数值积分公式
数值积分方法

的值大.
二、Simpson公式
n=2时的求积公式
将 [a, b] 二 等分,等分节点 x0 = a ,x1 = (a +b)/2, x2 = b 作为积分节点,构造二次Lagrange插值多 项式 L2(x):2 b
a
f ( x )dx Ak f ( xk ) A0 f ( x0 ) A1 f ( x1 ) A2 f ( x2 )
f ( x ) 在节 a x0 x1
xn b
f ( x0 ), f ( x1 ),
, f ( xn )
作n次Lagrange插值多项式: Ln ( x )
l
k 0
n
k
( x ) f ( xk )
b a
f ( x )dx Ln ( x )dx
a
b
b a
f ( x )dx Ln ( x )dx
b]上的积分公式,这种方法称为复合求积法。
5.2.1 复化梯形积分 将[a, b]分成若干小区间,在每个区间[xi, xi+1]上用 梯形积分公式,再将这些小区间上的数值积分累加 起来,就得到区间[a, b]上的数值积分。这种方法称 为复化梯形积分。 ★ 计算公式
将[a, b] n等分, h = xi+1- xi= (b -a)/n, xi = a + ih, i = 0,1,2,…,n,
其中
4
M 4 max f
a xb
( 4)
( x)
本题
M 4 的求法: 1 sin x cos txdt f ( x) 0 x
1 1 0 0
1 M4 5
f ( x ) t sin txdt t cos( tx
数值分析-第4章 数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
一个二元函数的数值积分公式

△y :
0 = y。 < y l < … < y n = 1
是 对 区 间 【O , 1 〕的 两 组 剖 分 , 而
{ 一 △ x , 一
( , x ; , y i
`一 0 ,
`
m; J一 0
1
.
今
尹.
夕、t, n
{ } 一 `
。 *, ,
i
0,
1,
…,
m 一 1; J=
,
0
} … 1 ,
,
n 一`
+ Z + e 。 了2
,
p` + 1 j a
+ b Z a 下+ b 3 7
当 p 子 ( x ,
y)
=
s a
1 . +
,
,+
s C + z . ` 十1
, 十:
。 。 。
.
,
p p p ,
,
s 。+ 1 , 十 l a 2 + s 。 s + l
Z+
e 。22 +
,
q。
, * la
+ b 3a z + b ; 了
夕 礴
绍兴 师专 学报 (自然 科 学版 )
一9 8 7年 第 3 期
一 个 二 元 函数 的 数值 积 分 公 式
游 功强
〔l] 中 给 出 了 矩 形 区 域 上的 一 个 二 维 数 值 积分 公 式 , 其 中要 用 到 所给 函数 在插 值点的
,
导 数 值产文 利 用 〔2] 的结 果 也 给 出 了矩 形 区 域 上的 一 个 二 维 数 值 积分 公 式 但 其 中只 用
数值积分-计算方法

(k=0,1,…,n) 作代换x=a+th带入上式,变为: 其中:
(k=0,1,…,n) (1-1) 这个积分是有理多项式积分,它与被积函数f(x)和区间[a,b]无关。
只要确定n就能计算出系数
。 于是得到称为Newton—Cotes公式的求积公式: (1-2) 其中
称为Newton—Cotes系数。如表1所示。 表1 Newton—Cotes系数
§3.1计算n阶求积公式
若有m次代数精度,对(k=0,1,…)应有
而。
§3.2 Gauss求积公式的基本原理
更一般形式: (2-1) 为权函数,设>0,且在[a,b]上可积,构造n阶求积公式:
(2-2) 积分点使得(2-2)式达到2n+1次代数精度,则积分点称为Gauss 点,(2-2)式称为Gauss求积公式。
§2Newton—Cotes公式 §2.1Newton—Cotes公式的推导
当§1.1插值求积公式的插值节点为等距节点时,就得到Newton— Cotes公式。
将区间[a,b]n等分,,n+1个节点为 xk=a+kh (k=0,1,…,n)
在节点上对f(x)的Lagrange插值多项式是:
用Pn(x)代替f(x)构造求积公式: 记
y=(1-1/2*(sin(x)).^2).^(1/2); 在Matlab工作窗口中调用函数:
y2=gauss2('gaussf',0,pi/2) 运行结果为:
y2= 1.3508
第5章 结论
通过以上变成和计算,得到所求的两组积分:
应用Newton—Cotes积分公式所求的结果分别是 y1=1.5078,y2 = 1.3506,而应用Gauss-Legendre方法所求得的结果分别是y1=1.5705 和 y2= 1.3508。单从结果上看,我们也能看出,Newton—Cotes积分公式 和Gauss-Legendre积分公式在精度上的确存在着差异(两者n的取值不 同)。而结果上的差异来源很明显是插值积分在近似替代时产生的,结 合第1章理论依据的内容,Newton-Cotes积分公式的精度最高可达n+1 次,Gauss-Legendre积分公式的精度为2n+1次,由此可知,当n相同 时, Gauss -Legendre积分公式比Newton—Cotes积分公式具有更高的 代数精度。而就本题而言Gauss -Legendre积分公式具有5次代数精度, Newton—Cotes积分公式也具有5次代数精度。因此二者所求积分只存在 微小的差异,结果都比较准确。
数值积分公式误差复习

n
舍入误差是稳定的
若CK 0, 则
n k 0
n
n
b a | Ckn |b a Ckn b a
k 0
舍入误差不稳定
所以n<8,公式都是稳定的,n≥8,稳定性无法保证,所以 出现了所谓的龙格现象
n 证明 CK 1
i 0
n
i 0
(n次的Newton-Cotes求积公式至少有n次代数精 确度)
截断误差
截断误差:真实值与近似计算值的差
b
a
f ( x)dx n ( x)dx
a
b
b
a
f ( n1) n ( x)dx (n 1)!
积分的第一中值定理:
f xg xdx f g xdx·
数值积分公式的误 差估计
目 录
代数精确度 截断误差
舍入误差
Lagrange插值余项
f ( n1) Rn ( x) f ( x) n ( x) n ( x) (n 1)!
( x x i ) n ( x) 其中 ξ∈(a,b)且依赖于x, i 0
n
a a
b
b
两种情况: 当n为奇数时,具有n次代数精度; 当n为偶数时,具有n+1次代数精度.
梯形求积公式余项 1 b RT [ f ] f ( )( x a)( x b)dx 2 a 由积分的第一中值定理得
b 1 1 RT [ f ] f ( ) ( x a)( x b)dx (b a) 3 f ( ) a 2 12
k 0
n
b
a
f ( x)dx Ai yi (b a ) Ci( n ) yi
高等数学积分公式大全

高等数学积分公式大全高等数学是一门非常重要的学科,在很多领域都有应用。
其中,积分学是高等数学中的一个重要章节。
积分可以理解为求解曲线图形下面的面积,不同类型的积分公式有着不同的概念和应用,下面,就为大家整理了一份高等数学积分公式大全,让大家对这个知识点有一个更全面的认识。
1. 常数积分公式$$\int kdx=kx+C$$2. 幂函数积分公式$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$3. 指数函数积分公式$$\int e^xdx=e^x+C$$4. 对数函数积分公式$$\int \frac{1}{x}dx=\ln|x|+C$$5. 三角函数积分公式$$\int \sin xdx=-\cos x+C$$$$\int \cos xdx=\sin x+C$$6. 反三角函数积分公式$$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$$$$\int \frac{1}{1+x^2}dx=\arctan x+C$$$$\int \frac{1}{\sqrt{x^2-1}}dx=\ln|x+\sqrt{x^2-1}|+C$$7. 换元法积分公式$$\int f(u)du=\int f(u(x))\frac{du}{dx}dx$$8. 分部积分公式$$\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$$9. 定积分公式$$\int_a^bf(x)dx=F(b)-F(a)$$10. 积分中值定理$$\int_a^bf(x)dx=f(c)(b-a)$$这便是几种高等数学积分公式的介绍,这些公式是数学中不可或缺的知识点,掌握这些公式不仅有助于学生学好数学,还对应用数学的工作有相当多的帮助。
除了这些基本的积分公式之外,高等数学还涉及到一些比较复杂的积分公式,如多重积分、线性代数积分、微积分方程等等。
1. 多重积分公式多重积分是指对多元函数的积分,通常被用于几何问题、概率论问题和物理学问题中。
第七章数值微积分
Ck(n)
3 1/8 3/8 3/8 1/8
4 7/90 16/45 2/15 16/45 7/90 5 19/288 25/96 25/144 25/144 25/96 19/288
误差估计 (一)求积公式的代数精确度 若当f(x)为任意次数不高于m的多项式时,求积公 n b 式 ∫ f ( x)dx ≈ ∑ Ak f ( xk )
f ′′( x − θ 2 h) f ( x ) − f ( x − h) f ′( x) − =− h = O ( h) h 2
f ( x + h) − f ( x − h) f ′( x) − 2h f ′′′( x + θ 1 h) + f ′′′( x − θ 2 h) 2 =− h = O(h 2 ) 12
a k =0
均成立,而对某个m+1次多项式,公式不精确成立, 则称该求积公式具有m次代数精确度. 可以验证:梯形公式具有1次代数精确度。 事实上,由f(x)为1次多项式, f ′′(ξ ) R1 ( x ) = f ( x) − L1 ( x ) = ( x − a )( x − b) = 0 2
⇒∫
求导得且分别 代入三点有:
截断误差
h2 ′ f ′′′(ξ 0 ) R2 ( x 0 ) = − 3 h2 ′ f ′′′(ξ1 ) ξ 0 , ξ1 , ξ 2 ∈ (a, b) R2 ( x1 ) = − 6 h2 ′ f ′′′(ξ 2 ) R2 ( x1 ) = 3
b
a
b−a f ( x)dx = ∫ L1 ( x)dx = [ f (a ) + f (b)] a 2
b
b
若取f(x)=x2 ⇒ ∫a
数值求积公式
数值求积公式数值求积公式(Numerical Integration Formula),是数值分析中的重要概念,是指通过数学方法把一个连续函数在一个给定区间内的积分值近似计算出来的方法。
由于很多实际问题中的积分式是难以求解的,在计算机计算中,采取数值求积公式可以减少工作量,提高计算精度。
数值求积公式还有一个别名——数值积分。
相对于解析积分,数值积分的特点是可以对任何函数进行积分。
只要你能够用程序对函数进行求值,就可以计算相应的数值积分。
本文将在介绍数值求积公式的基本概念、计算方法、误差分析等方面进行详细的阐述。
一、基础概念1. 定义数值求积公式就是在求解一个确定积分的同时,用近似值代替积分值。
如果一个函数是在一个已知积分区间内可积的,那么我们就可以用数值积分的方法对该函数进行计算,并得到其数值积分值。
2. 积分区间能够进行数值积分的函数,必须在一个已知的积分区间内是可积的。
所谓积分区间,就是指一个确定的区间,该区间内的函数在数学上是成立的,可以进行积分。
3. 数值积分的目的数值积分的主要目的是求出积分函数在某个区间内的近似值,而这个近似值是通过一系列的数值计算所得的。
虽然这种方法无法完全解决所有的积分问题,但是它能够有效地求解一些特殊积分或者是一些无法用解析方法求解的积分。
4. 数值积分的特点数值积分的计算方法是基于一定的近似方法进行的,所以它其实是属于一种“近似计算”的方式。
和解析积分不同的是,数值积分从本质上来讲并不是“精确的”,因为不管采用何种数值积分方法,都需要一定的近似误差。
另外,数值积分通常需要输入整个积分区间的求积函数,这需要求积函数满足一定的数学条件,例如必须是一个连续函数,而且必须在整个积分区间上是有限的。
二、计算方法数值求积公式的计算方法主要有以下几种。
1. 复合梯形公式所谓复合梯形公式,就是对积分区间进行分割,对每一小段积分采用梯形法则进行微积分近似,然后对所有子积分区间的积分近似值求和。
数值分析-数值积分详解
xk
和 Ak 的代数问题.
b
a
f ( x)dx
A
k 0
n
k
f ( xk ),
11
例 求a,b,c的值使下列求积公式的代数精度 达到最高。
1 1
f ( x)dx a f (1) bf (0) cf (1)
12
3.
插值型的求积公式
设给定一组节点
a x0 x1 x2 xn b,
b
a
f ( x)dx (b a) f ( ),
3
就是说,底为 b a 而高为 f ( ) 的矩形面积恰等于所求 曲边梯形的面积 I (图4-1).
图4-1
4
问题在于点ξ的具体位置一般是不知道的,因而难以
准确算出 f ( ) 的值.
将 f ( ) 称为区间 [a, b]上的平均高度.
k 0
n
16
4 .
定义2
求积公式的收敛性与稳定性
在求积公式中,若
lim
n h 0 k 0
Ak f ( xk )
n
b
a
f ( x)dx,
( xi xi 1 ), 则称求积公式(1.3)是收敛的. 其中 h max 1i n
在求积公式中,由于计算 f ( xk )可能产生误差 k ,
ab 的“高度” f (c ) 2
近似地取代平均
高度 f ( ),则又可导出所谓中矩形公式(简称矩形公式)
R (b a ) f ( ab ). 2
6
一般地,可以在区间 [a, b] 上适当选取某些节点 xk , 然后用 f ( xk ) 加权平均得到平均高度 f ( )的近似值,这样 构造出的求积公式具有下列形式:
第五章 数值积分与微分1
b−a T( f ) = [ f ( a ) + f ( b )] 2
b−a a+b S( f ) = f (a ) + 4 f ( 2 ) + f (b) 6
b−a C( f ) = [ 7 f (a ) + 32 f (a + h) + 12 f (a + 2h) 90
+32 f (a + 3h) + 7 f (b )]
( f ( x)dx ≈ (b − a)∑Ckn) f (a + kh) = In ( f ) k=0
n
n=1时的求积公式 时的求积公式
1
梯形公式/*Trapezoidal Formula */ 梯形公式/*
I1 ( f ) = ∑ Ak f ( xk ) = A0 f ( x0 ) + A1 f ( x1 )
a k =0
n
求积公式的代数精度(/*Algebraic Precision */) 求积公式的代数精度(/* 代数精度
Def 1如果求积公式 I n ( f ) = ∑ Ak f ( xk )
k =0
n
次的多项式都恒成立 对一切不高于m次的多项式都恒成立, 对一切不高于 次的多项式都恒成立,而对于某个 m+1次多项式不能精确成立,则称该求积公式具有 次多项式不能精确成立 次多项式不能精确成立, m次代数精度。 次代数精度。 次代数精度
分别利用梯形公式、 梯形公式 公式、 例1:分别利用梯形公式、 Simpson公式、 Cotes公式 公式 公式
1 解: a = 0, b = 1, f ( x ) = 1+ x 1− 0 1 T( f ) = [ f (0) + f (1)] = [1 + 0.5] = 0.75 2 2 1− 0 1 S( f ) = f (0) + 4 f ( 2 ) + f (1) ≈ 0.69444444 6 1 1 1 3 C( f ) = 7 f (0) + 32 f ( ) +12 f ( ) + 32 f ( ) + 7 f (1) 90 4 2 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值积分公式
函数值积分,也称积分法,是在数值分析中一种经典的数值算法,它的作用是计算某一函数或者定积分的值。
通常来说,函数值积分可以用于求解多变量函数的根部值,也可以用于解决常微分方程中的未知系数。
它实际上是用一些已知的数值方法来近似解决函数积分(或未知连续函数的积分)。
这样就可以得到函数值积分所需要的近似数字值,也就是目标函数在指定区间上的积分和。
最常用的计算函数积分的方法之一是梯形积分法,即将积分区间分解为若干个小区间,然后在每一个小区间上用某种方法算出这个函数的积分,然后把这些小区间求出的积分结果相加求和,从而得出原函数的积分结果。
例如,积分区间[a,b]中的函数f(x)的积分结果就可以写成:∫f(x)dx=Σi=0n-1f(xi)Δxi, 其中xi=a+iΔx 、Δ
x=(b-a)/n 。
除了梯形积分法之外,Simpson积分法也是一种常用的数值积分方法,它根据泰勒公式对原函数做多项式拟合,并在区间[a,b]中用三角形函数积分法求解,从而可以得到函数积分的和。
此外,还有更多的数值积分方法,比如求复合积分、常微分方程的改变积分、limit-limit等等,这些积分法都能有效的求出函数的积分结果。
总的来说,函数值积分是数值分析中一种非常重要的算法,它可以计算函数的积分结果,也可以用于解决许多复杂的多项式方程。
由于数值积分有很多便利的应用,所以目前它已经成为数学、物理和工程等领域中重要的数学算法。