相似三角形应用举例导学案

合集下载

相似三角形应用举例导学案

相似三角形应用举例导学案

相似三角形应用举例(2)学习目的:1.进一步巩固相似三角形的知识.2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.3、通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.重点、难点:1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).一、知识链接1、判断两三角形相似有种方法。

2、相似三角形的对应角,对应边。

二.探索新知1 、例5 :已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m.一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?注意:认真体会这一生活实际中常见的场景,借助图形把这一实际中常见的场景,抽象成数学图形,利用相似的性质解决这一实际问题,图形可以滞后给出,先经历这一抽象的过程.如果你们对于如何用数学语言表述有一定的困难,应与老师一起认真板书解答过程.分析:(见教材P49页)解:2、例6(补充).如图所示,小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?三. 练习巩固1.如图:小明想测量一颗大树AB 的高度,发现树的影子恰好落在土坡的坡面CD 和地面CB 上,测得CD=4m,BC=10m ,CD 与地面成30度角,且测得1米竹杆的影子长为2米,那么树的高度是多少?2 、如图,要在底边BC=160cm,高AD=120cm 的△ABC 铁皮余料上截取一个矩形EFGH,使点H 在AB 上,点G 在AC 上,点E,F 在BC 上,AD 交HG 于点M,此时有AM/AD=HG/BC(1)设矩形EFGH 的长HG=y,宽HE=X,确定y 与X 的函数关系式(2)当X 为何值时,矩形EFGH 的面积S 最大?3、教材习题27.2第10题;4、教材习题27.2第11题;5、教材习题27.2第16题;ABDD FE CA H BG M。

九年级数学 相似三角形应用举例(教案、导学案)

九年级数学 相似三角形应用举例(教案、导学案)

27.2相似三角形27.2.3 相似三角形应用举例【知识与技能】进一步巩固相似三角形的知识,学会用相似三角形解决不能直接测量的物体的长度和高度等一些实际问题.【过程与方法】通过把实际问题转化为有关相似三角形的模型,进一步体会数学建模的思想方法.【情感态度】培养学生分析问题、解决问题能力,增强观察、归纳、建模、应用能力,在活动中也培养学生良好的情感态度,主动参与、合作交流意识.【教学重点】运用相似三角形的知识求不能直接测量的物体的长度和高度.【教学难点】在实际问题中建立数学模型,灵活运用三角形相似的知识解决实际问题.一、情境导入,初步认知问题一天上午10:00时,九年级的小明带着弟弟在操场上玩,弟弟看见高高的旗杆,好奇地问:哥哥,这旗杆好高啊,你知道它有多高吗?”望着高高的旗杆,小明一下子愣住了.但小明是个要强的孩子,他不愿意失去弟弟心目中“大英雄”的地位,绕着旗杆转了几圈,抬头望望,低头看看,这时他的目光停留在自己的影子和电线杆的影子上,他记得自己身高为1.60 米,联想到了刚刚学过相似三角形的知识,终于想到求出旗杆高度的方法了,并给弟弟一个满意的答案.同学们,如果是你,你有办法求出旗杆的高度吗?与同伴交流你的想法.【教学说明】通过学生能感受到的问题情境,提出问题,可激发学生的求知欲望,增强学习兴趣.在学生的相互交流过程中,慢慢感受到用相似三角形知识可以测量出不能直接测量的物体的高度的思路方法,引入新课.二、典例精析,掌握新知例1据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,如果木杆EF长为2m,它的影长FD为3m.测得0A = 201m,求金字塔高度BO.【教学说明】利用学生刚刚获得的体验来解决金字塔的高度问题水到渠成,教学过程中教师应关注学生的说理过程,锻炼学生分析问题,解决问题及推理能力.例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和点S,使P、Q、S共线且直线PS与河岸垂直,接着在过点S且与PS垂直的直线b上选取适当的点T,确定PT与过点Q且垂直PS的直线a的交点 R.如果测得 QS=45m,ST=90m,QR =60m,求河的宽度PQ.【教学说明】本题可让学生独立完成,选一名同学在黑板上写出解答过程,然后师生共同评析.然后教师可设置以下几个问题让学生思考:(1)PS与河垂直是必须的吗?如果不是,请用类似的方法再设计一种估算河岸的方法,试试看;(2)如果保持犘犙与河垂直,删去直线b,在PR延长线上去一点T,过T作TS⊥a,垂足为S,是否也能求出河的宽度PQ?如果可以,需测量出哪些线段长?通过学生对上述问题的思考,可增强学生的数学建模能力,锻炼一题多解的解题习惯,进一步领会用相似三角形知识可求出不能直接测量的物体的高度(或长度),达到融会贯通的目的.例3如图,左、右并排的两棵大树的高 AB=8m,CD=12m,两树根部的距离BD=5m. 一个身高1.6m的人沿着正对这两棵树的一条水平直路L从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?【教学说明】教师首先应引导学生弄清题意,即当观察者行至图(2)位置时,恰好看到较高树的顶端点C,再往右行,由于树的遮挡,就不能看到点C了,因而问题的关键转化为求图(2)中观察者所处位置M与B之间的距离.这时可设观察者的水平视线与AB、CD分别交于 P、Q,利用树的平行关系,可找出图中相似三角形进而可求线段BM的长.三、运用新知,深化理解1.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋高楼的影长为90m,这栋高楼的高度是多少?2.如图,身高1.5m的人站在离河边3m处时,恰好能看到对岸边电线杆的全部倒影,若河岸高出水面高度ED为0.75m,电线杆高MG为4.5m,求河宽.【教学说明】对于第2题,教师可提高向学生提示应通过证△DEF∽△KMF来解题.接着让学生自主完成,教师巡视,及时指导.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:设这栋高楼的高度是x米.由题意得:1.8390x.解得:x=54.即这栋高楼的高度为54米.四、师生互动,课堂小结用相似三角形的知识测量不能直接测量的物体的高度时,有哪几种构建三角形相似的方法,试举例说明.【教学说明】同学们相互交流后,师生共同回顾,积累构建相似三角形的经验.1.布置作业:从教材P42〜44习题27. 2中选取.2.完成创优作业中本课时的“课时作业”部分.前面的课时中探讨了如何判定两个三角形相似,本课时将实际问题转化为两个三角形相似的数学模型.在教学时教师应重点强调这个转化过程是如何实现的.总体来看,本课时首先呈现生活中常见问题,以便让学生体会其必要性,接着通过三个例题让学生掌握运用相关知识解应用题的思路.整个教学过程中都渗透了转化思想,教师应注意让学生把握这一点.27.2.3 相似三角形应用举例第1课时相似三角形应用举例(1)——测量塔高与测量河宽一、新课导入1.课题导入情景一:胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万多人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.情景二:在无法过河的条件下,怎样估算河的宽度?那么,具体是怎样操作的呢?这节课我们一起来探讨这两个问题(板书课题).2.学习目标(1)利用相似三角形的知识,解决求实际问题中不能直接测量的物体高度或长度的问题.(2)体会数学转化的思想,建模的思想.3.学习重、难点重点:利用相似三角形的知识,解决求实际问题中不能直接测量的物体高度或长度的问题.难点:数学建模.二、分层学习1.自学指导(1)自学内容:教材P39例4.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①怎样判定两个直角三角形相似?②你知道哪些利用相似三角形测物体高度的方法?③如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.∵BA ∥DE,∴∠BAO= ∠EDF ,又∵∠BOA=∠EFD= 90° ,∴△BOA ∽△EFD .∴BO OA EF FD.∵EF=2 m,FD=3 m,OA=201 m,∴BO= 134 m .④总结本题的解题思路.⑤在某一时刻,测得一根长为1.8 m的竹竿的影长为3 m,同时测得一栋高楼的影长为90 m,这栋高楼的高度为多少?(54 m)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否理解这种测量方法的原理.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)以师生对话的形式推进课堂交流活动.(2)点一名学生板演自学参考提纲第⑤题.1.自学指导(1)自学内容:教材P40例5.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①你有哪些利用全等三角形的知识测量河宽的方法?②用相似三角形的知识估算河的宽度:如图,由QS=45 m,ST=90 m,QR=60 m, 求河宽PQ,需证哪两个三角形相似?∵∠PQR=∠PST=90°,∠P=∠P ,∴△PQR ∽△PST ,∴PQ QR PS ST=,设PQ=x,可列方程604590xx=+,解得x= 90 .因此河宽约为90 m.③如图,测得BD=120 m,DC=60 m,EC=50 m,求河宽AB. ∵∠ABD=∠ECD=90°,∠ADB=∠EDC,∴△ABD∽△ECD.∴CE CD BA BD=.即5060120BA=.解得AB=100(m).④为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如右图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,AC;②EF,DE,BD;③DE,DC,BC;④DC,DB,AC.能根据所测数据求出A,B间距离的有(B)A.1组B.2组C.3组D.0组2.自学:学生参照自学提纲进行自学.3.助学(1)师助生:①明了学情:明了学生能否通过阅读例题的解题过程弄清实际问题是怎样转化为数学问题的.②差异指导:根据学情指导学生画图,把实际问题抽象成数学问题.(2)生助生:小组交流、研讨.4.强化(1)运用相似三角形解决实际问题的基本思路是:根据题目所给的条件和所求问题建立相似三角形模型.解题步骤为:先证三角形相似,再运用相似三角形性质得比例线段,然后列方程或直接计算求值.(2)点一名学生板演自学参考提纲第③题,点一名学生口答自学参考提纲第④题,并点评.三、评价1.学生自主学习的自我评价:这节课你学到了些什么?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:从学生对学习的专注程度,小组协作状态等方面进行评价.(2)纸笔评价(课堂检测题).3.教师的自我评价(教学反思).本课时主要是让学生经历了运用两个三角形相似解决实际问题中的测量问题的过程,体验从实际问题到建立数学模型的过程,发展学生的抽象概括能力和数学应用能力.因此,为了增强数学的趣味性,在教学设计中选择有趣的实际问题,让学生在富有故事性或现实性的数学情境问题中,谈及解决问题的方法,激发学生的学习兴趣.一、基础巩固(70分)1.(10分)如图,利用标杆BE测量建筑物的高度.如果标杆BE高1.2 m,测得AB=1.6 m,BC=8.4 m,则楼高CD是多少?解:∵EB∥DC,∴△AEB∽△ADC.∴EB AB DC AC=,即12161684....DC=+,求得DC=7.5(m).2.(10分)为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE ⊥AC,测出AD=35 m,DC=35 m,DE=30 m,求池塘的宽AB.解:∵AC⊥AB,DE⊥AC,∴AB∥DE,∴△CDE∽△CAB,∴DE CD AB CA=,即30353535AB=+,求得AB=60(m).3.(10分)如图是一个照相机成像的示意图,MN∥AB.(1)如果像高MN是35 mm,焦距DL是50 mm,拍摄的景物高度AB是4.9 m,拍摄点离景物有多远(即LC的长度)?(2)如果要完整的拍摄高度是2 m的景物,拍摄点离景物有4 m,像高不变,则相机的焦距应调整为多少?解:(1)设拍摄点离景物的距离为x mm.∵MN∥AB,∴△MNL∽△BAL,∴MN DL BA CL=,即35504900x=,解得x=7000.7000 mm=7 m.∴拍摄点离景物距离为7 m. (2)设相机的焦距为y mm.由相似三角形的性质可得:3520004000y=,解得y=70.∴相机的焦距应调整为70 mm.4.(40分)某班同学进行课外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(Ⅰ)如图1,先在平地取一个可以直接到达A、B的点C,并分别延长AC 到D,BC到E,使DC=AC,EC=BC,最后测出DE的长即为AB的距离;(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,最后测出DE的长即为AB的距离.阅读后回答下列问题:(1)方案(Ⅰ)是否可行?可行,理由是∵DC=AC,∠ACB=∠DCE,BC=EC,∴△ACB≌△DCE(SAS).∴AB=DE ;(2)方案(Ⅱ)是否可行?可行,理由是∵BF⊥DE,BF⊥AB,∴∠ABC=∠EDC=90°,BC=DC,∠ACB=∠ECD,∴△ABC≌△EDC(ASA).∴AB=ED .(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是使△ABC≌△EDC ;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否可行?(可行.因为△ABC依然全等于△EDC.)(4)方案(Ⅱ)中,若使BC=n·CD,能否测得(或求出)AB的长?能.理由是依题意,∠ABC=∠EDC,∠ACB=∠ECD,∴△ABC∽△EDC,∴BC AB==,若ED=m,则AB= mn .nDC ED二、综合应用(20分)5.(20分)如图,为了测量一栋大楼的高度,王青同学在她脚下放了一面镜子,然后向后退,直至她刚好在镜子中看到大楼顶部,这时∠LMK等于∠SMT吗?如果王青身高1.55 m,她估计自己的眼睛离地面1.50 m,同时量得LM=30 cm,MS=2 m,这栋大楼有多高?解:∠LMK=∠SMT.又∵∠KLM=∠TSM=90°, ∴△KLM∽△TSM,∴KL LM TS SM=,即15032..TS=,解得TS=10(m).∴这栋大楼有10 m高.三、拓展延伸(10分)6.(10分)如图,点D、E分别在AC、BC上,如果测得CD=20 m,CE=40 m,AD=100 m,BE=20 m,DE=45 m,求A、B两地间的距离.解:由题意可知,CD=20 m,CE=40 m,AD=100 m,BE=20 m,DE=45 m.∴AC=AD+DC=120 m,BC=BE+CE=60 m.∴13CD CECB CA==,而∠C=∠C,∴△CDE∽△CBA.∴13DEBA=,∴AB=135(m).∴A、B两地间的距离为135 m.。

九年级数学下册 27.2.2 相似三角形应用举例 精品导学案1 新人教版

九年级数学下册 27.2.2 相似三角形应用举例 精品导学案1 新人教版

相似三角形应用举例学习目标:1、知识和技能:能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题。

2、过程和方法:通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力。

3、情感、态度、价值观:培养学生用科学的态度去探索未知世界的理念,激发学生学习数学的热情。

学习重点:运用三角形相似的知识计算不能直接测量物体的长度和高度学习难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题)导学方法:自主探索法课时:2课时导学过程一、课前预习预习教材P45-P48的有关内容,完成《导学案》中的教材导读和自主测评。

二、课堂导学1.导入胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?2.出示任务,自主学习(1)如何测量金字塔的高度?(2)在例题中是怎样解决问题的?你能画出解决问题时构造的基本图形吗?(3)如何测量河的宽度?3.合作探究探究:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度。

探究:构造相似三角形,可以构造三角形中的平行截线,得到相似三角形。

三、展示反馈归纳:在实际生活中,面对不能直接测量出高度的物体,我们可以利用所学知识将实际问题转化为数学问题归纳:在实际生活中,面对不能直接测量出宽度的物体,我们可以利用所学知识将实际问题转化为数学问题四、学习小结1、相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离) 。

相似三角形的应用 导学案

相似三角形的应用 导学案

相似三角形的应用一、问题引领1、通过对实际问题的理解,会画出几何图形;2、会利用相似三角形进行测量实际问题。

二、交流启发如图,已知B 、C 、E 、F 是在同一直线上, AB ⊥BF ,DE ⊥BF ,AC ∥DF , (1)△DEF 和△ABC 相似吗?为什么?(2)若DE=1,EF=2,BC=10,那么AB= . 三、自主探索1、古代一位数学家想出了一种测量金字塔高度的方法:如图1所示,为了测量金字 塔的高度OB ,先竖一根已知长度的木棒B O '',比较棒子的影长B A ''与金字塔的影长AB ,即可近似算出金字塔的高度OB .如果B O ''=1,B A ''=2,AB =274,求金字塔的高度OB. 解 ∵ 太阳光是平行光线,∴∠OAB = .又∵ . ∴△OAB ∽△O ′A ′B ′,∴ OB ∶O ′B ′= ∶ , ∴ OB =13721274=⨯=''''⨯B A B O AB (米), 即该金字塔高为137米.2、如图2,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使AB ⊥BC ,然后,再选点E ,使EC ⊥BC ,用视线确定BC 和AE 的交点D .此时如果测得BD =120米,DC =60米,EC =50米,求两岸间的大致距离AB . 解 ∵ ∴ △ABD ∽△ECD , ∴可得比例式: , ∴ AB =CDECBD ⨯= 答: 两岸间的大致距离为100米.FEDCBA图18.3.12图1四、变式练习1,如图,为了测量池塘边A 、B 两点的距离,林平选了一个能到达A 、B 两点的点C ,分别延长AC 、BC 至D 、E 两点,使得11,55CD AC CE BC ==.林平测得DE 的长为12m ,请你帮林平计算出AB 的距离。

相似三角形应用举例测量河宽导学案

相似三角形应用举例测量河宽导学案

相似三角形应用举例测量河宽导学案一、导学1.导入课题:在无法过河的条件下,怎样估算河的宽度?本节课我们研究测量河宽问题.(板书课题)2.学习目标:(1)利用相似三角形的知识,解决求实际问题中不能直接测量的物体长度的问题.(2)体会数学转化的思想,建模的思想.3.学习重、难点:重点:利用相似三角形的知识,解决求实际问题中不能直接测量的物体长度的问题.难点:数学建模.4.自学指导(1)自学内容:P40的例5.为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①你有哪些利用全等三角形的知识测量河宽的方法?②用相似三角形的知识估算河的宽度:由QS=45m,ST=90m,QR=60m, 求PQ.需证哪两个三角形相似?∵∠PQR=∠PST=90°,,∴∽,∴,设PQ=x,可列方程,解得x= .因此河宽约为m.③如图,测得BD=120m,DC=60m,EC=50m,求河宽AB.④为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组2.自学:学生参照自学提纲展开自学.3.助学:(1)师助生:①明了学情:明了学生能否通过阅读例题的解题过程弄清实际问题是怎样转化为数学问题的.②差异指导:根据学情指导学生画图,把实际问题抽象成数学问题.(2)生助生:小组交流研讨.4.强化(1)运用相似三角形来解决实际问题的基本思路是:根据问题的条件和所求问题建立相似三角形模型.解题步骤为:先证三角形相似,再运用相似三角形性质得比例线段,然后列方程或直接计算求值.(2)点一名学生板演第③题,点一名学生口答第④题,并点评.三、评价1.学生自主学习的自我评价:这节课你学到了些什么?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:从学生对学习的专注程度,小组协作状态等方面进行评价.(2)纸笔评价(课堂检测题).3.教师的自我评价(教学反思).。

27.2.3相似三角形应用举例(教案)

27.2.3相似三角形应用举例(教案)
4.实践与探究:引导学生通过实际操作,探究相似三角形在生活中的应用,培养实践能力,增强对数学学科的兴趣和认识。
5.空间观念与数据分析:培养学生运用相似三角形知识分析问题,发展空间观念和数据分析能力,提高数学素养。
三、教学难点与重点
1.教学重点
-理解相似三角形的性质:重点强调相似三角形的对应角相等、对应边成比例的基本性质,以及如何利用这些性质解决实际问题。
3.解决实际问题:结合生活实例,让学生运用相似三角形的性质解决一些实际问题,提高学生的应用能力和解决问题的能力。
4.总结相似三角形在实际生活中的应用,强调数学知识与现实生活的紧密联系。
本节课将引导学生通过实际案例,掌握相似三角形在实际问题中的应用,培养学生的动手操作能力和解决问题的能力。
二、核心素养目标
五、教学反思
在今天的教学中,我发现同学们对相似三角形的应用举例产生了浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解数学知识在实际中的应用。让我感到高兴的是,大多数同学能够积极参与讨论,提出自己的观点,这充分说明了他们对这一知识点的投入。
然而,我也注意到在讲解相似三角形性质时,部分同学对识别相似三角形和确定对应关系存在一定的困难。这说明在这个环节,我需要更加耐心地引导和解释,或许可以通过更多的例子和直观的图示来帮助他们理解。
-应用相似三角形测量:掌握如何利用相似三角形进行高度和距离的测量,包括在实际问题中如何确定相似三角形和对应关系。
-生活实例的解析:通过具体实例,如测量建筑物高度、桥梁长度等,让学生掌握相似三角形在实际生活中的应用。
-数据处理与分析:学会在测量过程中处理数据,分析误差,提高测量的准确性。
举例:在测量建筑物高度时,重点讲解如何利用地面上的影子长度和已知的太阳高度角来确定建筑物的高度,强调相似三角形的实际应用。

相似三角形的性质及其应用-导学案

3月16日-相似三角形的性质及其应用-导学案一:知识梳理相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形知识点1:性质定理1:相似三角形对应角相等,对应边成比例。

知识点2:性质定理2:相似三角形对应线段(高线、中线、角平分线)的比等于相似比。

实战训练一:1. 两个相似三角形的对应边之比是1:2,那么它们的对应中线之比是1:2 。

2. 两个相似三角形的对应高之比是1:4,那么它们的对应中线之比是1:4 。

3. 两个相似三角形的对应角的平分线的长分别是3cm和5cm,那么它们的相似比是3:5 ,对应高的比是3:5 。

知识点3:性质定理3:相似三角形的周长比等于相似比。

实战训练二:1. 两个相似三角形的相似比是1:2,其中较小三角形的周长为6cm,则较大三角形的周长为12cm 。

2. 如果△ABC ∽△DEF,且△ABC的三边长分别为3、4、5,△DEF的最短边长为6,那么△DEF的周长为24 。

3. 如果两个相似三角形的周长比是2:3,其中小三角形一角的角平分线长是6cm,那么大三角形对应角平分线长是9cm 。

知识点4:性质定理4:相似相似三角形面积的比等于相似比的平方。

实战训练三:1. 若△ABC ∽△A’B’C’且相似比为1:2,则△ABC 与△A’B’C’面积之比为1:4 。

2. 两个相似三角形的面积之比是4: 9,则这两个三角形相似比是2:3 。

3. 判断:两个三角形的面积之比是4: 9,则这两个三角形的周长之比是2:3。

(×)二:典例分析例1:如图,已知△ACE△△BDE,AC=6,BD=3,AB=12,CD=18,求AE和DE的长。

解:∵△ACE∽△BDE∴ACBD =AEBE即63=AE12−AE解得AE=8△ ACBD =CEDE即63=18−DEDE解得DE=6相似三角形的应用——测量不能到达顶端的物体高度例2: 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A、B、Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高为6m 。

《27.2.3 相似三角形的应用举例》教案、导学案、同步练习

27.2.3 相似三角形的应用举例【教学目标】1.运用三角形相似的知识计算不能直接测量物体的长度和高度;(重点) 2.灵活运用三角形相似的知识解决实际问题.(难点)【教学过程】一、情境导入胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?二、合作探究探究点:相似三角形的应用【类型一】利用影子的长度测量物体的高度如图,某一时刻一根2m长的竹竿EF的影长GE为1.2m,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是3.6m,求树AB的长.解析:先利用△BDC∽△FGE得到BC3.6=21.2,可计算出BC=6m,然后在Rt△ABC中利用含30度的直角三角形三边的关系即可得到AB的长.解:如图,CD=3.6m,∵△BDC∽△FGE,∴BCCD=EFGE,即BC3.6=21.2,∴BC=6m.在Rt△ABC中,∵∠A=30°,∴AB=2BC=12m,即树长AB是12m.方法总结:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解.【类型二】利用镜子的反射测量物体的高度小红用下面的方法来测量学校教学大楼AB的高度.如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20m.当她与镜子的距离CE=2.5m时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC =1.6m,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).解析:根据物理知识得到∠BEA=∠DEC,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.解:如图,∵根据光的反射定律知∠BEA=∠DEC,∵∠BAE=∠DCE=90°,∴△BAE∽△DCE,∴ABDC=AEEC.∵CE=2.5m,DC=1.6m,∴AB1.6=202.5,∴AB=12.8,∴大楼AB的高度为12.8m.方法总结:解本题的关键是找出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.【类型三】利用标杆测量物体的高度如图,某一时刻,旗杆AB影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为9.6m,在墙面上的影长CD为2m.同一时刻,小明又测得竖立于地面长1m的标杆的影长为1.2m.请帮助小明求出旗杆的高度.解析:根据在同一时刻物高与影长成正比例,利用相似三角形的对应边成比例解答即可.解:如图,过点D作DE∥BC,交AB于E,∴DE=CB=9.6m,BE=CD=2m,∵在同一时刻物高与影长成正比例,∴EA∶ED=1∶1.2,∴AE=8m,∴AB=AE+EB=8+2=10m,∴学校旗杆的高度为10m.方法总结:利用杆或直尺测量物体的高度就是利用杆(或直尺)的高(长)作为三角形的边构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.【类型四】利用相似三角形的性质设计方案测量高度星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.解析:设计相似三角形,利用相似三角形的性质求解即可.在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.解:设计方案例子:如图,在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.理由:测量出CD、DE、BE的长,因为∠CED=∠AEB,∠D=∠B=90°,易得△ABE∽△CDE.根据CDAB=DEBE,即可算出AB的高.方法总结:解题的关键是根据相似三角形的性质设计出具体图形,将实际问题抽象出数学问题求解.三、板书设计1.利用相似三角形测量物体的高度;2.利用相似三角形测量河的宽度;3.设计方案测量物体高度.【教学反思】通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.27.2.3 相似三角形的应用举例〔学习设计〕,即,, 。

人教版九年级数学下册 第27章 27.2 相似三角形 第2课时 相似三角形应用举例 导学案

27.2.3相似三角形应用举例第2课时相似三角形应用举例(2)——测量特殊条件下的距离一、导学1.课题导入当你在路上行走时,经常会见到一种现象:远处的高楼越来越矮,而近处的矮楼却越来越高,最后远处的高楼躲在近处的矮楼的背后,你能解释这种现象吗?这节课我们就研究这种现象(板书课题).2.学习目标(1)利用相似三角形的知识,解决求实际问题中不能直接测量的物体高度或长度问题.(2)体会数学转化的思想,建模的思想.3.学习重、难点重点:利用相似三角形的知识,解决求实际问题中不能直接测量的物体高度或长度的问题.难点:数学建模.4.自学指导:(1)自学内容:教材P40~P41例6.(2)自学时间:8分钟.(3)自学要求:完成自学参考提纲.(4)自学参考提纲:①如图1,用“能”“刚好能”或“不能”填空:当仰角∠AFH<∠CFK时,人能看到小树AB后面的大树CD;当仰角∠AFH=∠CFK时,人刚好能看到小树AB后面的大树CD;当仰角∠AFH >∠CFK 时,人 不能 看到小树AB 后面的大树CD.②如图,假设观察者从左向右走到点E 时,她的眼睛的位置点F 与两棵树的顶端A,C 恰在一条直线上.此时,∠AFH = ∠CFK ,由题意得,AB ⊥l ,CD ⊥l ,∴∠AHF = ∠CKF ,∴△AFH ∽△CFK. ∴FH AH FK CK =, 设FH=x m ,则可列方程81651216..x x -=+-,解得x = 8 ,即FH= 8 m . 故观察者继续前进,当她与左边的树的距离小于 8 m 时,就看不到右边较高的树的顶端点C.③如图所示,一段街道的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ .建筑物的一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N .小亮从胜利街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮.a.请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C 标出);(如图所示)b.已知:MN=20 m ,MD=8 m ,PN=24 m ,求a 中的点C 到胜利街口的距离CM.∵BA ∥PQ,∴△CMD ∽△PND. ∴CM MD PN ND =,即824208CM =-, 解得 CM=16(m).④亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离CD=1.25 m ,颖颖与楼之间的距离DN=30 m (C ,D ,N 在一条直线上),颖颖的身高BD=1.6 m ,亮亮蹲地观测时眼睛到地面的距离AC=0.8 m.根据以上测量数据求出住宅楼的高度.如图,作AE ⊥MN 于E ,交BD 于点F,∵BD∥MN,∴△ABF∽△AME.∴BF AFME AE=.即160812512530....ME-=+,求得ME=20(m),∴MN=ME+EN=20+0.8=20.8(m).即住宅楼的高度为20.8 m.二、自学学生参照自学参考提纲进行自学.三、助学1.师助生:(1)明了学情:明了学生能否理解题意.(2)差异指导:根据学情指导学生理解题意.2.生助生:小组交流、研讨.四、强化1.运用相似三角形来解决实际问题的基本思路:根据题目所给的条件和所求问题建立相似三角形模型.解题步骤为:先证三角形相似,再运用相似三角形性质得比例线段,然后列方程或直接计算求值.2.先组织学生小组研讨自学参考提纲第③、④题,再点两名学生板演,并点评.五、评价1.学生自主学习的自我评价:这节课你学到了些什么?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:从学生在课堂上的专注程度,小组协作状态等方面进行评价.(2)纸笔评价(课堂检测题).3.教师的自我评价(教学反思).本课时针对实际问题中不能直接测量的物体高度或长度的问题,通过建立数学模型,将实际问题转化为数学问题,然后运用三角形相似的知识进行解答.整个学习过程培养学生分析问题、解决问题的能力,激发学生探索知识的兴趣,体验数学活动的探索性和创造性.一、基础巩固(50分)1.(25分)如图,小华家(点A处)和公路(l)之间竖立着一块30米长且平行于公路的巨型广告牌(DE),广告牌挡住了小华的视线的那段公路记为BC,一辆以60公里/小时匀速行驶的汽车经过BC段公路的时间为6秒,已知广告牌和公路的距离为35米,求小华家到公路的距离.解:如图,过A作AM⊥BC于M,交DE于N,设小华家到公路的距离为x 米.BC=6036.×6=100(米).∵DE∥BC,∴△ADE∽△ABC,∴DE ANBC AM=,即3035100xx-=,解得x=50.∴小华家到公路的距离为50米.2.(25分)已知零件的外径为25 cm,要求它的厚度x,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OA∶OC=OB∶OD=3,CD=7 cm.求此零件的厚度.解:∵OA OBOC OD=,而∠AOB=∠COD,∴△AOB∽△COD.∴AB OACD OC==3.又∵CD=7 cm,∴AB=21 cm.由题意和图易知25-2x=21,∴x=2(cm).∴此零件的厚度为2 cm.二、综合应用(25分)3.(25分)当你乘车沿一平坦的大道向前行驶时,你会发现:前方那些高一些的建筑物好像“沉”到了位于它们前面的矮一些的建筑后面去了.如图,已知楼高AB=18米,CD=9米,BD=15米,在N处的车内小明视点距地面2米,此时刚好可以看到楼AB的P处,PB恰好为12米,再向前行驶一段到F处,从距离地面2米高的视点刚好看不见楼AB ,那么车子向前行驶的距离NF 为多少米?解:∵CD ∥AB,∴△CDO ∽△ABO,△CDQ ∽△PBQ. ∴CD OD AB OB =,即91815OD OD =+,解得 OD=15(米).CD QD PB BQ =,即91215QD QD =+ ,解得 QD=45(米). ∴OQ=DQ-DO=45-15=30(米).连接EM ,则EM ∥FQ ,EF ∥CD ,∴29,OE EF OC CD == ∴79,CE OC =即77093,.EM CE EM OQ CO 米==∴= 又EM=FN ,∴703().FN 米= 即车子向前行驶的距离NF 为703.米 三、拓展延伸(25分)4.(25分)如图,为测量学校围墙外直立电线杆AB 的高度,小亮在操场上点C 处直立高3 m 的竹竿CD ,然后退到点E 处,此时恰好看到竹竿顶端D 与电线杆顶端B 重合;小亮又在点C 1处直立高3 m 的竹竿C 1D 1,然后退到点E 1处,此时恰好看到竹竿顶端D 1与电线杆顶端B 重合.小亮的眼睛离地面高度EF=1.5 m ,量得CE=2 m ,EC 1=6 m ,C 1E 1=3 m.(1)△FDM ∽△______,△F 1D 1N ∽△_______;(2)求电线杆AB 的高度.解:(1)依题意,∵DC ⊥AE,D 1C 1⊥AE,BA ⊥AE,∴DC ∥D 1C 1∥BA,∴△FDM ∽△FBG ,△F 1D 1N ∽△F 1BG .(2)由(1)知△F 1D 1N ∽△F1BG ,∴111D N F N BG F G=.而△FDM ∽△FBG ,∴DM FM BG FG =.易知D 1N=DM. ∴11F N FM F G FG= ,而F 1N=C 1E 1=3 m,FN=C 1E=6 m,MF=CE=2 m, ∴MF 1=MF+FN+NF 1=11 m, ∴32112GM GM =++,∴GM=16(m ). 而111D N F N BG F G =,∴15327.BG =. ∴BG=13.5(m ).∴AB=BG+GA=15 m. ∴电线杆AB 的高度为15 m.。

相似三角形应用举例导学案

年级:九年级班级:学生姓名:制作人:不知名编号:2023-1227.2.3 相似三角形应用举例学习目标:利用三角形相似的概念解决一些简单的实际问题。

预学案1.测量不能到达顶部物体的高度,通常借助太阳光照射物体形成影子,根据同一时刻物体高与影长,或利用相似三角形来解决问题.2.求不能直接到达的两点间的距离,关键是构造,然后根据相似三角形的性质求出两点间的距离.探究案【探究1】据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如图,木杆EF长2m,它的影长FD为3m,测得OA为201 m,求金字塔的高度BO.【探究2】如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T确定PT与过点Q且垂直PS的直线b的交点R已测得QS=45m,ST=90m,QR=60m,请根据这些数据,计算河宽PQ.【探究3】如图,左右并排的两棵大树的高分别为AB=8m和CD=12m两树底部的距离BD=5m,一个人估计自己眼睛距地面16m她沿着正对这两棵树的一条水平直路1从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C了?(1) (2)检测案1.如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A. 6cmB. 12cmC. 18cmD. 24cm第1题图第2题图第3题图2.如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m时,它离地面的高度DE为0.6m则坝高CF为m.3.如图,已知有两堵墙AB,CD,AB 墙高2 m,两墙之间的距离BC 为8 m,小明将一架木梯放在距B点3 m的E处靠向墙AB时,木梯有很多露出墙外.将木梯绕点E 旋转90°靠向墙CD 时木梯刚好达到墙的顶端,则墙CD的高为m. 4.如图,A、B两点被池塘隔开,在AB 外任选一点C,分别在AC,BC上取点D,E,如果测得CD =20 m,CE =40 m,AD=100 m,BE=20 m目DE=45 m,求AB的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2.3相似三角形应用举例(一)导学案
初三数学组
学习目标:
1. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度.
一、知识链接
判断两三角形相似有哪些方法?相似三角形有什么性质?
二、.探索新知
1、学校操场上的国旗旗杆的高度是多少?你有什么办法测量?
2、据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度. 如图,如果木杆EF 长2 m ,它的影长FD 为3 m ,测得OA 为201 m ,求金字塔的高度BO .(思考如何测出OA 的长?)
分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
解:
新知应用
A 基础训练
1. 如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为多少米.
2.如图,小明站在C 处看甲乙两楼楼顶上的点A 和点
E .C E A ,,三点在同一条直线上,点B D ,分别在点E A ,的正下方且D B C ,,三点在同一条直线上.
B C ,相距20米,D C ,相距40米,乙楼高BE 为15米,甲楼高AD 为多少米
(小
明身高忽略不计)
3、量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底()8.4B 米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得 2.4DE =米,观察
者目高 1.6CD =米,则树()AB 的高度约为多少米.(精
确到0.1米)
B 加强训练
4.如图,小华在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时,发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.60m ,两个路灯的高度都是9.6m ,设AP =x(m)。

(1)求两路灯之间的距离;
(2)当小华走到路灯B 时,他在路灯下的影子是多少?
C 升华提高(选做)
5.为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ‘),再把竹竿竖立在地面上, 测得竹竿的影长(B ‘C ‘)为1.8米,求路灯离地面的高度.
h S
A C
B B 'O
C 'A '
P
B A A B
C D E。

相关文档
最新文档