线性代数在量子力学中的应用实例

线性代数在量子力学中的应用实例
线性代数在量子力学中的应用实例

线性代数在量子力学中的应用实例

作者:寿立夫

摘要:利用泡利自旋矩阵可以简化电子自旋这一双态系统,并且具备相当的普遍意义,可以适用于一般的量子系统;我们试图在N态系统中寻找一组基础态使之标准正交,为此我们仿照实对称矩阵的证明,证明含复数的哈密顿矩阵总是可以被相似对角化的,并且可以通过Gram-Schmidt法则将其化为标准正交向量组。在此基础上,我们研究了具有四个基础态的氢的超精细分裂问题并由所得结果计算出氢的两个超精细态之间的“21cm谱线“。

关键词:泡利矩阵;N态系统;氢的超精细分裂;线性代数

引言

自海森堡创立矩阵力学以来,随着叠加原理在量子力学中的广泛使用,使得线性代数成为了描述和研究量子系统的强有力工具,在初步学习了相关线性代数知识后,我们已经有了足够的知识储备去探究量子世界的奥妙,在此选取几个例子粗浅地展示下线性代数在量子力学中的一些简单应用。

1 泡利自旋矩阵

1.1背景知识

1.1.1振幅与态矢量

由于量子力学本身的特殊性,所以它有一套独特的符号体系。下面引述维基百科的概念:

[1]在量子力学里,一个量子系统的量子态可以抽象地用态矢量来表示。态矢量存在于内积空间。定义内积空间为增添了一个额外的内积结构的矢量空间。态矢量满足矢量空间所有的公理。态矢量是一种特殊的矢量,它也允许内积的运算。态矢量的范度是1,是一个单位矢量。标记量子态的态矢量为。每一个内积空间都有单范正交基。态矢量是单范正交基的所有基矢量的线性组合:

其中,是单范正交基的基矢量,是单范正交基的基数,

是的分量,是投射于基矢量的分量,也是处于的概率幅。1换一种方法表达:

在狄拉克标记方法里,态矢量称为右矢。对应的左矢为,是右矢的厄米共轭,用方程表达为;其中,象征为取厄米共轭。设定两个态矢量,。定义,的内

积为。结果是一个复数。

1.1.2哈密顿矩阵

现在我们令C i(t)=iφt表示时刻t处在基础态i的振幅,则在只考虑态矢随时间变化的简单情况下,我们可以得到以下齐次线性微分方程组:

因为量子系统的幺正性,所以H ij=H ji?.

1.2 泡利矩阵

1.2.1磁场中电子自旋的自旋方程

通过观察我们可以写出如下泡利自旋矩阵:

[1]维基百科“态矢量词条”.

H =?μ(σx B X +σy B y +σz B Z )

若将σ视为向量,即σ= σx ,σy ,σz 则可以得到:

H =?μ·σBσB

与经典物理中的磁矩为μ的磁体处在磁场为B 中的能量的经典公式:U =?μB 有相似的形式,这是因为经典力学是量子力学的近似的缘故。 1.2.2 泡利矩阵的性质

2 N 态系统

2.1 N 态系统的能级

因为①为齐次线性微分方程组,设C =

C 1

C 2

??C n

,现在我们对其施加一个线性变换,则: i dXC dt

=(XH)C 为使方程组无耦合项,则XH X =Λ,Λ为对角矩阵,我们现假设哈密顿矩阵可以相似对角

化,则Λ=1n λλ??

?

? ???

,1

.....n λλ为H 的特征值,则①被化为如下形式:i i i dR i R dt λ= ,可见1.....n λλ为该N 态系统的n 个能级所具有的能量. 2.2 哈密顿矩阵的相似对角化

我们知道哈密顿矩阵具有性质H ij =H ji ?

,由于哈密顿矩阵可以为复数,事实上对于实对称矩阵而言,H ij =H ji ?也成立(H ji ?=H ji ),所以我们猜测哈密顿矩阵也可以被相似对角化;

现在我们根据这一性质仿造实对称矩阵相似对角化的证明来证明哈密顿矩阵也可以被相似

对角化;

2.2.1 属于不同特征值的特征向量是正交的

2.2.2 基于数学归纳法的证明

2.3 基础态的选择

用Gram-Schmidt法则将H的特征向量组化为标准正交向量组,选其为基础态,显然,这组基础态满足正交化条件:

δij=0i j

1i=j

3 氢的超精细分裂

3.1 由两个自旋1/2粒子组成的系统的基础态

由基础的物理知识可知,氢原子包含一个位于质子附近的电子,电子具有“朝上”或者“朝下”的自旋,质子的自旋也可以“朝上”或者“朝下”。因此,原子的每一种动力学状态都存在这4种可能的自旋态,这四个状态是由于电子和质子磁矩之间的相互作用引起,这些能级的能量移动大约只有10?7eV远小于基态与激发态之间的能级差,所以我们可以用上文的方程组来描述这些量子态;由于基础态或者说基的选择有无穷多种,我们选取物理意义最明显的一组:

3.2 氢原子基态的哈密顿

但却是有效的。我们假设有矢量算符σe,当它作用这四个基础态之一时,只相当于作用在电子的自旋上,同理有算符σp只作用于质子的自旋上,有如下表格:

从泡利自旋矩阵中获得的经验,我们可以知道哈密顿矩阵应等于:

H=A σe ·σp

其中A ≈

μe μp 0.5K

3

= (μe =电子磁矩=,μp =质子磁矩=,K

=原子半径)

因为现在有四个基础态,所以H ,σe ,σp 为四维矩阵,所以和泡利矩阵并不完全一致,但我们同样可以分别从这两个算符作用于基础态之上的效果得出哈密顿矩阵,为节省篇幅省略

中间的繁琐的计算,直接写出经过这些计算得到的哈密顿矩阵:000

020

200

A

A A A A A

-- 3.3能级

由N 态系统的结论,我们只需解出哈密顿矩阵的特征值即可算出它各能级对应的能量值,解得

1λ=λ2=λ3=A

λ4=?3A

所以能级差为4A,这就是说当原子从态1跃迁到态4时,会吸收频率为ω=

4A

的光子,反之,发射时也会放出这样频率的光子,根据理论,

这个频率的光子的周期为f =ω2π

= ,其实验所得数据为(1420405751.800±

0.028 )Hz ,这便是著名的氢的“21cm 谱线”,是氢的两个超精细态之间1420兆周谱线的波长。通过捕捉这一谱线的射电望远镜,天文学家便可以观察氢原子气体浓集处的位置和速度。

4结束语

由于篇幅和水品所限,我们并未能对论题作深入而严谨的探讨,但通过以上这些例子,

线性代数充分展现了其在量子力学中的强大作用,我们有理由相信线性代数在其他领域也有着不可或缺的作用;其次,我们可以发现原来复杂深奥的量子力学在用线性代数的语言表述变得十分简洁清晰,使我们能够构建出明析的物理图像。相信随着我们知识的增加,线性代数会帮我们更清晰的理解某些复杂概念与方法。

5参考文献

[1]R.P.Feynman,R.B.leighton,M.sands.The Feynman Lectures on Physics(Volume III).The New

Millennium Edition.California Institute of Technology,2010.

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

量子力学的矩阵形式和表象变换.

§4.5 量子力学的矩阵形式和表象变换 态和力学量算符的不同表示形式称为表象。 态有时称为态矢量。力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。 1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比 取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e ,见图 其标积可写成下面的形式 )2,1,(),(==j i e e ij j i δ 我们将其称之为基矢的正交归一关系。 平面上的任一矢量A 可以写为 2211e A e A A += 其中),(11A e A =,),(22A e A =称为投影分量。 而),(21A A A = 称为A 在坐标系21X OX 中的表示。 现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e ,且同样有 )2,1,()','(==j i e e ij j i δ 而平面上的任一矢量A 此时可以写为 ''''2211e A e A A += 其中投影分量是),'('11A e A =,),'('22A e A =。 而)','(21A A A = 称为A 在坐标系'X 'OX 21中的表示。 现在的问题是:这两个表示有何关系? 显然,22112211''''e A e A e A e A A +=+=。

用'1e 、'2e 分别与上式中的后一等式点积(即作标积),有 ),'(),'('2121111e e A e e A A += ),'(),'('2221212e e A e e A A += 表成矩阵的形式为 ??? ? ?????? ??=???? ??212212211121),'(),'(),'(),'(''A A e e e e e e e e A A 由于'1e 、1e 及'2e 、2e 的夹角为θ,显然有 ??? ? ?????? ??-=??? ? ?????? ??=???? ??21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ 或记为 ??? ? ??=???? ??2121)(''A A R A A θ 其中 ??? ? ? ?-=θθ θθθcos sin sin cos )(R 是把A 在两坐标中的表示???? ??''21A A 和??? ? ??21A A 联系起来的变换矩阵。 变换矩阵的矩阵元正是两坐标系基矢间的标积,它表示基矢之间的关系。故R 给定,任何矢量在两坐标系间的关系也确定。 很容易证明,R 具有下述性质: I R R R R ==~ ~ 由于1)(det )~ det(2==R R R , 其中 321321)1()det(p p p t R R R R -∑=, 故称这种矩阵为正交矩阵。 但1det =R (对应于真转动(proper rotation ))且R R =* (实矩阵)

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

量子力学考博中用到的物理公式(复习时总结的)

初等量子力学的四块容 一、薛氏方程 C1:波函数与薛氏方程 1、付氏变换:(动量→坐标为正) /332 1()()(2)i p r r p e d p ψψπ+∞ ?-∞ = ? 2、δ函数的两个重要极限及一个积分公式 1()2i x x e d αδαπ∞ -∞ = ? (相当于物理中的波粒转换) 其推导过程: 000() 0()()()1 ()()2i x x f x f x x x dx f x dx d f x e αδαπ ∞ -∞ ∞ ∞ --∞ -∞ =-= ? ? ?两式比较得出。 2 4()lim i i x x e πααδ-=(试题1.5用到) 2 4 i i e d ξπ ξ∞ -∞ =? (好像与某个积分是一样的,只是有些变换) 3、证明技巧 等式一边含有V ,而一边没有。2 22V m ?-?+肯定是作为一个整体消去的。 4、波函数平方可积的要求 2 3(3/2) ,()s d r A r r r ψψ-+=?→∞? 全 (0s >) 可以在证明某些概率守恒的式子时(体积分→面积分 V S AdV A ds ??=???) ,可以得到一些式子的积分为0。 5、(,0) (,)x x t ψψ→ 先将(,0)x ψ展为能量本征态的线性组合(自由粒子时即可以通过付氏化为()p ψ),再 / (,)()iEt E n x t C x e ψψ-=∑。

C2:一维势场中的粒子 1、各种势类型 方势、δ势、谐振子、半壁无限谐振子(谐振子奇数解)、半壁无限方势、不对称方势阱。 2、() ()((),())n n n n n x C x C x x ψ??ψ=?=∑。*()()n n C x x dx ?ψ=?(注 意积分围) 22 11222 2 222 1122H C E C E H C E C E =+=+ 3、无限深势阱的解 )()0 n n x x a πψ=? 。222 2 2n n E ma π=(能量可通过22222P E m m -?==求得) 4、谐振子的解 22 12 ()(!)()n x n n x n e H x αψ α-=?其中α=。 5、递推关系 12()2()2()0n n n H x xH x nH x ----= 1()2()n n H x nH x -'= ()(1)()n n n x x ψψ-=-(所以对于半壁无限高的谐振子只有奇数才可以满足) C5:中心力场 1、径向波函数 ()()R r r r χ= 2 2(1)()[(())]()02l l l l r E V r r r χχμ+''?+--= 0r →时,若有20 lim ()0r r V r →=,则() l l R r r 。 2、无限深球方势阱 ○ 1S 态(0l =),其与无限深方势阱一样。 ○20l ≠时,令kr ρ= 则本征方程

线代贴吧-线性代数超强总结

线性代数公式总结

()0A r A n A Ax A A οο??

③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ????????? ? ⑤1 11 11 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=??? ? ???? ????? ? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοοο ?? ?? ? ??? ? ???==???????????? 11112222 kk kk A B A B AB A B ο ο ????? ?=????? ?

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

线性代数超强总结

√ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr()=E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. √ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -???? →初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ??????????

⑤1 1111 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=???? ???? ?????? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοο ο ?? ?? ? ??? ? ???==???????????? √ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时, √ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断12,, ,s ηηη是0Ax =的基础解系的条件:

量子力学的表象与表示

第五章 量子力学的表象与表示 §5.1 幺正变换和反幺正变换 1, 幺正算符定义 对任意两个波函数)(r ?、)(r ψ,定义内积 r d r r )()(),(ψ?ψ?*?= (5.1) 按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r ψ时,找 到粒子处在状态()r ?的概率幅。 依据内积概念,可以定义幺正算符如下: “对任意两个波函数?、ψ,如果算符 U 恒使下式成立 ),()?,?(ψ?ψ?=U U (5.2) 而且有逆算符1?-U 存在,使得I U U U U ==--11????1,称这个算符U ?为幺正算符。” 任一算符A ?的厄米算符+A ?定义为:+A ?在任意?、ψ中的矩阵元恒由下式右方决定 ??(,)(,)A A ?ψ?ψ+= (5.3) 由此,幺正算符U ?有另一个等价的定义: “算符U ?为幺正算符的充要条件是 I U U U U ==++???? (5.4a) 或者说 1??-+=U U 。” (5.4b) 证明:若),()?,?(ψ?ψ?=U U 成立,则按+U ?定义, ),??()?,?(),(ψ?ψ?ψ?U U U U +== 由于?、ψ任意,所以 I U U =+?? 又因为U ?有唯一的逆算符1?-U 存在,对上式右乘以1?U -,即得 1??U U +-= 这就从第一种定义导出了第二种定义。类似,也能从第二种定义导出第一种定义。从而,幺正算符的这两种定义是等价的。 2, 幺正算符的性质 幺正算符有如下几条性质: i, 幺正算符的逆算符是幺正算符 证明:设 1-+=U U , 则()()(),1 11--+++-===U U U U 所以1-U 也是幺正 1 这里强调了 U -1 既是对 U 右乘的逆又是对 U 左乘的逆。和有限维空间情况不同,无限维空间情况下,任一算符 U 有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为 U -1 。

量子力学中要用到的数学知识大汇总

第一章矩阵 1.1矩阵的由来、定义和运算方法 1.矩阵的由来 2.矩阵的定义 3.矩阵的相等 4.矩阵的加减法 5.矩阵和数的乘法 6.矩阵和矩阵的乘法 7.转置矩阵 8.零矩阵 9.矩阵的分块 1.2行矩阵和列矩阵 1.行矩阵和列矩阵 2.行矢和列矢 3.Dirac符号 4.矢量的标积和矢量的正交 5.矢量的长度或模 6.右矢与左矢的乘积 1.3方阵 1.方阵和对角阵 2.三对角阵 3.单位矩阵和纯量矩阵 4.Hermite矩阵 5.方阵的行列式,奇异和非奇异方阵 6.方阵的迹 7.方阵之逆 8.酉阵和正交阵 9.酉阵的性质 10.准对角方阵 11.下三角阵和上三角阵 12.对称方阵的平方根 13.正定方阵 14.Jordan块和Jordan标准型 1.4行列式求值和矩阵求逆 1.行列式的展开 https://www.360docs.net/doc/b318972918.html,place展开定理 3.三角阵的行列式 4.行列式的初等变换及其性质 5.利用三角化求行列式的值 6.对称正定方阵的平方根 7.平方根法求对称正定方阵的行列之值 8.平方根法求方阵之逆 9.解方程组法求方阵之逆 10.伴随矩阵

11.伴随矩阵法求方阵之逆 1.5线性代数方程组求解 1.线性代数方程组的矩阵表示 2.用Cramer法则求解线性代数方程组 3.Gauss消元法解线性代数方程组 4.平方根法解线性代数方程组 1.6本征值和本征矢量的计算 1.主阵的本征方程、本征值和本征矢量 2.GayleyHamilton定理及其应用 3.本征矢量的主定理 4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换 1.线性变换的矩阵表示 2.矢量的酉变换 3.相似变换 4.等价矩阵 5.二次型 6.标准型 7.方阵的对角化 参考文献 习题 第二章量子力学基础 2.1波动和微粒的矛盾统一 1.从经典力学到量子力学 2.光的波粒二象性 3.驻波的波动方程 4.电子和其它实物的波动性——de Broglie关系式 5.de Broglie波的实验根据 6.de Broglie波的统计意义 7.态叠加原理 8.动量的几率——以动量为自变量的波函数 2.2量子力学基本方程——Schrdinger方程 1.Schrdinger方程第一式 2.Schrdinger方程第一式的算符表示 3.Schrdinger方程第二式 4.波函数的物理意义 5.力学量的平均值(由坐标波函数计算) 6.力学量的平均值(由动量波函数计算) 2.3算符 1.算符的加法和乘法 2.算符的对易 3.算符的平方 4.线性算符 5.本征函数、本征值和本征方程

相关文档
最新文档