上海市2016年普陀区二模数学 (含答案、无水印)
2023年上海市普陀区中考二模数学试卷

2023年上海市普陀区中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________A.B.C.D.A.B.C.D.2三、未知五、未知18.某校组织防疫知识大赛,25名参赛同学的得分情况如图所示,这组数据的中位数是______.六、填空题七、未知24.正九边形的中心角等于______度.25.已知正比例函数()0y kx k =≠的图像经过点()2,4-,那么函数值y 随自变量x 的值的增大而______.(填“增大”或“减小”)26.在平面直角坐标系xOy 中,点()1,4A 关于抛物线2(2)y a x =+的对称轴对称的点的坐标是______.27.2023年是农历的癸卯年,生肖兔(rabbit ),字母b 出现的概率是______.八、填空题28.已知一个40个数据的样本,把它分成6组,第一组到第四组的频数分别是10、5、7、6,第五组的频率是0.1,那么第六组的频数是_______.BE3十、填空题33.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC 中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD 的长为_____.十一、未知34.如图,在ABC V 中,4AB =,7BC =,=60B ∠︒,点D 在边BC 上,联结AD ,将A C D V 沿直线AD 翻折后,点C 的对应点为点E ,如果90CDE ∠=︒,那么点E 到直线BD 的距离为______.十二、解答题35.解不等式组2134x x x +>-⎧⎨-≤⎩①②请按下列步骤完成解答:(1)解不等式①,得_________; (2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来; (4)原不等式组的解集为_________.36.已知:ABCD Y 中,52B ∠=︒,AE 平分BAD ∠交BC 于E 点.(1)求BAD ∠的度数; (2)求AEC ∠的度数.37.为了了解小区居民骑五种品牌共享单车的情况(五种品牌分别用A 、B 、C 、D 、E 表示),某校九(8)班同学在小区街头随机调查了一些骑共享单车出行的居民,并将他们对五种品牌单车的选择情况绘制成如下两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查的样本容量是______,C 品牌所在扇形的圆心角的大小是______; (2)补全条形统计图;(3)若本街道有12000名居民骑共享单车出行,根据调查数据估计本街道有多少居民选择B 品牌单车?38.如图,BC 为O e 直径,AB 切O e 于B 点,AC 交O e 于D 点,E 为AB 中点.(1)求证:DE 是O e 的切线;(2)若30A ∠=︒,4BC =,求阴影部分的面积.39.如图,在由边长为1的小正方形组成的正方形网格中,A 、B 为格点,M 为AB 与网格横线的交点,请仅用无刻度直尺,在给定的网格中依次完成下列画图,过程线用虚线,结果线用实线.(1)在图1中找格点C 、D ,使四边形ABCD 是菱形; (2)在图1中画点M 关于直线AC 的对称点M ';BC AB(1)求抛物线1C 的解析式;(2)如图1,已知()0,1E -,以A E C D 、、、为顶点作平行四边形,若C D 、两点都在抛物线上,求C D 、两点的坐标;(3)如图2,将抛物线1C 沿x 轴平移,使其顶点在y 轴上,得到抛物线2C ,过定点()0,2H 的直线交抛物线2C 于M N 、两点,过M N 、的直线MR NR 、与抛物线2C 都只有唯一公共点,求证:R 点在定直线上运动.十三、未知4(1)求证:四边形AECD 是平行四边形;(2)如果BAE BCA ∠=∠,2CE BE BC =⋅,求证:四边形AECD 是菱形.48.在平面直角坐标系xOy 中,如图,直线y x b =+与x 轴交于点A ,与y 轴交于点C .抛物线265y ax ax =++经过点A 和点C ,与x 轴交于另一点B .(1)求这条抛物线的表达式;(2)求tan ACB ∠的值;(3)点P 为抛物线上一点,点Q 为平面内一点,如果四边形APCQ 是菱形,求点P 的坐标.十四、解答题49.如图,已知Rt △ABC 中,∠ACB=90°,BC=2,AC=3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.①如果△ACQ ∽△CPQ ,求CP 的长;②如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.。
2016年上海市奉贤区高考数学二模试卷(理科)含答案解析

2016年上海市奉贤区高考数学二模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接写结果,1-14题每个空格填对得4分)1.若i(bi+1)是纯虚数,i是虚数单位,则实数b=______.2.函数y=的定义域是______.3.在△ABC中,||=2,||=3,•<0,且△ABC的面积为,则∠BAC=______.4.双曲线4x2﹣y2=1的一条渐近线与直线tx+y+1=0垂直,则t=______.5.已知抛物线y2=4x上一点M(x0,2),则点M到抛物线焦点的距离为______.6.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为S n,则S n=2,则q=______.7.在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,则R=______cm.8.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有______.(用数字作答)9.在平面直角坐标系xOy中,将点A(2,1)绕原点O逆时针旋转到点B,若直线OB 的倾斜角为α,则cosα的值为______.10.已知函数f(x)=2x﹣a•2﹣x的反函数是f﹣1(x),f﹣1(x)在定义域上是奇函数,则正实数a=______.11.把极坐标方程ρ=sinθ+cosθ化成直角坐标标准方程是______.12.在(x++1)6展开式中的常数项是______(用数值作答)13.在棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是棱上一点,则满足|PA|+|PC1|=2的点P的个数为______.14.若数列{a n}前n项和S n满足S n+S n=2n2+1(n≥2,n∈N+),且满足a1=x,{a n}单调﹣1递增,则x的取值范围是______.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是()A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]16.已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为()A.B.C.D.17.设,那么以|z1|为直径的圆的面积为()A.πB.4πC.8πD.16π18.方程9x+|3x+b|=5(b∈R)有两个负实数解,则b的取值范囤为()A.(3,5) B.(﹣5.25,﹣5)C.[﹣5.25,﹣5)D.前三个都不正确三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(13分)(2016•奉贤区一模)平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;(1)画出面PBE与面ABC的交线,说明理由;(2)求面PBE与面ABC所成的锐二面角的大小.20.(13分)(2016•奉贤区一模)已知椭圆C:=1(a>b>0)的长轴长是短轴长的两倍,焦距为2.(1)求椭圆C的标准方程;(2)不过原点O的直线l与椭圆C交于两点M,N,且直线OM,MN,ON的斜率依次成等比数列,问:直线l是否定向的,请说明理由.21.(14分)(2016•奉贤区一模)如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区,为了妥善处理生活垃圾,政府决定在AB的背面建一个垃圾发电厂P,垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大),现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,设|PA|=5x>0.(1)求cos∠PAB(用x的表达式表示)(2)问垃圾发电厂该如何选址才能同时满足上述要求?22.(16分)(2016•奉贤区一模)(1)已知0<x1<x2,求证:;(2)已知f(x)=lg(x+1)﹣log3x,求证:f(x)在定义域内是单调递减函数;(3)在(2)的条件下,求集合M={n|f(n2﹣214n﹣1998)≥0,n∈Z}的子集个数.23.(18分)(2016•奉贤区一模)数列{a n},{b n}满足,a1>0,b1>0;(1)求证:{a n•b n}是常数列;(2)若{a n}是递减数列,求a1与b1的关系;(3)设a1=4,b1=1,当n≥2时,求a n的取值范围.2016年上海市奉贤区高考数学二模试卷(理科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接写结果,1-14题每个空格填对得4分)1.若i(bi+1)是纯虚数,i是虚数单位,则实数b=0.【考点】复数的基本概念.【分析】由i(bi+1)=﹣b+i,又i(bi+1)是纯虚数,即可得到实部等于0,则b可求.【解答】解:i(bi+1)=﹣b+i,又i(bi+1)是纯虚数,则﹣b=0,即b=0.故答案为:0.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.函数y=的定义域是[0,+∞).【考点】函数的定义域及其求法.【分析】根据二次根式的性质,被开方数大于等于0,可知:2n﹣1≥0,解得n的范围即可.【解答】解:根据题意得:2n﹣1≥0,解得:n≥0.∴函数y=的定义域是[0,+∞).故答案为:[0,+∞).【点评】本题考查的是函数自变量取值范围的求法.注意偶次开方一定非负.3.在△ABC中,||=2,||=3,•<0,且△ABC的面积为,则∠BAC=150°.【考点】平面向量数量积的运算.【分析】由题意可得∠BAC 为钝角,再由×2×3×sin∠BAC=,解得sin∠BAC=,从而得到∠BAC的值.【解答】解:∵在△ABC中,||=2,||=3,且△ABC的面积为,∴=,即,解得sin∠BAC=,又•<0,∴,∴∠BAC=150°.故答案为:150°.【点评】本题主要考查两个向量的数量积的定义及三角形的面积公式,考查已知三角函数值求角的大小,是基础题.4.双曲线4x2﹣y2=1的一条渐近线与直线tx+y+1=0垂直,则t=±.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,直线tx+y+1=0的斜率为﹣t,运用两直线垂直的条件:斜率之积为﹣1,计算即可得到所求值.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得渐近线为y=±2x,直线tx+y+1=0的斜率为﹣t,而渐近线的斜率为±2,由两直线垂直的条件:斜率之积为﹣1,可得﹣t=±,即有t=±.故答案为:±.【点评】本题考查双曲线的渐近线方程的运用,考查两直线垂直的条件:斜率之积为﹣1,考查运算能力,属于基础题.5.已知抛物线y2=4x上一点M(x0,2),则点M到抛物线焦点的距离为4.【考点】抛物线的简单性质.【分析】把点M (x 0,2)代入抛物线方程,解得x 0.利用抛物线的定义可得:点M 到抛物线焦点的距离=x 0+1.【解答】解:把点M (x 0,2)代入抛物线方程可得:=4x 0,解得x 0=3.∴点M 到抛物线焦点的距离=x 0+1=4. 故答案为:4.【点评】本题考查了抛物线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.6.无穷等比数列首项为1,公比为q (q >0)的等边数列前n 项和为S n ,则S n =2,则q=.【考点】等比数列的通项公式.【分析】由无穷递缩等比数列的各项和可得=2,解方程可得.【解答】解:∵无穷等比数列首项为1,公比为q (q >0)的等边数列前n 项和为S n ,且S n =2,∴=2,解得q=,故答案为:.【点评】本题考查等比数列的通项公式和无穷递缩等比数列的各项和,属基础题.7.在一个水平放置的底面半径为cm 的圆柱形量杯中装有适量的水,现放入一个半径为Rcm 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm ,则R= cm .【考点】球的体积和表面积;棱柱、棱锥、棱台的体积.【分析】求出球的体积等于水面高度恰好上升Rcm 的体积,即可求出R 的值.【解答】解:在一个水平放置的底面半径为cm 的圆柱形量杯中装有适量的水,现放入一个半径为Rcm 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm ,所以,,所以R=(cm );故答案为:.【点评】本题是基础题,考查球的体积,圆柱的体积的求法,考查计算能力.8.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有34.(用数字作答)【考点】组合及组合数公式;排列、组合的实际应用.【分析】根据题意,选用排除法;分3步,①计算从7人中,任取4人参加某个座谈会的选法,②计算选出的全部为男生或女生的情况数目,③由事件间的关系,计算可得答案.【解答】解:分3步来计算,①从7人中,任取4人参加某个座谈会,分析可得,这是组合问题,共C74=35种情况;②选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,③根据排除法,可得符合题意的选法共35﹣1=34种;故答案为34.【点评】本题考查组合数公式的运用,解本题采用排除法较为简单.9.在平面直角坐标系xOy中,将点A(2,1)绕原点O逆时针旋转到点B,若直线OB的倾斜角为α,则cosα的值为.【考点】直线的倾斜角.【分析】设直线OA的倾斜角为θ,则tanθ=,tanα==,cosα=.【解答】解:设直线OA的倾斜角为θ,则tanθ=,则tanα====3,∴cosα===.故答案为:.【点评】本题考查了直线的倾斜角与斜率的关系、三角函数求值,考查了推理能力与计算能力,属于中档题.10.已知函数f(x)=2x﹣a•2﹣x的反函数是f﹣1(x),f﹣1(x)在定义域上是奇函数,则正实数a=1.【考点】反函数.【分析】f﹣1(x)在定义域上是奇函数,可得:原函数f(x)在定义域上也是奇函数,利用f(0)=0即可得出.【解答】解:∵f﹣1(x)在定义域上是奇函数,∴原函数f(x)在定义域上也是奇函数,∴f(0)=1﹣a=0,解得a=1,∴f(x)=,经过验证函数f(x)是奇函数.故答案为:1.【点评】本题考查了反函数的性质,考查了推理能力与计算能力,属于中档题.11.把极坐标方程ρ=sinθ+cosθ化成直角坐标标准方程是(x﹣)2+(y﹣)2=.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】先在极坐标方程ρ=sinθ+cosθ的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.【解答】解:∵ρ=sinθ+cosθ,∴ρ2=ρsinθ+ρcosθ,∴x2+y2=y+x,即x2+y2﹣x﹣y=0.即(x﹣)2+(y﹣)2=.故答案为:(x﹣)2+(y﹣)2=.【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.12.在(x++1)6展开式中的常数项是581(用数值作答)【考点】二项式系数的性质.=,(r=0,1,…,6),令的展开式的通项公式【分析】T r+1==2k x r﹣2k,令r﹣2k=0,对k,r分类讨论即可得出.T′k+1=,(r=0,1,…,6),【解答】解:T r+1==2k x r﹣2k,令的展开式的通项公式T′k+1令r﹣2k=0,k=0,r=0时,可得:T1=1.k=1,r=2时,可得:T3=,T′2=,∴=60.k=2,r=4时,可得:T5=,T′3==24,∴×24=360.k=3,r=6时,可得:T7=,T′4==160,∴×160=160.∴(x++1)6展开式中的常数项是1+60+360+160=581.故答案为:581.【点评】本题考查了二项式定理的应用,考查了分类讨论方法、推理能力与计算能力,属于中档题.13.在棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是棱上一点,则满足|PA|+|PC1|=2的点P的个数为6.【考点】棱柱的结构特征.【分析】由题意可得点P是以2c=为焦距,以a=1为长半轴,为短半轴的椭圆与正方体与棱的交点,可求.【解答】解:∵正方体的棱长为1∴AC1=,∵|PA|+|PC1|=2,∴点P是以2c=为焦距,以a=1为长半轴,以为短半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在棱B1C1,C1D1,CC1,AA1,AB,AD上各有一点满足条件.故答案为:6.【点评】本题以正方体为载体,主要考查了椭圆定义的灵活应用,属于综合性试题.14.若数列{a n}前n项和S n满足S n﹣1+S n=2n2+1(n≥2,n∈N+),且满足a1=x,{a n}单调递增,则x的取值范围是(2,3).【考点】数列递推式.【分析】根据条件求出与a n的有关的关系式,利用条件,{a n}单调递增,建立条件,即可得到结论.【解答】解:由条件S n﹣1+S n=2n2+1(n≥2)得S n+S n+1=2(n+1)2+1,两式相减得a n+1+a n=4n+2,故a n+2+a n+1=4n+6,两式再相减得a n+2﹣a n=4,得{a n+2}是公差d=4的等差数列,由n=2得a1+a2+a1=9,a2=9﹣2x,从而a2n=4n+5﹣2x;n=3得a1+a2+a3+a1+a2=19,a3=1+2x,从而a2n+1=4n﹣3+2x,由条件得,解得2<x<3,故x的取值范围为(2,3),故答案为:(2,3).【点评】本题主要考查参数的取值范围的求解,根据条件求出与a n的有关的关系式是解决本题的关键,有一定的难度.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是()A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]【考点】直线与平面所成的角.【分析】做出斜线与射影所确定的平面,则当α内的直线与射影平行时.夹角最小为35°,当直线与射影垂直时,夹角最大为90°.【解答】解:设平面α的斜线的斜足为B,过斜线上A点做平面α的垂线,垂足为C,则∠ABC=35°,∴当α内的直线与BC平行时,直线与斜线所成的角为35°,当α内的直线与BC垂直时,则此直线与平面ABC垂直,∴直线与斜线所成的角为90°,故选:D.【点评】本题考查了线面角的定义,异面直线所成的角的计算,属于中档题.16.已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为()A.B.C.D.【考点】函数的图象.【分析】根据等差中项,得到2log2y=2+log2x,继而得到y2=4x,x>0,y>0,问题得以解决.【解答】解:∵log2x,log2y,2成等差数列,∴2log2y=2+log2x,∴y2=4x,x>0,y>0,∴M(x,y)的轨迹的图象为焦点为(1,0)的抛物线的一部分,x>0,y>0,故选:A.【点评】本题考查了等差中项和对数的运算性质,以及抛物线的问题,属于基础题.17.设,那么以|z1|为直径的圆的面积为()A.πB.4πC.8πD.16π【考点】复数求模.【分析】由已知可得: +4=0,解得=i,即可得出.【解答】解:∵,∴+4=0,解得==i,∴|z1|=|z2||1i|=4,∴以|z1|为直径的圆的面积为22π=4π.故选:B.【点评】本题考查了实系数一元二次方程的解法、复数的几何意义、圆的面积计算公式,考查了推理能力与计算能力,属于中档题.18.方程9x+|3x+b|=5(b∈R)有两个负实数解,则b的取值范囤为()A.(3,5) B.(﹣5.25,﹣5)C.[﹣5.25,﹣5)D.前三个都不正确【考点】根的存在性及根的个数判断.【分析】化简9x+|3x+b|=5可得3x+b=5﹣9x或3x+b=﹣5+9x,从而讨论以确定方程的根的个数,从而解得.【解答】解:∵9x+|3x+b|=5,∴|3x+b|=5﹣9x,∴3x+b=5﹣9x或3x+b=﹣5+9x,①若3x+b=5﹣9x,则b=5﹣3x﹣9x,其在(﹣∞,0)上单调递减,故当b≤3时,无解,当3<b<5时,有一个解,当b≥5时,无解;②若3x+b=﹣5+9x,则b=﹣5﹣3x+9x=(3x﹣)2﹣,∵x∈(﹣∞,0)时,0<3x<1,∴当﹣<b<﹣5时,有两个不同解;当b=﹣时,有一个解;综上所述,b的取值范围为(﹣5.25,﹣5),故选B.【点评】本题考查了绝对值方程的解法与应用,属于中档题.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(13分)(2016•奉贤区一模)平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;(1)画出面PBE与面ABC的交线,说明理由;(2)求面PBE与面ABC所成的锐二面角的大小.【考点】二面角的平面角及求法.【分析】(1)延长PE交AC于F,可证F与C重合,故直线BC即为面PBE与面ABC的交线;(2)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出面PBE与面ABC所成的锐二面角的大小.【解答】解:(1)延长PE交AC于F,直线BC即为面PBE与面ABC的交线;理由如下:∵AP 、AB 、AC 两两互相垂直, ∴PA ⊥平面ABC , ∵DE ⊥平面ABC , ∴DE ∥PA ,∴=,∴F 与C 重合.∵C ∈PE ,C ∈AC ,PE ⊂平面PBE ,AC ⊂平面ABC , ∴C 是平面PBE 和平面ABC 的公共点, 又B 是平面PBE 和平面ABC 的公共点, ∴BC 是面PBE 与面ABC 的交线. (2)∵AP 、AB 、AC 两两互相垂直,∴AB ⊥平面PAC ,∴V B ﹣PADE =S 梯形ADEP •AB=(1+2)×1×AB=,解得AB=.以A 为原点,AB 为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,B (,0,0),P (0,0,2),E (0,1,1),=(,0,2),=(0,1,﹣1),设二面角PBE 的法向量=(x ,y ,z ),则,取y=1,得=(﹣,1,1),平面ABC 的法向量=(0,0,1),∴cos <>===,∴面PBE 与面ABC 所成的锐二面角的大小为arccos .【点评】本题考查了平面的性质,二面角的计算,属于中档题,解题时要认真审题,注意向量法的合理运用.20.(13分)(2016•奉贤区一模)已知椭圆C:=1(a>b>0)的长轴长是短轴长的两倍,焦距为2.(1)求椭圆C的标准方程;(2)不过原点O的直线l与椭圆C交于两点M,N,且直线OM,MN,ON的斜率依次成等比数列,问:直线l是否定向的,请说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)由椭圆的长轴长是短轴长的两倍,焦距为2,列出方程组能求出椭圆C的标准方程.(2)由题意设直线l的方程为y=kx+m,(km≠0),联立,得(1+4k2)x2+4kmx+4(m2﹣1)=0,由此利用根的判别式、韦达定理、等比数列、椭圆性质,结合已知条件能求出直线l不定向.【解答】解:(1)∵椭圆C:=1(a>b>0)的长轴长是短轴长的两倍,焦距为2,∴,解得a=2,b=1,∴椭圆C的标准方程为.(2)由题意设直线l的方程为y=kx+m,(km≠0),联立,得(1+4k2)x2+4kmx+4(m2﹣1)=0,△=16(4k2﹣m2+1)>0,设M(x1,y1),N(x2,y2),则,,∴y1y2=(kx1+m)(kx2+m)=,∵直线OM,MN,ON的斜率依次成等比数列,∴=k2,∴﹣+m2=0,∵m≠0,∴k2=,方向向量=(±2,1).∴直线l不定向.【点评】本题考查椭圆方程的求法,考查直线是否定向的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、等比数列、椭圆性质的合理运用.21.(14分)(2016•奉贤区一模)如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区,为了妥善处理生活垃圾,政府决定在AB的背面建一个垃圾发电厂P,垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大),现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,设|PA|=5x>0.(1)求cos∠PAB(用x的表达式表示)(2)问垃圾发电厂该如何选址才能同时满足上述要求?【考点】余弦定理的应用.【分析】(1)由条件可设PA=5x,PB=3x,运用余弦定理,即可得到cos∠PAB;(2)由同角的平方关系可得sin∠PAB,求得点P到直线AB的距离h=PAsin∠PAB,化简整理配方,由二次函数的最值的求法,即可得到所求最大值及PA,PB的值.【解答】解:(1)由条件①,得,∵PA=5x,∴PB=3x,则,可得;(2)由同角的平方关系可得,所以点P到直线AB的距离h=PAsin∠PAB,=,∵cos∠PAB≤1,∴,∴2≤x≤8,所以当x2=34,即时,h取得最大值15千米.即选址应满足千米,千米.【点评】本题考查解三角形的数学模型的解法,注意运用余弦定理和同角的平方关系和二次函数的最值的求法,考查化简整理的运算能力,属于中档题.22.(16分)(2016•奉贤区一模)(1)已知0<x1<x2,求证:;(2)已知f(x)=lg(x+1)﹣log3x,求证:f(x)在定义域内是单调递减函数;(3)在(2)的条件下,求集合M={n|f(n2﹣214n﹣1998)≥0,n∈Z}的子集个数.【考点】对数函数的图象与性质;子集与真子集.【分析】(1)使用分析法证明;(2)设0<x1<x2,利用(1)的结论和对数函数的性质化简f(x1)﹣f(x2)判断其符号,得出结论;(3)由(2)的结论及f(9)=0列出不等式组,解出n即可得出M中元素的个数.【解答】(1)证明:∵x2+1>0,x2>0,欲证:,只需证:x2(x1+1)>x1(x2+1),即证:x1x2+x2>x1x2+x1,只需证:x2>x1,显然x2>x1成立,∴.(2)解:f(x)的定义域为(0,+∞).设0<x1<x2,则f(x1)﹣f(x2)=lg(x1+1)﹣lg(x2+1)+log3x2﹣log3x1=lg+log3=lg﹣log.∵0<x1<x2,∴0<<<1,∴lg>log>log,∴f(x1)﹣f(x2)=lg﹣log>log﹣log=0.∴f(x1)>f(x2),∴f(x)在定义域(0,+∞)上是减函数.(3)解:由(2)知f(x)是定义在(0,+∞)上的减函数,且f(9)=0,∵f(n2﹣214n﹣1998)≥0,∴0<n 2﹣214n ﹣1998≤9. ∴13447<(n ﹣107)2≤13456.∵115<<116,=116,n ∈Z ,∴n ﹣107=116或n ﹣107=﹣116. ∴集合M 有两个元素. ∴集合M 有4个子集.【点评】本题考查了不等式的证明,对数函数的性质,函数单调性的应用,属于中档题.23.(18分)(2016•奉贤区一模)数列{a n },{b n }满足,a 1>0,b 1>0;(1)求证:{a n •b n }是常数列;(2)若{a n }是递减数列,求a 1与b 1的关系; (3)设a 1=4,b 1=1,当n ≥2时,求a n 的取值范围. 【考点】数列递推式.【分析】(1)由题意可知a n •b n =a n ﹣1•b n ﹣1=…=a 1•b 1,故问题得以证明; (2)根据{a n }是递减数列,得到(a 1﹣b 1)2>0,a n >b n ,得到a 1>b 1恒成立,(3)先判断a n +1>2,再根据a n +1﹣a n =,得到a n +1﹣a n <0,{a n }是递减数列,即可得到a n ﹣a 2<0,求出a n 的取值范围.【解答】解:(1)∵,∴2a n +1=a n +b n ,=,∴b n +1=,∴a n +1b n +1=a n •b n ,∴a n •b n =a n ﹣1•b n ﹣1=…=a 1•b 1,∴{a n •b n }是常数列;(2){a n }是递减数列,a n +1﹣a n <0,∵a 2﹣a 1=(a 1+b 1)﹣a 1=(b 1﹣a 1)<0∴a 1>b 1,∵a 3﹣a 2=(b 2﹣a 2)<0,∴a 2>b 2,∵(a 1+b 1)>,∴(a 1﹣b 1)2>0,猜想a n +1﹣a n =(b n ﹣a n )<0,∴a n >b n ,∴a 1>b 1恒成立,∵a k +2﹣a k +1=(b k +1﹣a k +1)==<0, ∴a 1>b 1时,{a n }是递减数列.(3)整理得a n +1=(a n +),a 1=4,∴a 2=,∴a 1>0⇒a 2>0⇒a 3>0⇒…⇒a n >0,当n ≥2时,a n +1﹣2=(a n +)﹣2=>0, ∴a n +1>2,∴a n +1﹣a n =(b n ﹣a n )==, ∵a n >2,∴a n +1﹣a n <0,∴{a n }是递减数列,∴a n ﹣a 2<0,∴a n∈(2,]【点评】本题考查了递推数列的,常数列,数列的函数特征,以及a n的取值范围,培养了学生的运算能力,转化能力,属于难题.。
2016届上海高三二模数列分类

1、(奉贤区2016届高三二模)数列{}n a ,{}n b 满足1111221111122n n n n n na ab b a b ++⎧=+⎪⎪⎨⎪=⋅+⋅⎪⎩,0,011>>b a .(1)求证:{}n n b a ⋅是常数列;(2)若{}n a 是递减数列,求1a 与1b 的关系; (3)设114,1a b ==,当2n ≥时,求n a 的取值范围.2、(虹口区2016届高三二模)设数列{}n a 的前n 项和为,n S 且2(1)().n n n S a S n N *-=∈(1)求123S S S 、、的值,并求出n S 及数列{}n a 的通项公式;(2)设121(1)(1)(),n n n n b n a a n N +*+=-+⋅∈求数列{}n b 的前n 项和.n T (3)设(1)(),n n c n a n N *=+⋅∈在数列{}n c 中取出(,3)m m N m *∈≥为常数项,按照原来的顺序排成一列,构成等比数列{}n d .若对任意的数列{}n d , 均有123,m d d d d M ++++≤试求M 的最小值.3、(黄浦区2016届高三二模)已知数列{}n a 的通项公式为12()()n a n k n k =--,其中12,k k Z ∈;(1)试写出一组12,k k Z ∈的值,使得数列{}n a 中的各项均为正数; (2)若11k =、*2k N ∈,数列{}n b 满足n n a b n=,且对任意*m N ∈(3)m ≠,均有3m b b <, 写出所有满足条件的2k 的值;(3)若120k k <<,数列{}n c 满足||n n n c a a =+,其前n 项和为n S ,且使0i j c c =≠*(,,)i j N i j ∈<的i 和j 有且仅有4组,1S 、2S 、…、n S 中至少3个连续项的值相等,其它项的值均不相等,求12,k k 的最小值;4、(静安区2016届高三二模)已知数列{}n a 满足nn n a a 331+=-(*∈≥N n n ,2),首项31=a .(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S ; (3)数列{}n b 满足n a b nn 3log =,记数列⎭⎬⎫⎩⎨⎧⋅+11n n b b 的前n 项和为n T ,A 是△ABC 的内角,若n T A A 43cos sin >对于任意n N *∈恒成立,求角A 的取值范围. 5、(闵行区2016届高三二模)已知n ∈*N ,数列{}n a 、{}n b 满足:11n n a a +=+,112n n n b b a +=+, 记24n n n c a b =-.(1)若11a =,10b =,求数列{}n a 、{}n b 的通项公式; (2)证明:数列{}n c 是等差数列;(3)定义2()n n n f x x a x b =++,证明:若存在k ∈*N ,使得k a 、k b 为整数,且()k f x 有两个整数零点,则必有无穷多个()n f x 有两个整数零点.6、(普陀区2016届高三二模)已知各项不为零的数列{}n a 的前n 项和为n S ,且11=a ,121+⋅=n n n a a S (*N n ∈) (1)求证:数列{}n a 是等差数列; (2)设数列{}n b 满足:122+-=n n a a n b ,且()3841lim 1211=+++++++∞→n n k k k k n b b b b b b ,求正整数k 的值;(3)若m 、k 均为正整数,且2≥m ,m k <,在数列{}k c 中,11=c ,11++-=k k k a mk c c ,求m c c c +++ 21.7、(徐汇、金山、松江区2016届高三二模)设集合W 由满足下列两个条件的数列{}n a 构成:①21;2n n n a a a +++<②存在实数,a b 使n a a b ≤≤对任意正整数n 都成立. (1)现在给出只有5项的有限数列{}{},,n n a b 其中123452,6,8,9,12a a a a a =====;2log (1,2,3,4,5).k b k k ==试判断数列{}{},n n a b 是否为集合W 的元素;(2)数列{}n c 的前n 项和为1,1,n S c =且对任意正整数,n 点1(,)n n c S +在直线220x y +-=上,证明:数列{},n S W ∈并写出实数,a b 的取值范围;(3)设数列{},n d W ∈且对满足条件②中的实数b 的最小值0,b 都有*0().n d b n N ≠∈求证:数列{}n d 一定是单调递增数列.8、(闸北区2016届高三二模)已知数列{}n a ,n S 为其前n 项的和,满足(1)2n n n S +=. (1)求数列{}n a 的通项公式; (2)设数列1{}na 的前n 项和为n T ,数列{}n T 的前n 项和为n R , 求证:当2,*n n N ≥∈时1(1)n n R n T -=-; (3)已知当*n N ∈,且6n ≥时有1(1)()32n m m n -<+,其中1,2,,m n =,求满足34(2)(3)n a n nn n n a ++++=+的所有n 的值.。
2023年上海市普陀区中考二模数学卷含详解

试卷第1页,共6页九年级第二学期数学自适应练习1.本试卷共25题.2.试卷满分150分.考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上
写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.中国是最早认识正数和负数的国家,魏晋时期的数学家刘徽就提出了负数的概念,如果
将零下2℃记作2℃,那么3℃表示()A.零上3℃B.零下3℃C.零上5℃D.零下5℃2.下列算式中,计算结果为6a
的是()
A.33aaB.23aaC.32aD.122aa
3.已知函数ykx(k是常数,0k)的图像经过第一、三象限,下列说法中正确的是()
A.0kB.图像一定经过点(1,)kC.图像是双曲线D.y的值随x的值增大而减小
4.某城市30天的空气质量状况统计如下:
空气质量指数(W)406090110120140
天数2
5
10
ab1
根据表中的信息,下列有关该城市这30天的空气质量指数的统计量中,可以确定的量是()A.平均数B.众数C.中位数D.方差5.如果用两根长度相同的细竹签作对角线,制作一个四边形的风筝,那么做成的风筝形状不可能是()试卷第2页,共6页
A.矩形B.正方形C.等腰梯形D.直角梯形6.如图,ABC中,60BAC,BO、CO分别平分ABC、ACB,2AO,下面结
论中不一定正确的是()
A.120BOCB.30BAOC.3OBD.点O到直线BC的距离是1二、填空题:(本大题共12题,每题4分,满分48分)7.因式分解:24x__________.8.已知()23fxx,那么(3)f________.9.方程2xx的根是_______.10.如果关于x的方程230xxm有两个相等的实数根,那么m__________.11.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度的近视眼镜镜片的
上海市17区县2016届高三第二次模拟数学理试题分类汇编:立体几何概要

上海市17区县2016届高三第二次模拟数学理试题分类汇编:立体几何一、填空、选择题1、(崇明县2016届高三二模)已知圆锥的母线长为5cm ,侧面积为15πcm 2,则此圆锥的体积为cm 2.2、(奉贤区2016届高三二模)在棱长为1的正方体ABCD A B C D ''''-中,若点P 是棱上一点,则满足2PA PC '+=的点P 的个数_______.3、(虹口区2016届高三二模)已知A 、B 是球O 的球面上两点,90AOB ∠=,C 为该球面上的动点,若三棱锥ABC O -体积的最大值为323, 则球O 的表面积为__________4、(黄浦区2016届高三二模)已知一个凸多边形的平面展开图由两个正六边形和六个正方形构成,如右上图所示,若该凸多面体所有棱长均为1,则其体积V = 5、(静安区2016届高三二模)如图,正四棱锥P ABCD -的底面边长为23cm ,侧面积为 283cm ,则它的体积为 .6、(闵行区2016届高三二模)若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的 倍.7、(浦东新区2016届高三二模)已知四面体ABCD 中,2==CD AB ,E ,F 分别为BC ,AD 的中点,且异面直线AB 与CD 所成的角为3π,则EF =________. 8、(普陀区2016届高三二模)若a 、b 表示两条直线,α表示平面,下列命题中的真命题为( ) (A )若α⊥a ,b a ⊥,则α//b (B )若α//a ,b a ⊥,则α⊥b (C )若α⊥a ,α⊆b ,则b a ⊥ (D )若α//a ,α//b ,则b a //9、(徐汇、金山、松江区2016届高三二模).如图,圆锥形容器的高为,h 圆锥内水面的高为1,h 且11,3h h =若将圆锥倒置,水面高为2,h 则2h 等于------------------------------------------------( )(A )23h (B )1927h (C )363h (D )3193h10、(杨浦区2016届高三二模)已知命题:“若a ,b 为异面直线,平面α过直线a 且与直线b 平行,则直线b 与平面α的距离等于异面直线a ,b 之间的距离”为真命题.根据上述命题,若a ,b 为异面直线,且它们之间的距离为d ,则空间中与a ,b 均异面且距离也均为d 的直线c 的条数为( )A0条 B.1条 C.多于1条,但为有限条 D.无数多条 11、(闸北区2016届高三二模)已知,,,S A B C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB == 2BC =,则球O 的表面积等于( ) A .π4 B .π3 C .π2 D .π12、(长宁、青浦、宝山、嘉定四区2016届高三二模)下列命题正确的是( ). (A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α; (C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π; (D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .13、(闵行区2016届高三二模)如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线14、(浦东新区2016届高三二模)给出下列命题,其中正确的命题为( ) (A )若直线a 和b 共面,直线b 和c 共面,则a 和c 共面;(B )直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直;Q A DCBP (第20题图)(C )直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (D )异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直. 二、解答题1、(崇明县2016届高三二模)如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 是棱CD 的中点. (1)求证:11EF B D ∥; (2)求二面角1C EF A --的大小(结果用反三角函数值表示).2、(奉贤区2016届高三二模)面ABC 外的一点P ,,,AP AB AC 两两互相垂直,过AC 的中点D 作ED ⊥面ABC ,且1ED =,2PA =,2AC =,连,BP BE ,多面体B PADE -的体积是33. (1)画出面PBE 与面ABC 的交线,说明理由;(2)求面PBE 与面ABC 所成的锐二面角的大小.3、(虹口区2016届高三二模)如图,在四棱锥ABCD P -中,已知⊥PA 平面ABCD , 且四边形ABCD 为直角梯形,90ABC BAD ∠=∠=︒,2AB AD AP ===,1BC =.(1) 求点A 到平面PCD 的距离;(2) 若点Q 为线段BP 的中点,求直线CQ 与平面ADQ 所成角的大小.AC BC 1A 1B 1(第19题图)D 1 DFEADB CPE4、(黄浦区2016届高三二模)如图,小凳的凳面为圆形,凳脚为三根细钢管,考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点P 与凳面圆形的圆心O 的连线垂直于凳面和地面,且P 分两钢管上下两段的比值为0.618,三只凳脚与地面所成的角均为60°,若A 、B 、C 是凳面圆周的三等分点,18AB =厘米,求凳面的高度h 及三根细钢管的总长度(精确到0.01);5、(静安区2016届高三二模)设点,E F 分别是棱长为2的正方体1111ABCD A B C D -的棱1,AB AA 的中点.如图,以C 为坐标原点,射线CD 、CB 、1CC 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系.(1)求向量1D E 与1C F 的数量积;(2)若点,M N 分别是线段1D E 与线段1C F 上的点,问是否存在直线MN ,MN ⊥平面ABCD ?若存在,求点,M N 的坐标;若不存在,请说明理由EFB 1A 1C 1D 1BC DA6、(闵行区2016届高三二模)如图,在直角梯形PBCD 中,//PB DC ,DC BC ⊥,22PB BC CD ===,点A 是PB 的中点,现沿AD 将平面PAD 折起,设PAB θ∠=.(1)当θ为直角时,求异面直线PC 与BD 所成角的大小; (2)当θ为多少时,三棱锥P ABD -的体积为26.7、(浦东新区2016届高三二模)如图,在圆锥SO 中,AB 为底面圆O 的直径,点C 为»AB 的中点,SO AB =.(1)证明:AB ⊥平面SOC ;(2)若点D 为母线SC 的中点,求AD 与平面SOC 所成的角.(结果用反三角函数表示)8、(普陀区2016届高三二模)在正四棱柱1111D C B A ABCD -中,底面边长为1,B C 1与底面ABCD 所成的角的大小为2arctan ,如果平面11C BD 与底面ABCD 所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值)D .A 1CEABCD B 19、(徐汇、金山、松江区2016届高三二模)在直三棱柱111C B A ABC -中,1==AC AB ,090=∠BAC ,且异面直线B A 1与11C B 所成的角等于060,设a AA =1. (1)求a 的值;(2)求三棱锥BC A B 11-的体积.10、(杨浦区2016届高三二模)如图,底面是直角三角形的直三棱柱111ABC A B C -中,1112AC BC AA ===,D 是棱1AA 上的动点. (1)证明:1DC BC ⊥; (2)求三棱锥1C BDC -的体积.11、(闸北区2016届高三二模)在长方体1111ABCD A BC D -中,2AB =,1AD =,11AA =,点E 在棱AB 上移动.(1)探求AE 多长时,直线1D E 与平面11AA D D成45角;(2)点E 移动为棱AB 中点时,求点E 到平面11A DC 的距离.1A 1B 1CA BC12、(长宁、青浦、宝山、嘉定四区2016届高三二模)如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA的中点. (1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角 函数值表示).参考答案一、填空、选择题1、12π2、23、64π4、3325、4106、37、1 或38、C9、D 10、D 11、A 12、D 13、B 14、D二、解答题1、可得有关点的坐标为 11111(0,0,1),(1,1,1),(,1,0),(0,,0),(0,1,1)22D BEF C 11(,,0)22EF =-- ,11(1,1,0)B D =--......................4分所以112B D EF =...............................5分 所以11EF B D ∥...............................6分 (2)设1(,,)n u v w = 是平面1C EF 的一个法向量. 因为111,n EF n FC ⊥⊥所以1111110,0222n EF u v n FC v w ⋅=--=⋅=+=解得,2u v v w =-=- .取1w = ,得1(2,2,1)n =-.............................9分 因为1DD ABCD ⊥平面,所以平面ABCD 的一个法向量是2(0,0,1)n = .........10分 设1n 与2n 的夹角为α ,则12121cos 3||||n n n n α⋅==⋅ .......................11分AC BC 1A 1B 1(第19题图)D 1D FExyzAB C A 1B 1C 1D结合图形,可判别得二面角1C EF A --是钝角,其大小为1arccos3π- ........12分 2、(1)根据条件知:PE 与AD 交点恰好是C 1分 ,C PE C ∈∴∈面PBE ,,C AC C ∈∴∈面ABC 2分B ∈面PBE ,B ∈面ABC 3分 面PBE 与面ABC 的交线BC 5分 (2)(理) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯= 9分 233BA ∴=10分建立空间直角坐标系,设平面的法向量是()1,,n x y z23,0,03B ⎛⎫ ⎪ ⎪⎝⎭,()0,2,0C ()0,1,0D ()0,1,1E ()0,0,2P 23,0,23BP ⎛⎫=- ⎪ ⎪⎝⎭,23,1,13BE ⎛⎫=- ⎪ ⎪⎝⎭123203n BP x z ⋅=-+=12303n BE x y z ⋅=-++=()13,1,1n ∴= 11分面ABC 的法向量()20,0,1n =1212cos n n n n θ⋅==⋅1555= 12分 所以面PBE 与面ABC 所成的锐二面角大小5arccos513分 注:若作出二面角得2分,计算再3分(2)(文) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分 多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯= 9分 233BA ∴=10分 连接AEAE 是BE 在面EDAP 的射影BEA ∠是BE 与面PADE 所成的线面角. 11分计算2AE =,2363tan 32BAE ∠== 12分ADBCPEADB C P Ez xyQA D CBP (第20题解答图)zyx BEA ∠是BE 与面PADE 所成的线面角6arctan3. 13分3、(理)解:(1)以},,{AP AD AB 为正交基底建立空间 直角坐标系xyz A -,则相关点的坐标为B (2,0,0),(2,1,0),(0,2,0),(0,0,2).C D P ……2分设平面PCD 的法向量为(,,),n x y z =由(2,1,0),DC =-(0,2,2),DP =-(0,2,0).DA =-则202,2.220n DC x y y x z x n DPy z ìïì?-==ïïïÞ眄镲=?-+=ïîïî 令1x =,则(1,2,2)n =. ……5分所以点A 到平面PCD 的距离为:(0,2,0)(1,2,2)4.(1,2,2)3DA n d n×-?=== ……7分(2) 由条件,得(1,0,1),Q =(0,2,0),(1,0,1),AD AQ ==且(1,1,1).CQ =-- 设平面ADQ 的法向量为0000(,,),n x y z =则00000000200,.0n ADy y z x n AQx z ìïì?==ïï镲Þ眄镲=-?+=ïïîî令01x =,则0(1,0,1)n =-. ……10分设直线CQ 与平面ADQ 所成角为,θ则00026sin cos ,.332CQ n CQ n CQ n θ⋅=<>===⋅故直线CQ 与平面ADQ 所成角的大小为6sin.3arc ……14分 注:第(1)小题也可用等积法来做.4、[解] 联结PO ,AO ,由题意,PO ⊥平面ABC ,因为凳面与地面平行, 所以PAO ∠就是PA 与平面ABC 所成的角,即60PAO ∠=︒.(2分) 在等边三角形ABC 中,18AB =,得63AO =,(4分) 在直角三角形PAO 中,318OP AO ==,(6分)由0.618OPh OP=-,解得47.13h ≈厘米.(9分)三根细钢管的总长度3163.25sin60h≈︒厘米.(12分)5、(1)在给定空间直角坐标系中,相关点及向量坐标为11(2,0,2),(1,2,0),(1,2,2)D E D E =-- …………2分PA B C D xy z PA BCD11(0,0,2),(2,2,1),(2,2,1)C F C F =- …………4分所以111222(2)(1)4D E C F ⋅=-⨯+⨯+-⨯-=。
2024年上海市普陀区初三二模数学试卷

1、在直角三角形ABC中,若∠C=90°,AC=3,BC=4,则AB的长度为A. 3B. 4C. 5D. 6解析:根据勾股定理,在直角三角形中,直角边的平方和等于斜边的平方。
即AB2 = AC2 + BC2。
代入AC=3,BC=4,计算得AB2 = 32 + 42 = 9 + 16 = 25,所以AB = √25 = 5。
(答案:C)2、下列哪个数不是有理数?A. 1/2B. √2C. -3D. 0.75解析:有理数是可以表示为两个整数之比的数。
A选项1/2是两个整数1和2的比,C选项-3是整数,D选项0.75可以表示为3/4,都是有理数。
而B选项√2无法表示为两个整数的比,是无理数。
(答案:B)3、若关于x的一元二次方程x2 - 2x - k = 0有两个相等的实数根,则k的值为A. -1B. 0C. 1D. 2解析:一元二次方程有两个相等的实数根,意味着判别式Δ=0。
对于方程x2 - 2x - k = 0,其判别式为Δ = (-2)2 - 41(-k) = 4 + 4k。
令Δ=0,解得k = -1。
(答案:A)4、在平行四边形ABCD中,若∠A=120°,AB=2,AD=3,则BD的长度范围是A. (1, 5)B. [1, 5]C. (2, 4)D. [2, 4]解析:在平行四边形中,对角线BD将平行四边形分为两个三角形。
利用余弦定理,在△ABD中,BD2 = AB2 + AD2 - 2ABADcosA。
代入AB=2,AD=3,∠A=120°,计算得BD2 = 4 + 9 - 223(-1/2) = 19 + 6 = 25 - 9 = 16,所以BD = 4为最大值,当BD与AD或AB共线时,BD取最小值2,因此BD的长度范围是[2, 4]。
(答案:D)5、若点P(m, n)在直线y = 2x - 1上,且点P到x轴的距离为3,则m的值为A. 1B. 2C. -1或2D. 1或-2解析:点P到x轴的距离等于其纵坐标n的绝对值,即|n| = 3,所以n = 3或n = -3。
2016年上海市中考二模:压强计算题专题整理
类型三、固体投放液体
静安 21.如图 11 所示,圆柱体甲和薄壁圆柱形容器乙置于水平地面。甲的质量为 8 千克、底面 积为 4×10-2 米 2。乙的质量为 4 千克、底面积为 5×10-2 米 2。乙容器中装有质量为 8 千克的水。 ① 求乙内水的体积 V 水。 ② 求乙内水面下 0.1 米深处的压强 p 水。
Comment [z6]: Comment [z7]: ①1960Pa ②
0.5×103Kg/m3 ③1.5kg
黄浦 21、如图 10 所示,薄壁圆柱形容器盛有质量为 3 千克的水,置于水平面上。 ①求容器内水的体积 V 水。 ②求水面下 0.2 米深度处水产生的压强 p 水。 ③现将一个边长为 a 的实心均匀正方体放入容器内的水中后(水未溢出),容器对 水平面的压强增加量恰好等于水对容器底部的压强增加量,求该正方体密度 ρ 的范围。
甲 图 11 乙
③ 将甲浸没在乙容器的水中后(无水溢出), 求乙容器对水平地面的压强 p 乙。
Comment [z5]: ③ p 乙=F 乙 /S=G/S=mg/S =(8+4+8)千克× 9.8 牛/千克/5×10-2 米2 =3920 帕
③Δp 容=Δp 水 ΔF 容/S=水 gh mg /S=水 g(V 排/ S) m=水 V 排 由于 V 排≤V 物 因此≤水
p´A、p´B,请通过计算比较它们的大小关系及其对应的 V 的取值范围。
图 11
长宁 22.如图 13 所示,实心正方体甲和轻质柱形容器乙放在水平地 面上。正方体甲的边长为 0.1 米,密度为 2×103 千克/米 3;容器乙的底
甲
图 13
乙
面积为 1102 米 2,内盛有 0.15 米深的水,且容器乙足够高。求: ①实心正方体甲的质量; ②水对容器乙底部的压强; ③现从正方体甲中挖出一个高度为 0.1 米,底面积为 S 的柱体,并将该柱体放入容器乙中,请通 过计算比较正方体甲剩余部分对地面的压强 p 甲'和放入柱状物体后水对容器乙底部的压强 p 乙'的大 小关系及其对应 S 的取值范围。
真题汇总:2022年上海市普陀区中考数学第二次模拟试题(含答案详解)
2022年上海市普陀区中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若菱形的周长为8,高为2,则菱形的面积为( ) A .2 B .4 C .8 D .16 2、下列判断错误的是( ) A .若a b =,则33a b -=- B .若a b c c =,则a b = C .若2x =,则22x x =D .若22ac bc =,则a b = 3、下列计算错误的是( ) A2=- B2 C2= D.2(2= 4、若3a =,1=b ,且a ,b 同号,则a b +的值为( )A .4B .-4C .2或-2D .4或-4 5、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( ) A .11.5×108B .1.15×108C .11.5×109D .1.15×109 ·线○封○密○外6、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A .增加10%B .增加4%C .减少4%D .大小不变7、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )A .20228B .10128C .5018D .25098、若关于x 的不等式组231232x m x x-⎧≤⎪⎨⎪->-⎩无解,则m 的取值范围是( )A .1mB .m 1≥C .1m <D .1m9、已知关于x 的不等式组15x a x b-≥⎧⎨+≤⎩的解集是3≤x ≤4,则a +b 的值为( ) A .5 B .8 C .11 D .910、甲、乙两地相距s 千来,汽车从甲地匀速行驶到乙地,行驶的时间t (小时)关于行驶速度v (千米时)的函数图像是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,联结BD ,如果∠DAC =∠DBA ,那么∠BAC =___度.2、中午放学后,有a 个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.3、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________4、小河的两条河岸线a ∥b ,在河岸线a 的同侧有A 、B 两个村庄,考虑到施工安全,供水部门计划在岸线b 上寻找一处点Q 建设一座水泵站,并铺设水管PQ ,并经由PA 、PB 跨河向两村供水,其中QP ⊥a 于点P .为了节约经费,聪明的建设者们已将水泵站Q 点定好了如图位置(仅为示意图),能使三条水管长PQ PA PB ++的和最小.已知 1.6km PA =, 3.2km PB =,0.1km PQ =,在A 村看点P 位置是南偏西30°,那么在A 村看B 村的位置是_________.5、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____. 三、解答题(5小题,每小题10分,共计50分) 1、观察以下等式: ()()111122-⨯=-+,()()222233-⨯=-+,()()333344-⨯=-+,()()444455-⨯=-+, (1)依此规律进行下去,第5个等式为______,猜想第n 个等式为______; (2)请利用分式的运算证明你的猜想.·线○封○密·○外2、已知顶点为D 的抛物线()()230y a x a =-≠交y 轴于点()0,3C ,且与直线l 交于不同的两点A 、B (A 、B 不与点D 重合).(1)求抛物线的解析式;(2)若90ADB ∠=︒,①试说明:直线l 必过定点;②过点D 作DF l ⊥,垂足为点F ,求点C 到点F 的最短距离.3、某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按50%和40%的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?4、点C 在直线AB 上,点D 为AC 的中点,如果CB =32CD ,AB =10.5cm .求线段BC 的长度.5、已知:如图,在ABC 中,AD 是边BC 边上的高,CE 是中线,F 是CE 的中点,DF CE ⊥.求证:12CD AB =.-参考答案-一、单选题1、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B .【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.2、D 【分析】 根据等式的性质解答. 【详解】解:A . 若a b =,则33a b -=-,故该项不符合题意;B. 若a b c c =,则a b =,故该项不符合题意; C . 若2x =,则22x x =,故该项不符合题意; D . 若22ac bc =,则a b =(20c ≠),故该项符合题意; 故选:D . 【点睛】 此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立. 3、A 【分析】 ·线○封○密○外直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可.【详解】解:A2,故此选项计算错误,符合题意;B2,故此选项计算正确,不合题意;C2=,故此选项计算正确,不合题意;D.2=,故此选项计算正确,不合题意;(2故选:A.【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.4、D【分析】根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.【详解】解:∵|a|=3,|b|=1,∴a=±3,b=±1,∵a,b同号,∴当a=3,b=1时,a+b=4;当a=-3,b=-1时,a+b=-4;故选:D.【点睛】本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.5、D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:11.5亿=1150000000=1.5×109. 故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 6、B 【分析】 设长方形草地的长为x ,宽为y ,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案. 【详解】 设长方形草地的长为x ,宽为y ,则其面积为xy ;增加后长为(1+30%)x ,减少后的宽为(1-20%)y ,此时的面积为(1+30%)x ×(1-20%)y =1.04xy ,1.04xy −xy =0.04xy ,0.04xy ÷xy ×100%=4%.即这块长方形草地的面积比原来增加了4%. 故选:B 【点睛】 本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键. 7、B ·线○封○密○外根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.【详解】解:∵第一次操作增加数字:-2,7,第二次操作增加数字:5,2,-11,9,∴第一次操作增加7-2=5,第二次操作增加5+2-11+9=5,即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.故选:B .【点睛】此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.8、D【分析】解两个不等式,再根据“大大小小找不着”可得m 的取值范围.【详解】 解:解不等式23x m -≤得:32x m ≤+, 解不等式1232x x ->-得:5x >,∵不等式组无解,∴325m +≤, 解得:1m , 故选:D .·线此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.9、C【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10、B【分析】直接根据题意得出函数关系式,进而得出函数图象.【详解】解:由题意可得:t=sv,是反比例函数,故只有选项B符合题意.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.二、填空题1、36【分析】设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.【详解】解:设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故答案为:36.【点睛】本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等. 2、29 【分析】 设每分钟来一食堂就餐的人数为x 人,食堂每个窗口阿姨配餐的速度为每分钟y 人,则每分钟来二食堂就餐的人数为2x 人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x ,y ,a 的三元一次方程组,解之即可用含y 的代数式表示出a ,x ,设设两个食堂同时一共开放m 个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论. 【详解】 解:设每分钟来一食堂就餐的人数为x 人,食堂每个窗口阿姨配餐的速度为每分钟y 人,则每分钟来二食堂就餐的人数为2x 人, 依题意得:10101221421420a x y a x y +=⨯⎧⎨+⨯=⨯⎩, ∴570x y a y =⎧⎨=⎩, 设两个食堂同时一共开放m 个配餐窗口, 依题意得:15my ≥a +2a +15×(x +2x ), 解得:m ≥29. ·线○封○密○外故答案为:29.【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.3、24【分析】分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.【详解】当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.故答案为:24【点睛】本题考查了等腰三角形的性质及周长,要注意分类讨论.4、北偏西60°【分析】根据题意作出图形,取BP 的中点D ,连接AD ,过点A 作AC a ⊥,过点B 作BE AC ⊥,交CA 的延长线于点E ,作A 关于a 的对称点A ',平移A P '至A Q ''处,则A Q PQ PB ''++最小,即三条水管长PQ PA PB ++的和最小,进而找到B 村的位置,根据方位角进行判断即可.【详解】解:如图,取BP 的中点D ,连接AD ,过点A 作AC a ⊥,过点B 作BE AC ⊥,交CA 的延长线于点E作A 关于a 的对称点A ',平移A P '至A Q ''处,则A Q PQ PB ''++最小,即三条水管长PQ PA PB ++的和最小,此时,,B P A '三点共线, ∴B 点在A P '的延长线上, 在A 村看点P 位置是南偏西30°, 30CAP ∴∠=︒ 60APC ∴∠=︒,2120APA APC '∠=∠=︒ 60APB ∴∠=︒ 1.6, 3.2AP PB == 1.6PD ∴= AP PD ∴= APD ∴是等边三角形 60DAP APC ∴∠=∠=︒, 1.6AD DP PA === DA a ∴∥ 1 1.62BD BP ∴== DA DB ∴= ·线○封○密·○外60ADP ∠=︒120BDA ∴∠=︒30DAB DBA ∴∠=∠=︒9060EAB BAD ∴∠=︒-∠=︒即在A 村看B 村的位置是北偏西60°故答案为:北偏西60°【点睛】本题考查了轴对称的性质,方位角的计算,等边三角形的性质与判定,等边对等角,根据题意作出图形是解题的关键.5、-3【分析】220340m n ++=⎧⎨+-=⎩求解m n ,的值,然后代入求解即可. 【详解】解:由题意知220340m n ++=⎧⎨+-=⎩解得41m n =-=,∴3m n +=-故答案为:3-.【点睛】本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.三、解答题1、(1)55(5)(5)66-⨯=-+,()()11n n n n n n -⨯=-+++ (2)见解析 【分析】 (1)根据题目中给出的等式,即可写出第5个等式,并写出第n 的等式; (2)根据分式的乘法和加法可以证明猜想的正确性. (1) 解:由题目中的等式可得,第5个等式为:55(5)(5)66-⨯=-+,第n 个等式是()()11n n n n n n -⨯=-+++, 故答案为:55(5)(5)66-⨯=-+,()()11n n n n n n -⨯=-+++; (2) 证明:左边21n n -=+, 右边22()(1)111n n n n n n n n n n -++--+-===+++, 左边=右边, 故猜想()()11n nn n n n -⨯=-+++正确. 【点睛】 本题考查分式的混合运算、数字的变化类,解答本题的关键是明确题意,写出相应的等式,并证明猜想的正确性.2、(1)21233y x x =-+·线○封○密○外(2【分析】 (1)将点()0,3C 代入()()230y a x a =-≠即可求得a 的值,继而求得二次函数的解析式; (2)①设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x NF x =-=-,联立直线解析式和抛物线解析式,根据根与系数的关系求得2112,x x x x +进而求得12y y ,证明AMD DNB ∽,根据相似比求得12y y ,进而根据两个表达式相等从而得出b 与k 的关系式,代入直线解析式,根据直线过定点与k 无关,进而求得定点坐标;②设P (3,3),由①可知l 经过点P ,则3DP =, 90DFP ∠=︒,进而根据90°圆周角所对的弦是直径,继而判断F 的轨迹是以DP 的中点G 为圆心,PD 为直径的圆,根据点与圆的位置即可求得CF 最小值.(1)解:∵抛物线()()230y a x a =-≠交y 轴于点()0,3C , ∴39a = 解得13a = ∴抛物线为()221132333y x x x =-=-+ (2)①如图,过点,A B 分别作x 轴的垂线,垂足分别为,M N ,设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x ND x =-=-,则,A B 的坐标即为21233y kx b y x x =+⎧⎪⎨=-+⎪⎩的解 即23(2)930x k x b -++-= ∴()()2236493936120k b k k b ∆=+--=++>, 121236,93x x k x x b +=+=- ()()2212121212()y y kx b kx b k x x kb x x b ∴=++=+++ ()()229336k b kb k b =-+++ 2296k kb b =++ ()23k b =+ 90,ADB AM x ∠=︒⊥轴,BN x ⊥轴 90AMD BND ∴∠=∠=︒ ADM MAD ADM BDN ∴∠+∠=∠+∠ MAD NDB ∴∠=∠ AMD DNB ∴∽ AM MD DN NB ∴= 112233y x x y -∴=- ()()121233y y x x ∴=--()121239x x x x =+-- ·线○封○密○外()()336(93)99333k b k b k b =+---=+=+∴()23k b +()33k b =+ ()()3330k b k b ∴++-=∴30k b +=或330k b +-=3b k ∴=-或33b k =-y kx b =+当3b k =-时,3(3)y kx k k x =-=-则l 过定点()3,0A 、B 不与点D 重合则此情况舍去;当33b k =-时,33(3)3y kx b kx k k x =+=+-=-+即过定点()33,l ∴必过定点(3,3)②如图,设P (3,3),DF l ⊥,90DFP ∠=︒,3DP =F ∴在以DP 的中点G 为圆心,PD 为直径的圆上运动 3(3,0),(3,3),(3,)2D P G ∴PG =1322DP =CG ∴==CF CG FG ∴≥-=CF ∴【点睛】 本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键. 3、 (1)该店买卖这两件商品不可能盈利260元,原因见解析 (2)甲商品的原进价为300元,乙商品的原进价为200元 【分析】(1)利用获得的总利润=两件商品的进价之和×50%,可求出两件商品均按50%的利润销售可获得的利润,由该值小于260即可得出结论;(2)设甲商品的原进价为x 元,则乙商品的原进价为(500-x )元,根据某顾客按八折购买共付款584元,即可得出关于x 的一元一次方程,解之即可得出结论. (1)50050%250⨯=(元),250260<,∴该店买卖这两件商品不可能盈利260元. ·线○封○密○外(2)设甲商品的原进价为x 元,则乙商品的原进价为(500)x -元,依题意得:()()()80%150%140%500584x x ⎡⎤⨯+++-=⎣⎦,解得:300x =,500200x ∴-=.答:甲商品的原进价为300元,乙商品的原进价为200元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 4、4.5cm【分析】根据题意画出图形,由线段中点定义得到AC=2CD ,进而得到3210.52CD CD +=,求出CD ,AC ,即可求出段BC 的长度.【详解】解:如图,∵点D 为AC 的中点,∴AC=2CD ,∵AB =10.5cm ,CB =32CD ,AC+BC=AB , ∴3210.52CD CD +=,解得CD =3cm ,∴AC=6cm ,∴BC=AB-AC =4.5cm .. 【点睛】此题考查了线段的和差计算,正确掌握线段中点定义,依据题意作出图形辅助解决问题是解题的关键.5、见详解. 【分析】 连接DE ,由中垂线的性质可得DE =DC ,再由直角三角形斜边上的中线等于斜边的一半得到DE =BE ,进而得到CD 12AB . 【详解】 证明:如图,连接DE , ∵F 是CE 的中点,DF ⊥CE , ∴DF 垂直平分CE , ∴DE =DC ∵AD ⊥BC ,CE 是边AB 上的中线, ∴DE 是Rt△ABD 斜边上的中线,即DE =BE =12AB , ∴CD =DE =12AB . 【点睛】·线○封○密○外本题考查了中垂线的性质,直角三角形斜边上的中线的性质,推出DE=CD是解决本题的关键.。
2016年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(理科)含详解
2016年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(理科)一、填空题1.(5分)设集合A={x||x|<2,x∈R},B={x|x2﹣4x+3≥0,x∈R},则A∩B=.2.(5分)已知i为虚数单位,复数z满足=i,则|z|=.3.(5分)设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是.4.(5分)计算:=.5.(5分)在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为.6.(5分)已知sin2θ+sinθ=0,θ∈(,π),则tan2θ=.7.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f (x)≤0的解集是.8.(5分)在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px(p>0)的焦点,则抛物线C的方程为.9.(5分)直线(t为参数)与曲线(θ为参数)的公共点的坐标为.10.(5分)记的展开式中第m项的系数为b m,若b3=2b4,则n=.11.(5分)从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点所构成的三角形的面积,则其数学期望Eξ=.12.(5分)若数列{a n}是正项数列,且++…+=n2+3n(n∈N*),则++…+=.13.(5分)甲、乙两人同时参加一次数学测试,共10道选择题,每题均有四个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有试题,经比较,他们只有2道题的选项不同,如果甲乙的最终得分的和为54分,那么乙的所有可能的得分值组成的集合为.14.(5分)已知a>0,函数f(x)=x﹣(x∈[1,2])的图象的两个端点分别为A、B,设M是函数f(x)图象上任意一点,过M作垂直于x轴的直线l,且l与线段AB交于点N,若|MN|≤1恒成立,则a的最大值是.二、选择题15.(5分)sinx=0是cosx=1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(5分)下列命题正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l217.(5分)已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1B.2C.D.18.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4取值范围是()A.(60,96)B.(45,72)C.(30,48)D.(15,24)三、解答题19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点(1)求证:BC⊥平面ACC1A1;(2)求二面角B1﹣CD﹣C1的大小(结果用反三角函数值表示)20.(12分)已知函数f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1(ω>0),x∈R,且函数的最小正周期为π:(1)求函数f(x)的解析式;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,•=,且a+c=4,试求b的值.21.(12分)定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f (x)的上界.(1)设f(x)=,判断f(x)在[﹣,]上是否有有界函数,若是,说明理由,并写出f(x)上所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.22.(12分)如图,设F是椭圆+=1的下焦点,直线y=kx﹣4(k>0)与椭圆相交于A、B两点,与y轴交于点P(1)若=,求k的值;(2)求证:∠AFP=∠BF0;(3)求面积△ABF的最大值.23.(12分)已知正项数列{a n},{b n}满足:对任意正整数n,都有a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,且a1=10,a2=15.(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列{a n},{b n}的通项公式;(Ⅲ)设,如果对任意正整数n,不等式恒成立,求实数a的取值范围.2016年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(理科)参考答案与试题解析一、填空题1.(5分)设集合A={x||x|<2,x∈R},B={x|x2﹣4x+3≥0,x∈R},则A∩B=(﹣2,1] .【考点】1E:交集及其运算.【专题】35:转化思想;4O:定义法;5J:集合.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:A={x||x|<2,x∈R}={x|﹣2<x<2},B={x|x2﹣4x+3≥0,x∈R}={x|x≥3或x≤1},则A∩B={x|﹣2<x≤1},故答案为:(﹣2,1].【点评】本题主要考查集合的基本运算,求出集合的等价条件,根据集合的基本运算实是解决本题的关键.2.(5分)已知i为虚数单位,复数z满足=i,则|z|=1.【考点】A5:复数的运算.【专题】35:转化思想;49:综合法;5N:数系的扩充和复数.【分析】设出z=a+bi,得到1﹣a﹣bi=﹣b+(a+1)i,根据系数相等得到关于a,b的方程组,解出a,b的值,求出z,从而求出z的模.【解答】解:设z=a+bi,则==i,∴1﹣a﹣bi=﹣b+(a+1)i,∴,解得,故z=﹣i,|z|=1,故答案为:1.【点评】本题考查了复数求模问题,考查解方程组问题以及对应思想,是一道基础题.3.(5分)设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是(3,1).【考点】4R:反函数.【专题】31:数形结合;35:转化思想;4A:数学模型法;51:函数的性质及应用.【分析】由于函数f(x)=a x﹣1+2经过定点(1,3),再利用反函数的性质即可得出.【解答】解:∵函数f(x)=a x﹣1+2经过定点(1,3),∴函数f(x)的反函数的图象经过定点P(3,1),故答案为:(3,1).【点评】本题考查了反函数的性质,考查了数形结合方法、推理能力与计算能力,属于中档题.4.(5分)计算:=.【考点】6F:极限及其运算.【专题】35:转化思想;3A:极限思想;49:综合法;51:函数的性质及应用.【分析】先利用排列组合公式,将原式化简成的形式,再求极限.【解答】解:===.故答案为:.【点评】本题考查通过化简求极限值,属于基础题.5.(5分)在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为.【考点】6M:用定积分求简单几何体的体积.【专题】31:数形结合;35:转化思想;49:综合法;51:函数的性质及应用.【分析】由题意此几何体的体积可以看作是:V=,求出积分即得所求体积,方法二由题意可得绕y轴旋转,形成的是以1为半径,2为高的圆锥,根据圆锥的体积公式,即可求得所得几何体的体积.【解答】解:由题意可知:V=,∴V=π(y3﹣),=.方法二:由题意可知绕y轴旋转,形成的是以1为半径,2为高的圆锥,则V=•π×12×2=,故答案为.【点评】本题考查用定积分求简单几何体的体积,求解的关键是找出被积函数来及积分区间,属于基础题.6.(5分)已知sin2θ+sinθ=0,θ∈(,π),则tan2θ=.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.【分析】由已知等式化简可得sinθ(2cosθ+1)=0,结合范围θ∈(,π),解得cosθ=﹣,利用同角三角函数基本关系式可求tanθ,利用二倍角的正切函数公式可求tan2θ的值.【解答】解:∵sin2θ+sinθ=0,⇒2sinθcosθ+sinθ=0,⇒sinθ(2cosθ+1)=0,∵θ∈(,π),sinθ≠0,∴2cosθ+1=0,解得:cosθ=﹣,∴tanθ=﹣=﹣,∴tan2θ==.故答案为:.【点评】本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f (x)≤0的解集是[﹣2,2] .【考点】3K:函数奇偶性的性质与判断.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】根据条件判断函数的单调性和函数的零点,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:当x≥0时,由f(x)=2x﹣4=0得x=2,且当x≥0时,函数f(x)为增函数,∵f(x)是偶函数,∴不等式f(x)≤0等价为f(|x|)≤f(2),即|x|≤2,即﹣2≤x≤2,即不等式的解集为[﹣2,2],故答案为:[﹣2,2].【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键.8.(5分)在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px(p>0)的焦点,则抛物线C的方程为y2=4x.【考点】K8:抛物线的性质.【专题】33:函数思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】先求出线段OA的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到抛物线方程.【解答】解:∵点A(1,1),依题意我们容易求得直线的方程为x+y﹣1=0,把焦点坐标(,0)代入可求得焦参数p=2,从而得到抛物线C的方程为:y2=4x.故答案为:y2=4x.【点评】本题主要考查抛物线的基本性质.基本性质的熟练掌握是解答正确的关键.9.(5分)直线(t为参数)与曲线(θ为参数)的公共点的坐标为(0,1),(,﹣2).【考点】QH:参数方程化成普通方程.【专题】35:转化思想;4Q:参数法;5S:坐标系和参数方程.【分析】消去参数,点到直线和曲线的普通方程,联立方程组解方程即可.【解答】解:先求参数t得直线的普通方程为2x+y=1,即y=1﹣2x消去参数θ得曲线的普通方程为y2=1+2x,将y=1﹣2x代入y2=1+2x,得(1﹣2x)2=1+2x,即1﹣4x+4x2=1+2x,则4x2=6x,得x=0或x=,当x=0时,y=1,当x=时,y=1﹣2×=1﹣3=﹣2,即公共点到坐标为(0,1),(,﹣2)故答案为:(0,1),(,﹣2)【点评】本题主要考查参数方程和普通方程的转化,利用消去参数法是解决本题的关键.10.(5分)记的展开式中第m项的系数为b m,若b3=2b4,则n=5.【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,结合二项式定理可得,2n﹣2•C n2=2×2n﹣3•C n3,解可得答案.【解答】解:根据二项式定理,可得,根据题意,可得2n﹣2•C n2=2×2n﹣3•C n3,解得n=5,故答案为5.【点评】本题考查二项式定理,要区分二项式系数与系数两个不同的概念.11.(5分)从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点所构成的三角形的面积,则其数学期望Eξ=.【考点】CH:离散型随机变量的期望与方差.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】所有棱长均为2的正四棱锥S﹣ABCD中,ABCD是边长为2的正方形,推导出ξ的可能取值为,分别求出相应的概率,由此能求出其数学期望Eξ.【解答】解:如图所有棱长均为2的正四棱锥S﹣ABCD中,ABCD是边长为2的正方形,SO⊥底面ABCD,SO=AO=,S△SAB=S△SBC=S△SCD=S△SAD==,S△ABD=S△BCD=S△ADC=S△ABD==2,S△SBD=S△SAC==2,∴ξ的可能取值为,P(ξ=)=,P(ξ=2)=,Eξ==.故答案为:.【点评】本题考查离散型随机变量的数学期望的求法,是中档题,巧妙地把立体几何和概率有机地结合在一起,是一道难得的好题.12.(5分)若数列{a n}是正项数列,且++…+=n2+3n(n∈N*),则++…+=2n2+6n.【考点】8E:数列的求和.【专题】11:计算题.【分析】根据题意先可求的a1,进而根据题设中的数列递推式求得++…+=(n﹣1)2+3(n﹣1)与已知式相减即可求得数列{a n}的通项公式,进而求得数列{}的通项公式,可知是等差数列,进而根据等差数列的求和公式求得答案.【解答】解:令n=1,得=4,∴a1=16.当n≥2时,++…+=(n﹣1)2+3(n﹣1).与已知式相减,得=(n2+3n)﹣(n﹣1)2﹣3(n﹣1)=2n+2,∴a n=4(n+1)2,n=1时,a1适合a n.∴a n=4(n+1)2,∴=4n+4,∴++…+==2n2+6n.故答案为2n2+6n【点评】本题主要考查了利用数列递推式求数列的前n项和.解题的关键是求得数列{a n}的通项公式.13.(5分)甲、乙两人同时参加一次数学测试,共10道选择题,每题均有四个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有试题,经比较,他们只有2道题的选项不同,如果甲乙的最终得分的和为54分,那么乙的所有可能的得分值组成的集合为{24,27,30} .【考点】15:集合的表示法;D3:计数原理的应用.【专题】11:计算题;32:分类讨论;4O:定义法;5O:排列组合.【分析】以甲全对,乙全对,甲乙各错一道,进行分析即可求出答案.【解答】解:若甲全对,则乙的得分为54﹣3×10=24,则此时乙做对了8道题,则甲乙恰有2道题的选项不同,若乙全对,则甲的得分为54﹣3×10=24,则此时甲做对了8道题,则甲乙恰有2道题的选项不同,若甲做错了一道,则乙的得分为54﹣3×9=27,则此时乙做对了9道题,即甲乙错的题目不是同一道题,故乙的得分为{24,27,30},故答案为{24,27,30}.【点评】本题考查了集合的性质、分类讨论方法,考查了推理能力与计算能力,属于中档题.14.(5分)已知a>0,函数f(x)=x﹣(x∈[1,2])的图象的两个端点分别为A、B,设M是函数f(x)图象上任意一点,过M作垂直于x轴的直线l,且l与线段AB交于点N,若|MN|≤1恒成立,则a的最大值是6+4.【考点】36:函数解析式的求解及常用方法.【专题】31:数形结合;33:函数思想;39:运动思想;4M:构造法;51:函数的性质及应用.【分析】由A、B的坐标可以将直线l的方程找到,通过M点坐标可以得到N的坐标,将其纵坐标做差可以得到关于a的不等式,通过求范围可以将绝对值去掉,由基本不等式可以得到a的最大值.【解答】解:∵f(x)=x﹣(x∈[1,2]),a>0,∴A(1,1﹣a),B(2,2﹣)∴直线l的方程为y=(1+)(x﹣1)+1﹣a设M(t,t﹣)∴N(t,(1+)(t﹣1)+1﹣a)∵|MN|≤1恒成立∴|(1+)(t﹣1)+1﹣a﹣(t﹣)|≤1恒成立∴|a|≤1∵g(t)=t2﹣3t+2,在t∈[1,2]上小于等于0恒成立∴﹣a≤1①t=1或t=2时,0≤1恒成立.②t∈(1,2)时,a≤=∴由基本不等式得:a≤=4+6此时t=∴a的最大值为6+4【点评】本题考查通过两点坐标求直线l方程,去绝对值,以及由基本不等式确定a的范围.二、选择题15.(5分)sinx=0是cosx=1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据充分条件和必要条件的定义进行推理即可.【解答】解:若sinx=0,则x=kπ,k∈Z,此时cosx=1或cosx=﹣1,即充分性不成立,若cosx=1,则x=2kπ,k∈Z,此时sinx=0,即必要性成立,故sinx=0是cosx=1的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据三角函数之间的关系是解决本题的关键.16.(5分)下列命题正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l2【考点】LP:空间中直线与平面之间的位置关系.【专题】31:数形结合;48:分析法;5F:空间位置关系与距离.【分析】根据各选项条件举出反例.【解答】解:对于A,若直线l1∥平面α,直线l2∥平面α,则l1与l2可能平行,可能相交,也可能异面,故A错误.对于B,若直线l与平面α相交于O点,在交点两侧各取A,B两点使得OA=OB,则A,B到平面α的距离相等,但直线l与α不平行,故B错误.对于C,当直线l⊂α或l∥α时,直线l与平面α所成的角为0,当l⊥α时,直线l与平面α所成的角为,故C错误.对于D,由定理“垂直于同一个平面的两条直线平行“可知D正确.故选:D.【点评】本题考查了了空间线面位置关系的判断,举出反例是解题关键,属于中档题.17.(5分)已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1B.2C.D.【考点】9O:平面向量数量积的性质及其运算.【专题】35:转化思想;41:向量法;5A:平面向量及应用.【分析】由向量垂直的条件可得•=0,运用向量的平方即为模的平方,可得|+|=,再化简运用向量的数量积的定义,结合余弦函数的值域,即可得到所求最大值.【解答】解:由题意可得•=0,可得|+|==,(﹣)•(﹣)=2+•﹣•(+)=||2﹣||•|+|cos<(+,>=0,即为||=cos<+,>,当cos<+,>=1即+,同向时,||的最大值是.故选:C.【点评】本题考查向量的模的最值的求法,注意运用向量数量积的定义和性质,考查余弦函数的值域的运用,属于中档题.18.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4取值范围是()A.(60,96)B.(45,72)C.(30,48)D.(15,24)【考点】5B:分段函数的应用.【专题】31:数形结合;35:转化思想;4R:转化法;51:函数的性质及应用.【分析】先画出函数f(x)的图象,再根据条件利用对数函数的运算性质以及三角函数的对称性,利用数形结合,即可求出其范围.【解答】解:函数f(x)的图象如下图所示:若满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则0<x1<1,1<x1<3,则log3x1=﹣log3x2,即log3x1+log3x2=log3x1x2=0,则x1x2=1,同时x3∈(3,6),x4∈(12,15),∵x3,x4关于x=9对称,∴=9,则x3+x4=18,则x4=18﹣x3,则x1x2x3x4=x3x4=x3(18﹣x3)=﹣x32+18x3=﹣(x3﹣9)2+81,∵x3∈(3,6),∴x3x4∈(45,72),即x1x2x3x4∈(45,72),故选:B.【点评】本题考查的知识点是分段函数的应用,由题意正确画出图象和熟练掌握对数函数的图象是解题的关键.利用对数函数的运算性质以及三角函数的对称性进行转化是解决本题的关键.三、解答题19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点(1)求证:BC⊥平面ACC1A1;(2)求二面角B1﹣CD﹣C1的大小(结果用反三角函数值表示)【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;35:转化思想;41:向量法;5F:空间位置关系与距离.【分析】(1)推导出AC⊥BC,CC1⊥BC,由此能证明BC⊥平面ACC1A1.(2)以C为原点,直线CA,CB,CC1为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B1﹣CD﹣C1的大小.【解答】证明:(1)∵底面△ABC是等腰直角三角形,且AC=BC∴AC⊥BC,∵CC1⊥平面A1B1C1,∴CC1⊥BC,∵AC∩CC1=C,∴BC⊥平面ACC1A1.解:(2)以C为原点,直线CA,CB,CC1为x,y,z轴,建立空间直角坐标系,则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1),由(1)得=(0,2,0)是平面ACC1A1的一个法向量,=(0,2,2),=(2,0,1),设平面B1CD的一个法向量=(x,y,z),则,取x=1,得=(1,2,﹣2),设二面角B1﹣CD﹣C1的平面角为θ,则cosθ===,由图形知二面角B1﹣CD﹣C1的大小是锐角,∴二面角B1﹣CD﹣C1的大小为arccos.【点评】本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.(12分)已知函数f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1(ω>0),x∈R,且函数的最小正周期为π:(1)求函数f(x)的解析式;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,•=,且a+c=4,试求b的值.【考点】9O:平面向量数量积的性质及其运算;GL:三角函数中的恒等变换应用.【专题】15:综合题;33:函数思想;49:综合法;56:三角函数的求值;58:解三角形;5A:平面向量及应用.【分析】(1)利用两角和与差的余弦展开,再由辅助角公式化简,由周期公式求得ω,则f(x)的解析式可求;(2)把f(B)=0代入函数解析式,求得B,展开数量积=,求得ac的值,结合a+c=4,利用余弦定理求得b的值.【解答】解:(1)f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1==.∵T=,∴ω=2.则f(x)=2sin(2x)﹣1;(2)由f(B)==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=(a+c)2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.【点评】本题考查三角函数中的恒等变换应用,考查了平面向量的数量积运算,训练了利用余弦定理求解三角形,是中档题.21.(12分)定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f (x)的上界.(1)设f(x)=,判断f(x)在[﹣,]上是否有有界函数,若是,说明理由,并写出f(x)上所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.【考点】34:函数的值域;3H:函数的最值及其几何意义.【专题】11:计算题;23:新定义;33:函数思想;35:转化思想;49:综合法;4I:配方法;51:函数的性质及应用.【分析】(1)化简f(x)==1﹣,从而可得﹣1≤f(x)≤;从而确定|f(x)|≤1;从而解得;(2)由题意知|g(x)|≤3在[0,2]上恒成立;从而可得﹣﹣≤a≤﹣;从而换元令t=,则t∈[,1];从而可得﹣4t2﹣t≤a≤2t2﹣t在[,1]上恒成立;从而化为最值问题.【解答】解:(1)f(x)==1﹣,则f(x)在[﹣,]上是增函数;故f(﹣)≤f(x)≤f();故﹣1≤f(x)≤;故|f(x)|≤1;故f(x)是有界函数;故f(x)上所有上界的值的集合为[1,+∞);(2)∵函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,∴|g(x)|≤3在[0,2]上恒成立;即﹣3≤g(x)≤3,∴﹣3≤1+2x+a•4x≤3,∴﹣﹣≤a≤﹣;令t=,则t∈[,1];故﹣4t2﹣t≤a≤2t2﹣t在[,1]上恒成立;故(﹣4t2﹣t)max≤a≤(2t2﹣t)min,t∈[,1];即﹣≤a≤﹣;故实数a的取值范围为[﹣,﹣].【点评】本题考查了函数的化简运算的应用及转化思想的应用,同时考查了恒成立问题与最值问题的应用.22.(12分)如图,设F是椭圆+=1的下焦点,直线y=kx﹣4(k>0)与椭圆相交于A、B两点,与y轴交于点P(1)若=,求k的值;(2)求证:∠AFP=∠BF0;(3)求面积△ABF的最大值.【考点】K4:椭圆的性质.【专题】14:证明题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)联立,得(3k2+4)x2﹣24kx+36=0,由此利用韦达定理、根的判别式、向量相等,结合已知条件能求出k.(2)证明∠AFP=∠BFO,等价于证明等价于k AF+k BF=0,由此能证明∠AFP=∠BFO.(3)S△ABF =S△PBF﹣S△PAF==.令t=,利用基本不等式性质能求出△ABF面积的最大值.【解答】解:(1)联立,得(3k2+4)x2﹣24kx+36=0,∵直线y=kx﹣4(k>0)与椭圆相交于A、B两点,∴△=144(k2﹣4)>0,即k >2或k<﹣2,设A(x1,y1),B(x2,y2),则,,∵,∴x2=2x1,代入上式,解得k=.证明:(2)由图形得要证明∠AFP=∠BFO,等价于证明直线AF与直线BF的倾斜角互补,即等价于k AF+k BF=0,k AF+k BF=+==2k﹣3()=2k﹣=2k﹣2k=0,∴∠AFP=∠BFO.解:(3)∵k>2或k<﹣2,∴S△ABF =S△PBF﹣S△PAF===.令t=,则t>0,3k2+4=3t2+16,∴S△ABF===≤=,当且仅当3t=,即t2=,k=取等号,∴△ABF面积的最大值为.【点评】本题考查直线的斜率的求法,考查三角形的面积的最大值的求法,是中档题,解题时要认真审题,注意韦达定理、根的判别式、向量相等、基本不等式、弦长公式、椭圆性质的合理运用.23.(12分)已知正项数列{a n},{b n}满足:对任意正整数n,都有a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,且a1=10,a2=15.(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列{a n},{b n}的通项公式;(Ⅲ)设,如果对任意正整数n,不等式恒成立,求实数a的取值范围.【考点】8K:数列与不等式的综合;8M:等差数列与等比数列的综合.【专题】15:综合题.【分析】(Ⅰ)通过已知得到关于数列的项的两个等式,处理方程组得到,利用等差数列的定义得证(Ⅱ)利用等差数列的通项公式求出,求出b n,a n.(Ⅲ)先通过裂项求和的方法求出S n,代入化简得到关于n的二次不等式恒成立,构造新函数,通过对二次项系数的讨论求出函数的最大值,令最大值小于0,求出a的范围.【解答】解:(Ⅰ)由已知,得2b n=a n+a n+1①,a n+12=b n•b n+1②.由②得③.将③代入①得,对任意n≥2,n∈N*,有.即.∴是等差数列.(4分)(Ⅱ)设数列的公差为d,由a1=10,a2=15.经计算,得.∴.∴.∴,.(9分)(Ⅲ)由(1)得.∴.不等式化为.即(a﹣1)n2+(3a﹣6)n﹣8<0.设f(n)=(a﹣1)n2+(3a﹣6)n﹣8,则f(n)<0对任意正整数n恒成立.当a﹣1>0,即a>1时,不满足条件;当a﹣1=0,即a=1时,满足条件;当a﹣1<0,即a<1时,f(n)的对称轴为,f(n)关于n递减,因此,只需f(1)=4a﹣15<0.解得,∴a<1.综上,a≤1.(14分)【点评】证明数列是等差数列或等比数列可用的依据是定义或中项;解决不等式恒成立常通过分离参数,构造新函数,转化为求新函数的最值.。
2016年浦东新区中考数学二模试卷及答案,推荐文档
1.2.3.4.浦东新区2015学年第二学期初三教学质量检测数学试卷(满分150分,考试时间100分钟)6题,每题4分,满分24分))(B) -2016 ;、选择题:(本大题共2016的相反数是((A)丄;2016已知一元二次方程:(A)该方程无实数解;(C)该方程有两个不相等的实数解;下列函数的图像在每一个象限内,1 .;X3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于(A)X2(C) 丄;20163x 2 0,下列判断正确的是( )(B)该方程有两个相等的实数解;(D)该方程解的情况不确定.y随着x的增大而增大的是( )(D) 2016.如果从((A)1、)2;2、2 1(B) y X 1 ;(C) yX(D) y x 1 .5.(B) 14, 17;(A) 15,17;(C) 17, 14; (D) 17, 15.6.如图,△ ABC和厶AMN都是等边三角形, 占八、、M是厶ABC的重心,那么S AMN的值为(SABC2 1(A) ;(B)3 3二、填空题:(本大题共12题,每题4分,17. 计算:&9.13不等式x分解因式:10.计算:32的解集是—2a2r r rb 2 b 2a(C) 1;4满分48分)3的解是 __________12 .已知函数f (x) . ,那么f(J2)Jx2 211 .方程• 5 x13. 如图,传送带和地面所成的斜坡的坡度为1: . 3,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为____________ 米.14. ____________________________ 正八边形的中心角等于度.15•在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了 50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图•根据图中数据,估计该校 1200名学生一周的课外阅读时间不少于 6小时的人数是 ______________ •16. 已知:O O i 、O O 2的半径长分别为 2和R ,如果O O i 与O O 2相切,且两圆的圆心距 d=3,则R 的值为 _________ .17. 定义运算“ * ” :规定x * y ax by (其中a 、b 为常数),若1 * 1 = 3, 1 * ( 1) = 1,则1 * 218. 在 Rt A ABC 中,/ ACB = 90°, BC = 15, AC = 20.点 D 在边 AC 上,DE 丄AB ,垂足为点 E ,将 △ ADE 沿直线DE 翻折,翻折后点 A 的对应点为点P ,当/ CPD 为直角时,AD 的长是 _____________________ 三、解答题:(本大题共 7题,满分78分)1A19.(本题满分 10分)计算:2sin 45 2016° 「8+ -220.(本题满分10 分)解方程:5----------------------- 4&21. (本题满分 的长.10分)如图, AB 是O O 的弦,C 是AB 上一点,/本题满分 某工厂生产一种产品,当生产数量不超过 40吨时,每吨的成本函数关系式如图所示:(1 )求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为 210万元时,求该产品的生产数量. (注:总成本=每吨的成本X 生产数量)22. 10分,每小题5分)—!AB23. (本题满分12分,第 ⑴、(2)小题各6分)如图,已知:四边形 ABCD 是平行四边形, 点E 在边BA 的延长线上,CE 交AD 于点F ,/ ECA = / D .(1) 求证: EAC s ECB ; (2) 若 DF = AF ,求 AC : BC 的值.24. (本题满分12分,每小题4分)2如图,二次函数 y ax 4ax 2的图像与y 轴交于点A ,且过点B(3,6).(1) 试求二次函数的解析式及点 A 的坐标; (2)若点B 关于二次函数对称轴的对称点为点 C ,试求 CAB 的正切值;(3) 若在x 轴上有一点P ,使得点B 关于直线 AP 的对称点B 1在y 轴上,试求点P 的坐标.第23题團第24题图25. (本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,Rt A ABC中,ACB 90°, BC 6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE ,EF为邻边作矩形DEFG .(1)如图1,当AC 8,点G在边AB上时,求DE和EF的长;DE 1(2)如图2,若DS 1,设AC x 矩形DEFG的面积为y,求y关于x的函数解析式;EF 2 'DE 2(3 )若,且点G恰好落在Rg ABC的边上,求AC的长.EF 3第25题图1( 2 分) ( 2 分)所以AB= ...................................... ( 1分)522. (本题满分10分,每小题5分)解: ⑴ 设函数解析式为 y= kx+b ,将(0 , 10)、(40 , 6)分别代入y=kx+b一、 选择题: 1. B 2 二、 填空题: 2 7.- 3 (本大题共 .C 3. (本大题共 13. 18 浦东新区2015学年第二学期初三教学质量检测数学试卷参考答案及评分标准6题,每题4分,满分24分) A 4. 12题,每题 A 5. C 6 . 4分,满分48分) 9. 2(2 a )(2 a ) 10. 11 . X 412. 314. 45 15. 720 . 16. 1 或 5 17. 4 18.色8三、解答题:(本大题共 7题,满分78 分) 19. (本题满分10分) 解:原式=2 +2 ................2 =1+3 2……20.(本题满分X 解方程: ------X 2 解:去分母得: 整理得:X 2 解得:X-I 经检验X 1 (2 分)(8 分)10 分) X 2 X 2 8 X 2 4 X 2 2 8 4分)X 2 1 , X 21是原方程的根, X 2 2是原方程的增根 (1)分)在 Rt △ AOC 中,OA 2 OC 22 AC , AC = 5 ..................................( 2 分) 在 Rt △ AOC 中, COS OAC OA 4 ; ................. ( 2 分) AC 5在 Rt △ ADO 中,COS OAD DA.............. ( 2 分)AOAD OA16所以,AD..... (1 分)AO AC5 因为在O O 中, OD 丄 AB ,原方程的根为 X 1 ............................................. (1分)21 .(本题满分为10分)解:过点O 作OD 丄AB 于D 所以 AB=2AD=2(2 分)10 b, 6 40kb.(2 分)k解之得 110'b 10.得所以 y=丄x +10 (0< x w 40) 10 1⑵由(x+11 )x=210 (10)(1分).......... (1 + 1 分) ..... (2 分)165CD所以CD AEDF AF(1 分)因为 DF=AF ,所以,CD=AE , ........... ( 1 分)因为四边形 ABCD 是平行四边形,所以,AB=CD ,所以AE=AB ,所以,BE=2AE ,…(1分)因为△ ECA EBCAE CE AC所以........... (1分)CE BE BC21 2 CE ■- 2 所以 CE 2AE BEBE 2,即: ............ (1 分) 2 BE 2AC 、、2所以............. (1分)BC 224.(1) 将点B(3,6)代入解析式y ax 2 4ax 2,可得:46 9a 12a2.,解之得 a ........... ................... ( 2 分)3 3 3点A 的坐标为(0,2). .............. ( 1分) 意 题 由2B CA B过点C 作CHAB 于点H . ••• CH -, BH-,AH 19555二 tan CAB 8 ……(1分)19(3)由题意,AB AB i 5 ,从而点B i 的坐标为(0, 3)或(0,7) ...................................2 2 2 2① 若点B i (0, 3),设 P(x,O),由 PB PB i ,有(x 3) 6 x 3 ,解得:x 6,即 P(6,0) .......................... ( 1 分) ② 若点B i (0,7),设 P(x,0),由 PB PB i ,有(x 3)262x 2 亍,2 2解得:x ,即P( ,0) .......................................... ( i 分)3 3综合知, 点P 的坐标为(6,0)或(-0).,1分)2分)2分)解得 x i = 30 或 X 2=70, .................................... ( i 分) 由于0W x < 40所以x=30 .................................... (i 分)答:该产品的生产数量是 30吨 ........................ (i 分)23. (本题满分i2分,第⑴、(2)小题各6分)(i )证明:因为,四边形 ABCD 是平行四边形,所以,/ B = Z D , .................. ( 2分) 因为/ ECA = Z D ,所以Z ECA = Z B , ................ ( 2 分) 因为Z E = Z E , 所以△ ECAECB ............................. ( 2 分)(2)解:因为,四边形 ABCD 是平行四边形,所以, CD // AB ,即:CD // AEEC2DH 6, EH 1 X 26 • ........... (3 分)所以 DE 2 2 X 2 3 (2 6) 2 X 6x AC .. .......... / 1分) 445 • ( • yDE 2EF 2DE2X 12x nn ............. / 1分) 290 • ( ⑶由题意,点G 可以在边BC 或者AB 上.9① 如左图 若点G 在边BC 上,从而由DE 3,可知EF ,于是AC 2EF 9 ;……(2分)2②如右图, 若点G 在边AB 上.记AD DB a ,矩形边长DE 2b,EF 3b ,由厶ADEA D FGa 2 bFGB ,可得 —— ——,即— ---------------- ,化简可得a 2 3ab 4b 2 0 ,因式分解后有:a 4b ,DE GB 2b a 3b即 AD 2DE •而由△ ADE ACB ,所以 AC 2BC ,从而 AC 12. ............................... ( 3 分)综上知,AC 的值为9或12.25.(1)如图,ADAB 5 ••• DE FG2BG 3小3 15 45FG4 4 4 1645 35•即DE 1535二 DG 5 — ,EF16才花(2) 过点D 作DH AC 于点 H ,从而DH15 (2 分)3.易得△ DHE ECF2分)由DEEF -,可得25 3 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案
1到6:B C A D B C
7)m(a-b)(a+b)
8)x=2
9)-1<x<2
10)2
11)x≠0
12)2400
13)31
14)a21-b21
15)22
16)<
17)83
18)(2,23)
19)32-1
20)X=2 y=1或x=-2 y=-1
21)135
22)没超速,略
23)连接AF略
24)6-x32+x31=y26-x34-=y (-2,-6)或(518514,)
25)r=5 356-x6+x31-=y2(4≤x<14) 相交或外离