第六章 偏心受力构件正截面受力性能54页PPT

合集下载

6偏心受力构件承载力计算

6偏心受力构件承载力计算

N ≤ f y As
N-轴向拉力组合设计值; fy-钢筋抗拉强度设计值, 钢筋抗拉强度设计值, 轴向拉力组合设计值; 不大于300N/mm 不大于300N/mm2; As-纵筋的全部截面面积。 纵筋的全部截面面积。
三、构造要求
1.纵向受力钢筋 1.纵向受力钢筋 (1)轴心受拉构件的受力钢筋不得采用绑扎的 轴心受拉构件的受力钢筋不得采用绑扎的 搭接接头; 搭接接头; (2)为避免配筋过少引起的脆性破坏,轴心受 为避免配筋过少引起的脆性破坏, 拉构件一侧的受拉钢筋不小于0.2% 0.45f 0.2%和 拉构件一侧的受拉钢筋不小于0.2%和0.45ft/fy中的较 大值; 大值; (3)受力钢筋沿截面周边均匀对称布置,并宜 受力钢筋沿截面周边均匀对称布置 沿截面周边均匀对称布置, 优先选择直径较小的钢筋 。 2.箍筋 2.箍筋 箍筋直径不小于6mm 间距一般不大于200mm 箍筋直径不小于6mm,间距一般不大于200mm。 6mm, 200mm。
e0 > h/2 – as
N ≤ f y As − f y′ As′ − α 1 f c bx
e′ e0 A′s f ′yA′s h/2 N e
x ′ Ne ≤ α1 f c bx(h0 − ) + f y′ As′ (h0 − as ) 2
h e = e0 − ( − a s ) 2 ρ ≥ ρ min 适用条件: 适用条件:ξ ≤ ξ b ′ x ≥ 2a s
二、矩形截面小偏心受拉构件正截面承载力计算: 矩形截面小偏心受拉构件正截面承载力计算 小偏心受拉构件正截面承载力计算:
0 < e0 < h/2 – as
N ≤ f y As + f y As'
′ N e ′ ≤ f y As ( h0 − a s )

钢筋混凝土教学课件—第6章受压构件的截面承载力

钢筋混凝土教学课件—第6章受压构件的截面承载力
2.受压破坏形态(如下图)
N
e0
N N
e0
e0
实际重心轴
s As
f y As
s As
f y As
f y As
s As
h0
(a )
h0
( b)
h0
(c)
10
有三种情况:
(1)如上图(a)所示:相对偏心距稍大且远侧钢筋较多;
A.N较小时,远侧受拉,近侧受压;
B.破坏时,远侧钢筋受拉但不能屈服,近侧钢筋受压屈服,
B.N较小时,全截面受压(远侧和近侧钢筋均受压);
C.近侧受压程度小于远侧受压程度;
D.破坏时,近侧钢筋受压但不能屈服,远侧钢筋受压屈服,
远侧混凝土压碎; 综合(1)~(3)可知: (1)远侧钢筋均不能受拉且屈服;以混凝土受压破坏为标志,称 为“受压破坏”; (2)相对偏心距较小,称为“小偏心受压”;
1
3.本章重点:单向偏心受压构件(或简称偏心
受压构件) 二.工程应用 1.轴心受压构件:结构的中间柱(近似); 2.单向偏心受压构件:结构的边柱; 3.双向偏心受压构件:结构的角柱; 如下图所示。
2
3
围范的载恒 受承柱的应相为分部影 阴,置布面平构结架框
柱边
柱角
柱间中
§6.1 受压构件一般构造要求
17
§6.5 矩形截面偏心受压构件正截面
受压承载力基本计算公式
一.区分大、小偏心受压破坏形态的界限
由下图可知:
1.受拉破坏时,远侧钢筋先受拉屈服,然后近侧钢筋受压屈服和近
侧混凝土压坏;
2.受压破坏时,近侧钢筋受压屈服和混凝土压坏时,远侧钢筋不能 受拉屈服; 3.界限破坏时,远侧钢筋受拉屈服和近侧混凝土压坏同时发生; 4.受压区太小(如 x 2a ),远侧钢筋先屈服,然后混凝土压坏, 但近侧钢筋不能受压屈服。

第6章-受压构件的截面承载力-自学笔记

第6章-受压构件的截面承载力-自学笔记

第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。

图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。

(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。

即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。

尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。

偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。

当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。

就是图6-2b这种情况。

当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。

就是图6-2c这种情况。

§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。

§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。

轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。

偏心受压构件正截面承载力计算—偏心受压构件正截面受力特点和破坏类型

偏心受压构件正截面承载力计算—偏心受压构件正截面受力特点和破坏类型
时,均发生受压破坏。
2.大偏心受压破坏(受拉破坏)
破坏特征: 加载后首先在受拉区出现横向裂
缝,裂缝不断发展,裂缝处的拉力转 由钢筋承担,受拉钢筋首先达到屈服, 并形成一条明显的主裂缝,主裂缝延 伸,受压区高度减小,最后受压区出 现纵向裂缝,混凝土被压碎导致构件 破坏。
类似于:正截面破坏中的适筋梁 属 于:延性破坏
● CB段(N≤Nb)为受拉破坏 ● AB段(N >Nb)为受压破坏
B(Nb,Mb) C(0,M0) Mu
大偏心受压破坏
偏心受压构件的破坏形态
根据偏心距e0和纵向钢筋配筋率的不同,将偏心受压分为两类:
受拉破坏——大偏心受压 Large Eccentricity 受压破坏——小偏心受压 Small Eccentricity
● 如(N,M)在曲线外侧,则
表明正截面承载力不足
Nu A(N0,0)
B(Nb,Mb) C(0,M0) Mu
偏心受压构件的M-N相关曲线
(2)当M=0时,轴向承载
力最大,即为轴心受压承
载力N0(A点)
当N=0时,为受纯弯承载 力M0(C点)
Nu N0 A(N0,0)
(3)截面受弯承载力在B点达 (Nb,Mb)到最大,该点近似 为界限破坏。
⑴取受压边缘混凝土压应变等于cu;
⑵取受拉侧边缘应变为某个值; ⑶根据截面应变分布,以及混凝土和
cu
钢筋的应力-应变关系,确定混凝土 的应力分布以及受拉钢筋和受压钢筋的应力; ⑷由平衡条件计算截面的压力Nu和弯矩Mu; ⑸调整受拉侧边缘应变,重复⑶和⑷
Nu /N0 1.0
Nu /N0 1.0
C=50
小偏心受压破坏
小偏心受压破坏
受压破坏

新070 新规范--偏心受压构件正截面承载力

新070 新规范--偏心受压构件正截面承载力

水平裂缝,但未形成明显的主裂缝,而受压区临
近破坏时受压边出现纵向裂缝。 破坏较突然,无明显预兆,压碎区段较长。 破坏时,受压钢筋应力一般能达到屈服强度,但 受拉钢筋并不屈服,截面受压边缘混凝土的压应
受压破坏图1)
变比拉压破坏时小。
6.1 偏心受压构件正截面的破坏形态
第五章 偏心受力构件正截面承载力
6.1 偏心受压构件正截面的破坏形态
第6章 偏心受压构件正截面承载力
1 破坏形态
受拉破坏(大偏心受压破坏) 发生条件:相对偏心距 e0 / h0 较大, 受拉纵筋 As 不过多时。
受拉边出现水平裂缝 继而形成一条或几条主要水平裂缝 主要水平裂缝扩展较快,裂缝宽度增大 使受压区高度减小
受拉钢筋的应力首先达到屈服强度
1 ——偏心受压构件的截面曲率修正系数,当 1
N ——构件截面上作用的偏心压力设计值;
>1.0时,取 1
0
=1.0;
2 ——构件长细比对截面曲率的影响系数,当 l
h
15
时,取 2 =1.0。
《规范》规定:当矩形截面 l0 5 或任意截面 l0 其中为 i 截面回转半径。
h
两个主轴都有偏心距
偏心受压构件:作用在构件截面上的轴向力 为压力的偏心受力构件 偏心受拉构件:作用在构件截面上的轴向力 为拉力的偏心受力构件
6.1 偏心受压构件正截面的破坏形态
第6章 偏心受压构件正截面承载力
实际工程中的偏心受力构件: 单层厂房的柱子 框架结构中的框架柱 剪力墙结构中的剪力墙
桥梁结构中的桥墩
第6章 偏心受压构件正截面承载力
矩形截面对称配筋偏心受压构件正截面受压承载力计算
1 基本计算公式及适用条件 (1)大偏心受压构件: 1)应力图形 2)基本公式

钢筋混凝土结构设计原理第六章偏心受压构件承载力

钢筋混凝土结构设计原理第六章偏心受压构件承载力

第六章偏心受压构件承载力计算题1. (矩形截面大偏压)已知荷载设计值作用下的纵向压力N 600KN ,弯矩M 180KN • m,柱截面尺寸b h 300mm 600mm,a$ a$ 40mm,混凝土强度等级为 C30, f c=14.3N/mm2,钢筋用HRB335级,f y=f y=300N/mm2,b 0-550,柱的计算长度I。

3.0m,已知受压钢筋A 402mm2(£尘1&|),求:受拉钢筋截面面积A s。

2. (矩形不对称配筋大偏压)已知一偏心受压柱的轴向力设计值N = 400KN,弯矩M = 180KN- m,截面尺寸b h 300mm 500m , a s a s40mm ,计算长度 l° = 6.5m,混凝土等级为C30 ,f c=14.3N/mm 2,钢筋为 HRB335 , , f y f y300N/mm2,采用不对称配筋,求钢筋截面面积。

3. (矩形不对称配筋大偏压)已知偏心受压柱的截面尺寸为b h 300mm 400mm ,混凝土为C25级, f c=11.9N/mm 2,纵筋为HRB335级钢,f y f y300N / mm2,轴向力N,在截面长边方向的偏心距e。

200mm。

距轴向力较近的一侧配置4「16纵向钢筋A'S804mm2,另一侧配置2十20纵向钢筋A S628mm2,a s a s' 35mm,柱的计算长度1。

= 5m。

求柱的承载力N。

4. (矩形不对称小偏心受压的情况)某一矩形截面偏心受压柱的截面尺寸b h 300mm 500mm,计算长度I0 6m, a s a s 40mm,混凝土强度等级为 C30, f c=14.3N/mm2, 1 1.0 ,用 HRB335 级钢筋,f y=f y =300N/mm 2,轴心压力设计值 N = 1512KN,弯矩设计值 M = 121.4KN • m,试求所需钢筋截面面积。

双向偏心受压构件的正截面的承载力计算

双向偏心受压构件的正截面的承载力计算

(2) 长柱的受力分析和破坏形态(l0/b>8、l0/d>7) 1) 初始偏心距 → 产生附加 弯矩和侧向挠度 → 偏心距增加 → 附加弯矩和侧向挠度不断增加 →长柱在N和M共同作用下破坏 2)长柱的破坏特征 破坏时,首先在凹侧出现纵向 裂缝,随后混凝土被压碎,纵筋 被压屈向外凸出;凸侧混凝土出 现横向裂缝,侧向挠度不断增加, 柱子破坏。→ 表现为“材料破坏” 和“失稳破坏”。长细比l0/b很大 时,表现为失稳破坏; 图6-6 长柱的破坏
6.1.1 截面型式及尺寸
柱的吊装方式及简图
6.1.1 截面型式及尺寸
2. 截面尺寸: (1) 方形或矩形截面柱 截 面 不 宜 小 于 250mm×250mm ( 抗 震 不 宜 小 于 300mm×300mm) 。为了避免矩形截面轴心受压构件长细 比过大,承载力降低过多,常取 l0/b≤30, l0/h≤25 。此处 l0 为 柱的计算长度,b为矩形截面短边边长,h为长边边长。 为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸 ≤ 800mm ,以 50mm 为模数;截面尺寸> 800mm ,以 100mm 为模数。 (2) 工字形截面柱 翼缘厚度≦120mm,腹板厚度≦100mm。
3. 箍筋一般采用HPB235级、HRB335级钢筋,也可采用
HRB400级钢筋。
6.1.3 纵 筋
1. 纵筋的配筋率 轴心受压构件、偏心受压构件全部纵筋的配筋率≦0.6 %;同时,一侧钢筋的配筋率≦ 0.2 %。(用全截面计算) 2. 轴心受压构件的纵向受力钢筋 (1) 沿截面四周均匀放置,根数不得少于 4 根, ( 圆柱根 数)图6-1(a); (2)直径不宜小于 12mm,通常为16~32mm。宜采用较 粗的钢筋; (3) 全部纵筋配筋率≧ 5%。

第六章受压构件

第六章受压构件

§ 6.1 轴心受压构件承载力计算
Strength of Axially Loaded Members
6.1.1 轴心受压构件的破坏特征
按照长细比(the slenderness)l0/b的大小,轴心受
压柱可分为短柱和长柱两类。对方形和矩形柱,当 l0/b ≤ 8 时属于短柱,否则为长柱。其中l0为柱的计算长度,
(4)验算配筋率
As ' 1677 =1.86% A 300 300 min> =0.6%,且<3% ,满足最小配筋率要求,且勿
'
需重算。
纵筋选用4 如图。
25(As′=1964mm2),箍筋配置φ8@300,
Φ8@300
300
4 25
300
【习题2】某现浇底层钢筋混凝土轴心受压柱,截面尺寸

1 1 =0.869 1 0.002 (l 0 / b 8) 2 1 0.002(16.7 8) 2
(3)计算钢筋截面面积As′
N 1400 103 fc A 14.3 3002 0.9 As' 0.9 0.869 =1677mm2 fy ' 300
选用8Φ 28, As' =4926mm2 。 配筋率ρ= As/A =4926/125600=3.92%
6.3.3
螺旋箍筋柱简介
( the
spiral columns)
1.螺旋箍筋柱的受力特点:螺旋箍筋柱的箍筋既是构 造钢筋又是受力钢筋。由于螺旋筋或焊接环筋的套箍作用 可约束核心混凝土(螺旋筋或焊接环筋所包围的混凝土)
若采用该柱直径为400mm,则 l0 4200 10.5, 查表得=0.95 d 400
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档