩固练习 教材P39练习1 教材P39练习2 四、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?五、当堂清1.如图所示,BD 、AC 相交于点O ,若OA = OD ,用“SAS ”说明△AOB ≌△DOC ,还需要的条件是 ( ) A .AB = CD B .OB = OC C .∠A =∠D D .∠AOB = ∠DOC2.如图所示,D 是BC 的中点,AD ⊥BC ,那么下列说法错误的是 ( ) A .△ABD ≌△ACD B .∠B =∠CC .AD 是△ABC 的高 D .△ABC 一定是等边三角形 3.如图,AB = CD ,要使△ABD ≌△ACD ,应添加的条件是__________________(添加一个条件即可)4.如图,点C 、D 在线段AB 上,PC = PD ,∠1 =∠2,请你添加一个条件,使图BCDO A ABCD中存在全等三角形,所添加的条件为____________,你得到的一对全等三角形是_________≌_________.5.如图,OA = OB ,OC = OD ,∠O = 60°,∠C = 25°,则∠BED = ________.6.已知:如图,AB ∥CD ,AB = CD .求证:△ABD ≌△CDB参考答案:1.B 2. D 3.∠ABC=∠DCB 4.AC=BD, △ACP ≌△BDP5. 25°6.略《第2课时 “边角边”》导学案【学习目标】1、理解三角形全等“边角边”的内容.2、会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3、经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 【重 点】掌握一般三角形全等的判定方法S AS【难 点】运用全等三角形的判定方法解决证明线段或角相等的问题 一,学前准备1. 回顾判定三角形全等的方法”SSS ”第 3 题第 4 题EAO21PB ABCD ABC D第 5 题ABCD二,探究活动活动1:探索三角形全等的条件1、如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动2 :(全等三角形判定的简单应用)1、如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2、如图,已知AB=AC,AD=AE,∠1=∠2.求证:△ABD≌ACE.(完成后小组交流展示,比比书写过程谁写得好)课堂练习1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2、已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:AB∥CD3、思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?《第2课时“边角边”》导学案学习目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件.4.能运用“SAS”证明简单的三角形全等问题.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习方法:自主学习与小组合作探究学习过程:一、:温故知新1.怎样的两个三角形是全等三角形? 2.全等三角形的性质?二、读一读,想一想,画一画,议一议1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?阅读:课本总结:通过我们画图可以发现只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形不一定全等;给出两个条件画出的两个三角形也不一定全等,按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.3、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO 是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.4.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE =45°,②在AD 、AE 上分别取 B 、C ,使 AB =3.1cm , AC =2.8cm .③连结BC ,得△ABC .④按上述画法再画一个△A 'B 'C '. (2)如果把△A 'B 'C '剪下来放到△ABC 上,想一想△A 'B 'C '与△ABC 是否能够完全重合?5.“边角边”公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS ”) 书写格式: 在△ABC 和△ A 1B 1C 1中∴ △ABC ≌△ A 1B 1C 1(SAS )用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SAS ”是证明三角形全等的一个依据.. 三、小组合作学习(1)如图3,已知AD ∥BC ,AD =CB ,要用边角边公理证明△ABC ≌△CDA ,需要三个条件,这三个条件中,已具有两个条件,一是AD =CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB =AC ,AD =AE ,∠1=∠2,要用边角边公理证明△ABD ≌ACE ,需要满足的三个条件中,已具有两个条件:_________________________1B 1CABA1还需要一个条件_____________(这个条件可以证得吗?).四、阅读例题:五、评价反思概括总结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.六、作业:七、深化提高1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.3、已知: AD∥BC,AD= CB,AE=CF(图3).求证:△ADF≌△CBE《第2课时边角边》同步练习一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. A C=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D5.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对6.在△ABC和CBA'''∆中,∠C=C'∠,b-a=ab'-',b+a=ab'+',则这两个三角形()A. 不一定全等B.不全等C. 全等,根据“ASA”D. 全等,根据“SAS”7.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()第1题第3题图第4题图第5题图A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )A .22B .24C .26D .28 二、填空题9. 如图,已知BD=CD ,要根据“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是.10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°, 则∠CBO= 度.11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: , 使得AC =DF .12.如图,已知,,要使 ≌,可补充的条件是 (写出一个即可). 13.如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.AD AB =DAC BAE ∠=∠ABC △ADE △第9题图第7题图第8题图第10题图第11题图14. 如图,若AO=DO,只需补充就可以根据SAS判定△AOB≌△DOC.15. 如图,已知△ABC,BA=BC,BD平分∠ABC,若∠C=40°,则∠ABE为度.16.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.17. 已知:如图,DC=EA,EC=BA,DC⊥AC, BA⊥AC,垂足分别是C、A,则BE与DE的位置关系是 .18. △ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是 .三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.40DC BAED20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
初二数学《三角形的有关证明复习》课时教案
初二数学《三角形的有关证明复习》课时教案【课题】《三角形的有关证明复习》【课型】复习【教学目标】1.了解三角形全等的识别方法和三角形全等的性质,能够证明与等腰三角形、直角三角形、线段垂直平分线、角平分线相关的性质定理和判定定理.2.理解互逆命题、互逆定理,体会反证法的含义.3.能够利用尺规作图作等腰三角形、直角三角形、已知线段的垂直平分线和已知角的角平分线.【教学方法】自主探究法【教具与教学准备】导学案、PPT、多媒体【学情分析】通过观察、操作、想象、推理、交流等活动能够解决本节课的内容。
【教学过程】一、激趣导入,交代目标:(一)激趣导入设计意图(以旧引新,从学生熟知的知识入手,起点低,让全体同学都参与,也为类比探索新知做好准备。
)知识回顾(15分钟)【课堂梳理】知识点一全等三角形1.判断三角形全等的方法:①(三个公理)______、______、_____、②(一个定理)_____.2.全等三角形的性质:①线段相等:对应边相等、对应边上的_______、对应中线、______相等.②角相等:相等.注:利用全等三角形证明线段或角相等知识点二等腰三角形3.等腰三角形性质:①定理: .(等边对等角)②推论: .(三线合一)4.等腰三角形的判断方法:①定义: .②定理: .(等角对等边)知识点三等边三角形5.等边三角形概念: .6.等边三角形的性质:①等边三角形的三条边______.(边)②等边三角形的三个内角都等于______.(角)7.等边三角形的判定:①______相等的三角形是等边三角形.②三个角相等的三角形是 .③有一个角等于____的等腰三角形是等边三角形.注:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.知识点四直角三角形8.直角三角形的性质:①直角三角形的两个锐角 .②直角三角形两条直角边的平方和等于 .③在直角三角形中,如果有一个锐角等于____,那么它所对的直角边等于斜边的 .9.直角三角形的判定:①有两个角的三角形是直角三角形.②如果三角形两边的平方和等于,那么这个三角形为直角三角形.10.直角三角形全等的判定方法:(HL) . 注:(HL)只适用于直角三角形.知识点五线段垂直平分线11.段垂直平分线的定理: .12.线段垂直平分线的逆定理: .13.三角形垂直平分线定理: .知识点六角平分线14.角平分线的定理: .15.角平分线的逆定理: .16.三角形角平分线定理: .注:若一个点到三角形三边以及到三角形三个顶点的距离相等,这个点一定为三角形三边垂直平分线与三个内角角平分线的交点.(二)交代目标多媒体出示,让一名学生读出来,共同学习,从而明确本节课的学习目标设计意图:明确本节课的学习目标,使学生的学习有针对性。
《三角形全等 “边边边”》教案、导学案、同步练习
《第1课时“边边边”》教学设计[分析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等. 证明:因为D 是BC 的中点 所以BD=DC在△ABD 和△ACD 中所以△ABD ≌△ACD (SSS ).让学生独立思考后口头表达理由,由教师板演推理过程尺规作图: 已知:∠BAC .求作:∠B'A'C' ,使∠B'A'C'=∠BAC .教科书第37页练习1,2.ABCD(AB ACBD CD AD AD =⎧⎪=⎨⎪=⎩公共边)《12.2 第1课时“边边边”》教学设计教学过程设计二、探究新知 1.多媒体展示:(1)只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?(2)给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm . ②三角形两内角分别为30°和50°.③三角形两条边分别为4cm 、6cm .2.学生说出给定三个条件画三角形的各种可能情况.3.已知三角形三条边分别是4cm ,5cm ,7cm,画出这个三角形,并与同伴比较是否全等4.如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .5.如图,已知∠AOB ,求作:B O A '''∠,使B O A '''∠=∠AOB .D CB A三、课堂训练1.如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?2.如图, AB =ED ,BC =DF ,AF =CE . 求证:AB ∥DE .四、小结归纳1.三角形全等的判定至少需要三个条件;2.三角形全等判定的第一个公理是:“边边边”;3.能用尺规作图法作一个角等于已知角;4.证明三角形全等的书写格式可分为三部分:第一部分是全等条件的证明;第二部分是罗列两个三角形全等的条件;第三部分是作三角形全等的结论,这里要求注明判定方法. 五、作业设计1.教材习题11.2第9题;2.补充作业:(1)如图所示,在△ABC 中,AB =AC ,BE =CE ,则由“SSS ”可以判定( ) A .△ABD ≌△ACDB .△BDE ≌△CDEF EDACB板 书 设 计《 第1课时 “边边边”》教案C .△ABE ≌△ACED .以上都不对(2)已知:如图,AC =BD ,AD =BC ,求证:∠D =∠C .(3)如图,已知AB=CD ,AD=CB ,E 、F 分别是AB ,CD 的中点,且DE=BF ,说出下列判断成立的理由. ①△ADE ≌△CBF ②∠A=∠C学生归纳本节课的收获.教师设计作业,使学生巩固深化本节知识的数学能力课题 11.2 三角形全等的判定——“边边边”一、“边边边”公理: 例题分析 尺规作图 二、证明三角形全等的书写格式:三、尺规作图,作一个角等于已知角的依据: 教 学 反 思FE ADBC一、设疑求解,操作感知【教师活动】问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、例题讲解【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A 与BC中点D的支架,求证△ABD≌△ACD.(教师板书)【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D 是BC 的中点, ∴BD=CD在△ABD 和△ACD 中∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用 问题思考】已知AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法. 【学生活动】先独立思考后,再发言:“还应该有AB=FD ,只要AD=FB 两边都加上DB 即可得到AB=FD .”【教学形式】先独立思考,再合作交流,师生互动. 四、随堂练习 教材练习.五、课堂总结 1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩《 第1课时 “边边边”》教案教学目标1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 教学重点三角形全等的条件. 教学难点寻求三角形全等的条件. 教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形. 已知△ABC≌△A′B′C′,找出其中相等的边与角.图中相等的边是:AB=A′B、BC=B′C′、AC=A′C.C 'B 'A 'C B A相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.Ⅱ.导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.可以发现按这些条件画出的三角形都不能保证一定全等. 给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边. 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律: 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒③6cm4cm4cm6cm[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD≌△ACD.[分析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等. 证明:因为D 是BC 的中点 所以BD=DC在△ABD 和△ACD 中所以△ABD≌△ACD(SSS ).生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等. Ⅲ.随堂练习如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?2.课本练习. Ⅳ.课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.(AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩公共边)F DCBEAⅤ.作业1.习题11.2 复习巩固1、2. Ⅵ.活动与探索如图,一个六边形钢架ABCDEF 由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用. 结果:(1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).板书设计第十二章 全等三角形12.2 全等三角形的判定《 第1课时 “边边边”》导学案C(1)(2)学习目标:1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得 数学结论的过程. 重点:三角形全等条件的探索过程. 难点:寻找判定三角形全等的条件.一、知识链接1. 叫做全等三角形.2.全等三角形的性质:(1) ,(2) .3.如右图,△ABD ≌△ACD 那么对应点是 ;相等的边是: ; 相等的角是: . 二、新知预习已知三角形△ABC 你能画一个三角形与它全等吗?怎样画?一、要点探究探究点1:三角形全等的判定条件 活动1:只给出一个条件画三角形 画一画:1.请你以下面给出的线段AB=3cm 为三角形的一边,画一个三角形.(画完后剪下来,看是否能与同桌画的重合)2.请你画一个三角形,要求这个三角形有一个内角是45度.(画完后剪下来,看是否能与同桌画的重合)归纳总结:只有一条边或一个角对应相等的两个三角形不一定全等.活动2:给出两个条件画三角形做一做:给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形两条边分别为4 cm,6 cm;②三角形一内角为30°和一条边为4 cm;③三角形两内角分别为30°和45°.归纳总结:两个角对应相等的两个三角形不一定全等.活动3:给出三边时画三角形1.画一画:画一个三角形,要求这个三角形的三条边的长度分别是4,6,8厘米.(画完后剪下来,看是否能与同桌画的重合)2.做一做:先任意画一个△ABC,再画一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?要点归纳:_______________的两个三角形全等.(简写为“______”或“_______”)符号表示:如图,如果例1:如图, C是BF的中点,AB =DC,AC=DF.求证:△ABC≌△DCF.【变式题】已知: 如图,点B、E、C、F在同一直线上 , AB = DE , AC = DF ,BE = CF .求证: (1)△ABC ≌ △DEF;(2)∠A=∠D.DEFABC∆∆⇒⎪⎭⎪⎬⎫===________________________________________F方法总结:利用“边边边”判定两个三角形全等,先根据已知条件找出对应边,再从隐藏条件中找出剩下的对应边,找到两个三角形的三组对应边即可证明这两个三角形全等.针对训练1.如图,△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2.如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB,证明△ABC ≌△ FDE.探究点2:尺规作图作一个角等于已知角画一画:已知:∠BAC.求作:∠B'A'C',使∠B'A'C'=∠BAC.作一个角等于已知角的依据是___________.全等三角形判定定理1简称图示符号语言有三边对应相等的两个三角形全等“边边边”或“SSS”∵⎩⎨⎧AB=A1B1,BC=B1C1,AC=A1C1,∴△ABC≌△A1B1C1(SSS).二、课堂小结1.如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD ,还需要条件..第1题图第2题图2.如图,AB=CD,AD=BC, 则下列结论:①△ABC≌△CDB;②△ABC≌△CDA;③△ABD≌△CDB;④BA∥DC. 正确的个数是 ( )A . 1个 B. 2个 C. 3个 D. 4个3.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌△AED.4.已知:如图,AC=FE,AD=FB,BC=DE.求证:(1)△ABC≌△FDE; (2) ∠C= ∠E.5.已知:如图,AD=BC,AC=BD.求证:∠C=∠D .(提示: 连结AB)拓展提升6.如图,AB=AC,BD=CD,BH=CH,图中有几组全等的三角形?它们全等的条件是什么?D COA B《 第1课时 “边边边”》导学案学习目标1、理解三角形全等的“边边边”的条件,并利用其解决问题;2、理解作一个角等于已知角的理由. 学习重点:三角形全等条件的探索过程. 学习难点:寻找判定三角形全等的条件. 学习过程: 一、学习准备 1.全等三角形的定义2.全等三角形的性质.3.已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.二、合作探究探究一:先任意画一个△ABC ,再画一个△A'B'C',使△ABC 与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC 一定全等吗?1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗? 只给定一条边时:只给定一个角时:C 'B 'A 'C B A2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.探究二:给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有种可能.即:.先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?三、例题讲解例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.AB D尺规作图:已知:∠BAC.求作:∠B'A'C' ,使∠B'A'C'=∠BAC.四、巩固练习 教科书P37练习1 教科书P37练习2 五、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?六、当堂清1.如图,中,,, 则由“”可以判定( ) A. B. C. D.以上答案都不对2.下列结论错误的是( ) A.全等三角形对应角所对的边是对应边 B.全等三角形两条对应边所夹的角是对应角 C.全等三角形是一种特殊三角形D.如果两个三角形都与另一个三角形全等,那么这两个三角形也全等 3.小明用四根竹棒扎成如图所示的风筝框架,已知,,下列判断不正确的是( )ABC △AB AC =EB EC =SSS ABD ACD △≌△ABE ACE △≌△BDE CDE △≌△AB CD =AD CB =A EB D C(第3题) (第4题) A . B . C . D . 4.如图,中,,,,则________,__________.5.如图,在△ABC 中,∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE 的度数为__________.6.如图,AB =DE ,AC =DF ,BF =EC ,△ABC 和△DEF 全等吗?请说明理由.参考答案:1.B 2.C 3.D 4.F ABE 5. 100° 6.全等12.2 三角形全等的判定 《 第1课时 “边边边”》导学案学习目标1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的A C ∠=∠ABC CDA ∠=∠ABD CDB ∠=∠ABDC ∠=∠ABC △AB AC =AE CF =BE AF =E ∠=∠CAF ∠=∠AC B ACBABCDE过程. 学习重点三角形全等的条件. 学习难点寻求三角形全等的条件. 学习方法:自主学习与小组合作探究 学习过程: 一.回顾思考:1.(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义__________________________________________________; ②“SAS ”公理__________________________________________________ ③“ASA ”定理__________________________________________________ 二、新课1. 回忆前面研究过的全等三角形.已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角. 图中相等的边是:AB=A ′B 、BC=B ′C ′、AC=A ′C . 相等的角是:∠A=∠A ′、∠B=∠B ′、∠C=∠C ′. 2.已知三角形△ABC 你能画一个三角形与它全等吗?怎样画? 阅读教材归纳:三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”.书写格式: 在△ABC 和△A 1B 1C 1中∴ △ABC ≌△A 1B 1C 1(SSS )C 11ABA 1C 'B 'A 'C B A3. 小组合作学习(1)如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD . 证明:∵D 是BC 的中点∴__________________________ 在△ABD 和△ACD 中∴△ ≌△ ( ).(2)如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有一个条件:______________________,怎样才能得到这个条件?∵__________________________ ∴__________________________ ∴__________________________(3)如图,AB=AC, AD 是BC 边上的中线P 是AD 的一点,求证:PB=PC4.三角形的稳定性: 生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.(阅读P98)三、阅读教材例题: 四.自学检测(AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩公共边)F DCBEA五.评价反思 概括总结1. 本节课我们探索得到了三角形全等的条件,又•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.2.到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? ①定义__________________________________________________; ②“SAS ”公理__________________________________________________ ③“ASA ”定理_________________________________________________ ④“SSS ”定理_________________________________________________ 六.作业12.2 三角形全等的判定《第1课时 “边边边”》同步练习一、选择题1.如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A .120°B .125°C .127°D .104°(1) (2) (3) 2.如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,•则下面的结论中不正确的是( )A .△ABC ≌△BADB .∠CAB=∠DBAC .OB=OCD .∠C=∠D 二、填空题3.在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4.如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先DCBAODCBAFEDC BA运用等式的性质证明AF=________,再用“SSS ”证明________≌_________•得到结论. 三、解题题5.如图,在四边形ABCD 中AB=CD ,AD=BC ,求证:①AB ∥CD ;②AD ∥BC .6.如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .7.如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF .•请推导下列结论:(1)∠D=∠B ;(2)AE ∥CF .答案:1.C 2.C 3.AC=AC 4.CE ;△ABF ≌△CDE 5.连接AC (或BD ) 6.连接BC 后证明△ABC ≌△DCB 7.①证明△ADE ≌△CBF ;②证明∠AEF=∠CFEDCB AE DBAOF E DC BA12.2 三角形全等的判定 《第1课时 “边边边”》同步练习一、选择题1.如图,中,,,则由“”可以判定( ) A . B . C . D .以上答案都不对2.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是( ) A.AC=BD B.AC=BC C.BE=CE D.AE=DE3.如图,已知AB=AC ,BD=DC ,那么下列结论中不正确的是( ) A .△ABD ≌△ACD B .∠ADB=90° C .∠BAD 是∠B 的一半D .AD 平分∠BAC4. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°ABC △AB AC =EB EC =SSS ABD ACD △≌△ABE ACE △≌△BDE CDE △≌△EDAA EBDC第1题图第2题图 第3题图第4题图第5题图5. 如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D6. 如图,AB=CD,BC=DA,E、F是AC上的两点,且AE=CF,DE=BF,,那么图中全等三角形共有()对A.4对 B.3对 C.2对 D.1对7. 如图,AB=CD,BC=AD,则下列结论不一定正确的是().A.AB∥DCB. ∠B=∠DC. ∠A=∠CD. AB=BC8. 如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于()A.73B.3 C.4 D.5二、填空题9.工人师傅常用角尺平分一个任意角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寄
语
忘掉失败,不过要牢记失败中的教训。
学习目标(1)知识与技能:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的角平分线、中线;
(2)经历画、折等实践操作活动过程,发展空间观念,推理能力及创新精神。
(3)通过对问题的解决,获得成就感,培养合作精神,树立学好数学的信心。
学习重难点重点:三角形的角平分线、中线的概念,动手画、折三角形的三条角平分线、中线自主发现它们分别交于一点。
难点:探究三角形的三条角平分线、三条中线交于一点的过程。
学
法
指
导
动手操作实践
知识链接1.游戏:用笔尖顶住三角形纸片,使它保持持平衡。
提出问题:关键是找到这个点,那么怎样才能简单而准确地找到这个点呢?2.什么是角的平分线?任意画一个三角形,设法画出它的一个内角的平分线
自学探究(一)、三角形的角平分线:
1、画出△ABC,如何画一个内角的平分线,比如画∠A的平分线?
2、你还有什么方法找一个角的角平分线?
三角形的角平分线概念:在三角形中,一个内角的与它的对边相交,这个角的与之间的线段叫做三角形的角平分线。
(二)、三角形的中线:
1、观察已画图形,△ABC中的∠BAC的角平分线AD中,
点D是否是BC的中点?
2、怎样找到线段BC的中点?你有什么方法得到线段的中点?
三角形的中线概念:在三角形中,连接一个顶点与它对边的线段,叫做三角形的中线。
结论1.连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线.简称三角形的中线.
2.一个三角形共有三条中线,它们都在三角形内部,而且相交于一点
注:一个角的角平分线与三角形的角平分线有什么区别和联系?
学以致用(1)如图:CD,BE是△ABC的角平分线,它们相交于点I,则
①∠ACD=∠ = ∠ACB,∠ABC= ∠ABE
(角平分线定义)
②BI是的角平分线,CI是的角平分线。
③若∠ABC=60度,∠ACB=80度,则∠BIC= 度
④你能画出△ABC的第三条角平分线吗?
(2)、如图:若AD是△ABC的中线,则BD= = BC,BC= BD(中点定义)
②若BD=CD,则AD是△ABC的。
思维拓展1、△ABC中,AD是它的中线,若△ABD的周长比△ACD的周长大4cm,
则AB-AC= cm。
2、△ABC中D、E是BC上的点,BE=DE=CD,则AD是△
的边上的中线,AE是△的边上的
中线。
3、如图,已知:AC∥DE,DC∥EF,CD平分∠BCA
求证:EF平分∠BED.
4、△ABC的周长为18cm,BE、CF分别为AC、AB边上的中线,BE、CF相交于O,AO的延长线交B,C于D且AF=3cm,AE=2cm,求BD的长。
5、已知a,b,c是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|的结果是多少?
B
C
A
E D
5
4
3
2
1
A
D
F
C
E
B
O
D
E
F
B C
A。