统计学课后答案第七八章
统计学(贾俊平)第五版课后习题答案(完整版)

统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学课后习题答案

第一章统计学及基本概念 3第二章数据的收集与整理10第三章统计表与统计图19第四章数据的描述性分析25第五章参数估计 37第六章假设检验 49第七章方差分析 62第八章非参数检验70第九章相关与回归分析78第十章多元统计分析89第十一章时间序列分析101第十二章指数108第十二章指数108第十三章统计决策120第十四章统计质量管理128第一章统计学及基本概念1.1 统计的涵义(统计工作、统计资料和统计学)1.2 统计学的内容(统计学分类:理论统计学和应用统计学;描述统计学与推断统计学)1.3 统计学的发展史(学派与主要代表人物)1.4 数据类型(定类、定序、定距和定比;时间序列、截面数据和面板数据;绝对数、相对数、平均数)1.5 变量:连续与离散;确定与随机1.6 总体、样本与个体1.7 标志、指标及指标体系1.8 统计计算工具习题一、单项选择题1. 推断统计学研究()。
(知识点:1.2 答案:D)A.统计数据收集的方法B.数据加工处理的方法C.统计数据显示的方法D.如何根据样本数据去推断总体数量特征的方法2. 在统计史上被认为有统计学之名而无统计学之实的学派是()。
(知识点:1.3 答案:D)A.数理统计学派 B.政治算术学派 C.社会统计学派 D.国势学派3. 下列数据中哪个是定比尺度衡量的数据()。
(知识点:1.4 答案:B)A.性别 B.年龄 C.籍贯 D.民族4. 统计对现象总体数量特征的认识是()。
(知识点:1.6 答案:C)A.从定性到定量B.从定量到定性C.从个体到总体D.从总体到个体5. 调查10个企业职工的工资水平情况,则统计总体是()。
(知识点:1.6 答案:C)A.10个企业B.10个企业职工的全部工资C.10个企业的全部职工D.10个企业每个职工的工资6. 从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体是().(知识点:1.6 答案:A)A. 样本B. 总体单位C. 个体D. 全及总体7. 三名学生期末统计学考试成绩分别为80分、85分和92分,这三个数字是()。
统计学课后习题答案(全)

<<统计学>>课后习题参考答案第四章1. 计划完成相对指标==⨯++%100%51%81102.9% 2. 计划完成相对指标=%9.97%100%41%61=⨯-- 3.4.5.解:(1)计划完成相对指标=%56.115%1004513131214=⨯+++(2)从第四年二季度开始连续四季的产量之和为:10+11+12+14=47天完成任务。
个月零该产品总共提前天完成的天数已提前完成任务,提前该产品到第五年第一季1510459010144514121110∴=--+++=6.解:计划完成相对指标=%75.126%100%1.0102005354703252795402301564=⨯⨯⨯++++++(2)156+230+540+279+325+470=2000(万吨) 所以正好提前半年完成计划。
7.8.略第五章 平均指标与标志变异指标1.甲X =.309343332313029282726=++++++++乙X =44.319403836343230282520=++++++++ AD 甲=}22.29303430333032303130303029302830273026=-+-+-+-+-+-+-+-+-AD 乙=}06.594044.313844.313644.313444.313244.313044.312844.312544.3120=-+-+-+-+-+-+-+-+-R 甲=34-26=8 R 乙=40-20=20σ甲 =9)3334()3033()3032()3031()3030()3029()3028()3027()3026(222222222-+-+-+-+-+-+-+-+-=2.58 σ乙=9)44.3140()44.3138()44.3136()44.3134()44.3132()44.3130()44.3128()44.3125()44.3120(222222222-+-+-+-+-+-+-+-+-=6.06V 甲=1003058.2⨯%=8.6% V 乙=%3.19%10044.3106.6=⨯ 所以甲组的平均产量代表性大一些. 2.解:计算过程如下表:甲X =.)(5.101780元= 乙X =(元)9708077600= 3.解:计算过程如下表:甲X =.4.11980=(件) 乙X =8.120809660=(件) σ甲=06.98075.6568=(件) σ乙=81.10809355=(件) V 甲=1004.11906.9⨯%=7.58% V 乙=%94.8%1008.12081.10=⨯ 所以甲厂工人的平均产量的代表性要高些.4. 解:()()94.761018102457047.7610121871871870775121873595128518757653550=⨯-+==⨯-+--+==++++⨯+⨯+⨯+⨯+⨯=e M M X 5.解:(1)上期的平均计划完成程度为:()()第六章元解解度为下期的平均计划完成程tH V P X P P P P /3.2884102950943.5062900255.3212800604.43210943.506255.321604.432:.7%1.32%1009067.0291.0291.0%67.901%67.90%67.90%67.90%10030028300:.6%37.103%1031400%1011200%107810%110961400120081096:)2(%67.99%1001500100070080%951500%1001000%108700%1108044=⨯⎪⎭⎫ ⎝⎛++⨯++==⨯==-⨯====⨯-==++++++=⨯+++⨯+⨯+⨯+⨯σ1.()())(7.788%67.41500:2000%67.41500600:.6)(6.62126907106557306806702650600269071061527106556552655730620273068060026806706402670650:2)(7.62327107006907206806202680610271070062527006906452690720640272068062026806206002620680:)1(:.5%63.79%10026206005802580257646245002435:.4%85.105%100%113385%102350%97463%120485%105412%112410%98368%106350%105310%110324%102306%101303385350463485412410368350310324306303::.3872232122221030980329809002290010201210208402284067022670600.2104万吨年该县粮食产量为平均增长速度解元工人的月平均工资为乙工区上半年建筑安装元工人的月平均工资为甲工区上半年建筑安装解解度为全年月平均计划完成程解=+⨯=-==++++++⨯++⨯++⨯++⨯++⨯++⨯+=++++++⨯++⨯++⨯++⨯++⨯++⨯+=⨯++++++==⨯++++++++++++++++++++++=+++++⨯++⨯++⨯++⨯++⨯++⨯+=C a 7解:计算过程如下表:)(94.6653.444.45:1994:3.46025844.4594092万元年的地方财政支出额为则直线趋势方程为=⨯++=======∑∑∑bta y t tyb ny a二次曲线方程为:y = 0.0108x 2 + 4.1918x + 24.143(过程略) 指数曲线方程为:y = 26.996e 0.0978x8.解:计算过程如下表:9.解:(1)同季平均法求季节比率的过程如下表:(2)趋势剔除法测定的季节变动如下表:第七章 统计指数()()()()01001011111175000124000081138.44%5000012350008750002540000182138.03%500002535000181075000940000390.98%127500084000022750002540000425qqzpk q z q zq p q p q z kq z p q k p q⨯+⨯===⨯+⨯⨯+⨯===⨯+⨯⨯+⨯===⨯+⨯⨯+⨯==∑∑∑∑∑∑∑∑111111110102.12%75000184000015602.108.8%1200360110%105%pp q p q k p q p q p p=⨯+⨯====+∑∑∑∑11111560.135.65%1150135.65%124.68%108.8%.120%1800115%90096%6003.114.27%330042003300111.38%114.27%.pqpq qpqpq p qp q k p qk k k q q p q p q k q p q pkk k======⨯+⨯+⨯=======∑∑∑∑∑∑ 110101001013200005.100%128%250000128%123.1%14%320000307692.3104%307692.325000057692.3320000307692.312307.pq pqq PpK K K p qp q K p q p qq p q =⨯====+===-=-=-=-=∑∑∑∑∑∑1解:K 零售量变动对零售额变动影响的绝对值为:(万元)零售物价变动对零售总额变动影响的绝对值为:p 1110010000107350000120%120%180000110%110%116%116%17.6%107.6%350000291666.67120%180000163636.36.110%1pq pq q q pq pq q q K q K q p q Kq p q K p q p q ==+===+==+==+========⨯=∑∑∑∑∑∑∑∑城1城农城农1农1城城城1农农农城城城(万元)6.解:已知p ,,p ,,K ,K p 则p K 0010111101001116%291666.67338333.33107.6%163636.36176072.72350000180000103.03%338333.33176072.723%q pp q p q p q q q k p q p q p q ⨯==⨯=⨯=++====++∴∑∑∑∑∑∑∑∑农农农11城农城农K p p 该地区城乡价格上涨了。
统计学课后习题答案

第一章统计学及基本概念 3第二章数据的收集与整理10第三章统计表与统计图19第四章数据的描述性分析25第五章参数估计37第六章假设检验49第七章方差分析62第八章非参数检验70第九章相关与回归分析78第十章多元统计分析89第十一章时间序列分析101第十二章指数108第十二章指数108第十三章统计决策120第十四章统计质量管理128第一章统计学及基本概念1.1 统计的涵义(统计工作、统计资料和统计学)1.2 统计学的内容(统计学分类:理论统计学和应用统计学;描述统计学与推断统计学)1.3 统计学的发展史(学派与主要代表人物)1.4 数据类型(定类、定序、定距和定比;时间序列、截面数据和面板数据;绝对数、相对数、平均数)1.5 变量:连续与离散;确定与随机1.6 总体、样本与个体1.7 标志、指标及指标体系1.8 统计计算工具习题一、单项选择题1. 推断统计学研究()。
(知识点:1.2 答案:D)A.统计数据收集的方法B.数据加工处理的方法C.统计数据显示的方法D.如何根据样本数据去推断总体数量特征的方法2. 在统计史上被认为有统计学之名而无统计学之实的学派是()。
(知识点:1.3 答案:D)A.数理统计学派B.政治算术学派C.社会统计学派D.国势学派3. 下列数据中哪个是定比尺度衡量的数据()。
(知识点:1.4 答案:B)A.性别B.年龄C.籍贯D.民族4. 统计对现象总体数量特征的认识是()。
(知识点:1.6 答案:C)A.从定性到定量B.从定量到定性C.从个体到总体D.从总体到个体5. 调查10个企业职工的工资水平情况,则统计总体是()。
(知识点:1.6 答案:C)A.10个企业B.10个企业职工的全部工资C.10个企业的全部职工D.10个企业每个职工的工资6. 从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体是().(知识点:1.6 答案:A)A. 样本B. 总体单位C. 个体D. 全及总体7. 三名学生期末统计学考试成绩分别为80分、85分和92分,这三个数字是()。
《统计学》教材各章参考答案

各章思考与练习参考答案第一章导论(一)单项选择题1.D 2.C 3.B 4.D 5.D 6.D 7.B 8.A 9.B 10.A (二)多项选择题:1.ABCD 2.CD 3.AD 4.BCDE 5.ABDE(三)判断题:1.×2.×3.×4.√5.×(四)简答题:答案略(五)综合题答案略第二章统计调查(一)单项选择题:1.C 2.C 3.B 4.C 5.C 6.A 7.B 8.C 9.C 10.B (二)多项选择题:1.ACD 2.ABC 3.ABCD 4.ABC 5.ACD6.ABCD 7.ABDE 8.BCE 9.ABE 10.CD(三)判断题:1.×2.×3.×4.√5.×(四)名词解释:答案略㈤(五)简答题:答案略第三章统计整理(一)单项选择题:1.C 2.B 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.B (二)多项选择题:1.AB 2.BD 3.ACD 4.AD 5.BCD6.BD 7.ABC 8.AC 9.ABC 10.CD(三)判断题:1.×2.√3.×4.×5.×(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:2可见,组距1000元的分布数列,更为合理。
(2)对选中的分布数列,计算频率、较小制累计次数、较大制累计次数、组中值:(3)略第四章总量指标与相对指标(一)单项选择题:1.C 2.B 3.A 4.B 5.C 6.B 7.B 8.C 9.B 10.D(二)多项选择题:1.ABCD 2.CE 3.ABCDE 4.BCE 5.ABCD(三)判断题:1.X 2.X 3.X 4.√5.X(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:该企业集团实现利润比去年增长百分比 =110%/(1+7%)-1=2.80%2.解:(1)2011年的进出口贸易差额=12178-9559=2619(亿元)(顺差)2011年进出口总额的发展速度=21737/17607×100%=123.46%(2)2011年进出口额比例相对数=9559/12178×100%=78.49%2011年出口额结构相对数=12178/21737×100%=56.02%(3)该地区进出口贸易发展速度较快,出现贸易顺差。
统计学课后习题答案_(第四版)4.5.7.8章

《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nx x i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
统计学(第六版)贾俊平-课后习题及答案

目录第一章P10 (1)第二章P34 (2)第三章P66 (3)第四章P94 (8)第七章P176 (11)第八章P212 (15)第10 章P258 (17)第11 章P291 (21)第13 章P348 (26)第14 章P376 (30)第一章P10一、思考题1.1什么是统计学?1.2解释描述统计和推断统计。
1.3统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.4解释分类数据、顺序数据和数值型数据的含义。
1.5举例说明总体、样本、参数、统计量、变量这几个概念。
1.6变量可分为哪几类?1.7举例说明离散型变量和连续型变量。
1.8请举出统计应用的几个例子。
1.9请举出应用统计的几个领域。
1.1 指出下面变量的类型:(1)年龄(2)性别(3)汽车产量(4)员工对企业某项改革措施的态度(赞成、中立、反对)(5)购买商品时的支付方式(现金、信用卡、支票)(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2 某研究部门准备抽取 2000 个职工家庭推断该城市所有职工家庭的年人均收入。
要求:(1)描述总体和样本。
(2)指出参数和统计量。
(1)总体是该市所有职工家庭的集合;样本是抽中的 2000 个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的 2000 个职工家庭的年人均收入。
1.3 一家研究机构从 IT 从业者中随机抽取 1000 人作为样本进行调查,其中 60%的人回答他们的月收入在5000 元以上,50%的人回答他们的消费支付方式是用信用卡。
回答下列问题:(1)这一研究的总体是什么?(2)月收入是分类变量、顺序变量还是数值型变量?(3)消费支付方式是分类变量、顺序变量还是数值型变量?(4)这一研究涉及截面数据还是时间序列数据?(1)总体是所有 IT 从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4 一项调查表明,消费者每月在网上购物的平均花费是 200 元,他们选择在网上购物的主要原因是“价格便宜”。
统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为μ盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差 1.0σ=盎司的正态分布。
随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确定样本均值偏离总体均值不超过0.3盎司的概率。
解:总体方差知道的情况下,均值的抽样分布服从()2,N n σμ的正态分布,由正态分布,标准化得到标准正态分布:x ~()0,1N ,因此,样本均值不超过总体均值的概率P为:()0.3P x μ-≤=P ⎫≤=x P ⎛⎫≤≤=()0.90.9P z -≤≤=2()0.9φ-1,查标准正态分布表得()0.9φ=0.8159 因此,()0.3P x μ-≤=0.63186.2在练习题6.1中,我们希望样本均值与总体均值μ的偏差在0.3盎司之内的概率达到0.95,应当抽取多大的样本?解:()0.3P x μ-≤=P ⎫≤=x P ⎛⎫≤≤=210.95Φ-≥0.975⇒Φ≥1.96⇒≥42.6828843n n ⇒≥⇒≥6.3 1Z ,2Z ,……,6Z 表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b ,使得 6210.95i i P Z b =⎛⎫≤= ⎪⎝⎭∑ 解:由于卡方分布是由标准正态分布的平方和构成的: 设Z 1,Z 2,……,Z n 是来自总体N (0,1)的样本,则统计量222212χ=+++n Z Z Z服从自由度为n 的χ2分布,记为χ2~ χ2(n ) 因此,令6221ii Z χ==∑,则()622216ii Zχχ==∑,那么由概率6210.95i i P Z b =⎛⎫≤= ⎪⎝⎭∑,可知:b=()210.956χ-,查概率表得:b=12.596.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差21σ=的标准正态分布。
假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差22211(())1n i i S S Y Y n ==--∑,确定一个合适的范围使得有较大的概率保证S 2落入其中是有用的,试求b 1,b 2,使得 212()0.90p b S b ≤≤=解:更加样本方差的抽样分布知识可知,样本统计量:222(1)~(1)n s n χσ--此处,n=10,21σ=,所以统计量22222(1)(101)9~(1)1n s s s n χσ--==-根据卡方分布的可知:()()2212129990.90P b S b P b S b ≤≤=≤≤=又因为:()()()2221221911P n S n ααχχα--≤≤-=-因此:()()()()22221212299919110.90P b S b P n S n ααχχα-≤≤=-≤≤-=-= ()()()()222212122999191P b S b P n S n ααχχ-⇒≤≤=-≤≤- ()()()2220.950.059990.90P S χχ=≤≤=则: ()()2210.9520.0599,99b b χχ⇒==()()220.950.051299,99b b χχ⇒==查概率表:()20.959χ=3.325,()20.059χ=19.919,则()20.95199b χ==0.369,()20.05299b χ==1.887.1 从一个标准差为5的总体中采用重复抽样方法抽出一个样本容量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少x σ=0.79== (2)在95%的置信水平下,估计误差是多少?/20.0251.960.79 1.5495x z z ασ==⨯=7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ===2.143 (2)在95%的置信水平下,求边际误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2)7.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝(1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.5 利用下面信息,构造总体均值的置信区间。
(1)253.560195%x n σα===-=/20.02525250.8856x z z α±=±=± (2)119.623.8975198%x s n α===-=/2119.6119.6 6.4174x z z α±=±=± (3) 3.4190.97432190%x s n α===-=/20.053.419 3.4190.2832x z z α±=±=± 7.6 利用下面的信息,构建总体均值的置信区间。
(1)总体服从正态分布,且已知890050015195%x n σα===-=/20.02589008900253.03x z z α±=±=± (2)总体不服从正态分布,且已知890050035195%x n σα===-=/20.02589008900165.6472x z z α±=±=± (3)总体不服从正态分布,σ未知,890050035190%x s n α===-=/20.0589008900139.0155x z z α±=±=± (4)总体服从正态分布,σ未知,890050035199%x n σα===-=/20.00589008900217.6973x z z α±=±=± 7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36解:(1)样本均值x =3.32,样本标准差s=1.61; (2)抽样平均误差: 重复抽样:x σ≈不重复抽样:x σ≈=0.268×0.998=0.267(3)置信水平下的概率度: 1α-=0.9,t=2z α=0.05z =1.645 1α-=0.95,t=2z α=0.025z =1.96 1α-=0.99,t=2z α=0.005z =2.576 (4)边际误差(极限误差): 2x x x t z ασσ∆=⋅=⋅1α-=0.9,2x x x t z ασσ∆=⋅=⋅=0.05x z σ⋅重复抽样:2x x z ασ∆=⋅=0.05x z σ⋅=1.645×0.268=0.441 不重复抽样:2x x z ασ∆=⋅=0.05x z σ⋅=1.645×0.267=0.4391α-=0.95,2x x x t z ασσ∆=⋅=⋅=0.025x z σ⋅重复抽样:2x x z ασ∆=⋅=0.025x z σ⋅=1.96×0.268=0.525 不重复抽样:2x x z ασ∆=⋅=0.025x z σ⋅=1.96×0.267=0.5231α-=0.99,2x x x t z ασσ∆=⋅=⋅=0.005x z σ⋅重复抽样:2x x z ασ∆=⋅=0.005x z σ⋅=2.576×0.268=0.69 不重复抽样:2x x z ασ∆=⋅=0.005x z σ⋅=2.576×0.267=0.688(5)置信区间:(),x x x x -∆+∆1α-=0.9,重复抽样:(),x x x x -∆+∆=()3.320.441,3.320.441-+=(2.88,3.76)不重复抽样:(),x x x x -∆+∆=()3.320.439,3.320.439-+=(2.88,3.76)1α-=0.95,重复抽样:(),x x x x -∆+∆=()3.320.525,3.320.525-+=(2.79,3.85) 不重复抽样:(),x x x x -∆+∆=()3.320.441,3.320.441-+=(2.80,3.84)1α-=0.99,重复抽样:(),x x x x -∆+∆=()3.320.69,3.320.69-+=(2.63,4.01) 不重复抽样:(),x x x x -∆+∆=()3.320.688,3.320.688-+=(2.63,4.01)7.8 从一个正态分布总体中随机抽取样本容量为8的样本,各样本值分别为:10,8,12,15,6,13,5,11。
求总体均值的95%的置信区间。
解:210,12, 3.4641x s s ===()()20.025110710 2.8961x t n t α±-=±=± 7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
解:小样本,总体方差未知,用t 统计量x t =()1t n -均值=9.375,样本标准差s=4.11 置信区间:()()211x t n x t n αα⎛--+- ⎝1α-=0.95,n=16,()21t n α-=()0.02515t =2.13()()211x t n x t n αα⎛--+- ⎝=9.375 2.13 2.13⎛-+ ⎝=(7.18,11.57) 7.10 从一批零件中随机抽取36个,测得其平均长度为149.5,标准差为1.93(1)试确定该种零件平均长度的95%的置信区间()()20.0251149.535149.50.6530x t n t α±-=±=±或者20.025149.5149.50.630455x z z α±=±=± 7.11 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为l00g 。