动态规划石子合并问题
石子归并(动态规划)

石子归并(动态规划)动态规划石子合并问题【石材加固】在一个圆形操场的四周摆放着n堆石子。
现要将石子有次序地合并成一堆。
规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
尝试设计一个算法来计算将n堆石头合并成一堆的最小分数和最大分数。
[输入文件]包含两行,第1行是正整数n(1<=n<=100),表示有n堆石子。
第2行有n个数,分别表示每堆石子的个数。
【输出文件】输出两行。
第1行中的数字是最低分数;第2行中的数字是最高分。
[输入示例]44459[输出示例]4354【分析】起初,我以为贪心法可以解决这个问题,但事实上,由于必须有两个相邻的桩合并,贪心法不能保证每次都能得到所有桩中石头数量最多的两个桩。
例如,以下示例:6346542如果使用贪心法计算最小分数,则应为以下合并步骤:第一次合并3465422,3合并分数为5,第二次合并546545,4合并分数为9,第三次合并96545,4合并分数为9,第四次合并9699,6合并分数为15,第五次合并15915,9合并分数为24,总分=5+9+9+15+24=62但是如果采用如下合并方法,却可以得到比上面得分更少的方法:第一次合并3465423,4合并得分是7第二次合并765427,6合并得分是13第三次合并135424,2合并得分是6第四次合并13565,6合并得分是11第五次合并131113,11合并得分是24总得分=7+13+6+11+24=61因此,我们知道这个问题不能用贪婪的方法来解决。
在上面的例子中,相邻的两个石子数量分别为13和11的桩第五次合并。
第一堆、第二堆和第三堆(石块数量分别为3、4和6)以及第四、第五和第六堆(石块数量分别为5、4和2)组合四次后形成两堆石块。
所以问题归结为如何使两个子序列的N-2组合分数之和达到最优。
为了实现这一目标,我们将第一个序列分为两个:第一和第二堆形成子序列1,第三堆形成子序列2。
动态规划算法的优化技巧

动态规划算法的优化技巧福州第三中学毛子青[关键词] 动态规划、时间复杂度、优化、状态[摘要]动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。
全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文。
[正文]一、引言动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。
使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。
但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。
本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。
二、动态规划时间复杂度的分析使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。
所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。
动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。
但是,动态规划求解问题时,仍然存在冗余。
它主要包括:求解无用的子问题,对结果无意义的引用等等。
下面给出动态规划时间复杂度的决定因素:时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1]下文就将分别讨论对这三个因素的优化。
这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。
有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。
因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。
第8课 石子归并(C++)

第8课石子归并【问题描述】在一个操场按次序从左到右摆放着n堆石子(n≤100),现要将石子有次序地合并成一堆。
规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分,求最小的得分总和。
【输入格式】第1行为石子堆数n;第2行为每堆的石子数,每两个数之间用一个空格分隔。
【输出格式】最小的得分总和。
【输入样例】6346542【输出样例】61样例说明:346542765421354213561311247+13+6+11+24=61分析问题对于动态规划类型的题目,首先要分析出问题的最优子结构。
前面介绍的动态规划类型都是“i的规模”问题由“i-1规模”或更小规模的子问题决策出来的。
如:1.“黑熊过河”中走到第i步的最优值是由第i-1和第i-2步的最优值决策出的:f[i]=max{f[i-l],f[i-2]}-Q+a[i]2.“防卫导弹”中到第i个导弹的最优值是由小于i的子问题最优值来决策出的:f[i]=max{f[j])+1(1≤j<i,h[j]≥h[i])3.“最长公共子序列”中,两个长度分别为i和j的字符串的最长公共子序列是由短一点的子问题最优值决策出来:O当i=0或j=0时f[i,j]=f[i-1,j-1]+1当i,j>O时,且xi =yi时Max(f[i,j-1],f[i-1,j])当i,j>O时,且xi ≠yi时然而这里的“i的规模问题”其实都是隐含地表示“从1到i的问题”,即从头开始到第i步的问题。
即f[i]实际上是f[1..i],f[i,j]实际上是f[1..i,1..j]。
本题是另一类动态规划问题,如果用类似前面介绍的方法分析会比较困难。
实际上,我们合并i堆石子时,可能先选择中间相邻的两堆石子,合并之后,虽然只有i-1堆石子,但并不是原先的1~i-1的子问题。
因此我们没有办法把一个f[1..i]的i堆石子问题直接转化成f[1..j](j<i)的子问题来决策。
动态规划-石子合并问题

动态规划-⽯⼦合并问题(1)问题描述 在⼀个圆形操场的四周摆放着 num 堆⽯⼦。
先要将⽯⼦有次序地合并成⼀堆。
规定每次只能选相邻的 2 堆⽯⼦合并成新的⼀堆,并将新的⼀堆⽯⼦数记为该次合并的耗费⼒⽓。
试设计⼀个算法,计算将 n 堆⽯⼦合并成⼀堆的最省⼒⽓数。
(2)算法思想 对于给定的 n 堆⽯⼦,当只有⼀堆时,不⽤搬,进⽽不耗费⼒⽓,然后依次计算出从 2 堆 ~ num 堆⽯⼦的最优解,并且堆数递增求最优解,依赖于上⼀步的解进⾏计算所得;(3)算法思路 此解法和矩阵连乘类似,我们知道矩阵连乘也是每次合并相邻的两个矩阵,那么⽯⼦合并可以⽤矩阵连乘的⽅式来解决。
设 dp[i][j] 表⽰第 i 到第 j 堆⽯⼦合并的最优值,sum[i][j] 表⽰第 i 到第 j 堆⽯⼦的所耗费的⼒⽓总数。
动规⽅程如下:(4)代码展⽰public class StoneMerge {/*** 记录⽯⼦堆的数量*/private static int num;/*** 记录每堆⽯⼦的重量*/private static int[] weight;/*** 记录⽯⼦堆断开的位置【便于计算局部最优解】*/private static int[][] location;/*** 记录⽯⼦堆局部最优解,以⾄于求得最终最优解【动规⽅程】*/private static int[][] dp;/*** 初始化数据*/private static void initData() {Scanner input = new Scanner(System.in);System.out.println("请输⼊⽯⼦堆数量:");num = input.nextInt();weight = new int[num];System.out.println("请输⼊每堆⽯⼦的重量:");for (int i = 0; i < weight.length; i++) {weight[i] = input.nextInt();}// 定义成 int 类型的⼆维数组,创建完每个元素直接初始化为 0dp = new int[num][num];location = new int[num][num];}/*** 计算最省最费⼒⽓值*/private static void dpFindMinStrength() {// 初始化 dp 数组for (int m = 0; m < num; m++) {dp[m][m] = 0; // ⼀堆⽯⼦,不⽤搬,耗费⼒⽓为 0}for (int r = 2; r <= num; r++) { // 从 2 堆依次到 num 堆,分别计算最优值for (int i = 0; i < num - r + 1; i++) { // 起始⽯⼦堆取值范围int j = i + r - 1; // 根据每次选取⽯⼦堆 r 和起始⽯⼦堆 i ,计算终⽌⽯⼦堆int sum = 0;for (int x = i; x <= j; x++) { // 计算从⽯⼦堆 i 到⽯⼦堆 j 合并时,最后两堆使⽤的⼒⽓总和 sumsum += weight[x];}// 根据动规⽅程,从局部最优解中计算当前从⽯⼦堆 i 到⽯⼦堆 j 合并所使⽤的的⼒⽓总和dp[i][j] = dp[i + 1][j] + sum; // 计算从 i ⽯⼦堆分开时,使⽤的⼒⽓总和location[i][j] = i; // 标记从第 i ⽯⼦堆分开位置for (int k = i + 1; k < j; k++) { // 需要统计从 k 【k ∈ (i, j)】⽯⼦堆分开,使⽤的⼒⽓总和int temp = dp[i][k] + dp[k + 1][j] + sum; // 计算从 k ⽯⼦堆分开时,使⽤的⼒⽓总和if (temp < dp[i][j]) {dp[i][j] = temp;location[i][j] = k;}}}}}/*** 输出*/private static void print() {System.out.println("动规数组【不同堆数合并⽯⼦所费⼒⽓】:");for (int i = 0; i < num; i++) {for (int j = 0; j < num; j++) {System.out.print(dp[i][j] + " ");}System.out.println();}System.out.println("不同堆数合并⽯⼦最省⼒⽓断开位置最优解:");for (int i = 0; i < num; i++) {for (int j = 0; j < num; j++) {System.out.print(location[i][j] + " ");}System.out.println();}}public static void main(String[] args) {// 初始化数据initData();// 计算最省最费⼒⽓值dpFindMinStrength();// 输出print();}}⽯⼦合并核⼼代码(5)输⼊输出请输⼊⽯⼦堆数量:4请输⼊每堆⽯⼦的重量:4 45 9动规数组【不同堆数合并⽯⼦所费⼒⽓】:0 8 21 430 0 9 270 0 0 140 0 0 0不同堆数合并⽯⼦最省⼒⽓分开位置最优解【下标从数组 0 开始分开】:0 0 1 20 0 1 20 0 0 20 0 0 0输⼊输出(6)总结 ⽯⼦合并问题完全提现了动态规划的核⼼思想,先求解⼦问题的解【⼦问题求解不相互独⽴,相互依赖】,然后从这些⼦问题的解中得到原问题的解,进⽽得到该问题的最优解。
石子合并问题

石子合并问题
石子合并问题是最经典的DP问题。
首先它有如下3种题型:
(1)有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动任意的2堆石子合并,合并花费为新合成的一堆石子的数量。
求将这N堆石子合并成一堆的总花费最小(或最大)。
分析:当然这种情况是最简单的情况,合并的是任意两堆,直接贪心即可,每次选择最小的两堆合并。
本问题实际上就是哈夫曼的变形。
(2)有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动相邻的2堆石子合并,合并花费为新合成的一堆石子的数量。
求将这N堆石子合并成一堆的总花费最小(或最大)。
分析:我们熟悉矩阵连乘,知道矩阵连乘也是每次合并相邻的两个矩阵,那么石子合并可以用矩阵连乘的方式来解决。
设dp[i][j]表示第i到第j堆石子合并的最优值,sum[i][j]表示第i到第j 堆石子的总数量。
那么就有状态转移公式:
代码如下:(直线)
return 0;
}
(3)问题(2)的是在石子排列是直线情况下的解法,如果把石子改为环形排列,又怎么做呢?
分析:状态转移方程为:
其中有:
代码如下:(环形)
#include <stdio.h>
#include <string.h>
#define INF 10000
#define N 205
int mins[N][N];
int maxs[N][N];
int sum[N],a[N];
int minval,maxval;
int n;
int min(int a,int b)
{
return a<b?a:b;。
动态规划思想:石子合并问题

动态规划思想:⽯⼦合并问题描述:在⼀个圆形操场的四周摆放着n 堆⽯⼦。
现要将⽯⼦有次序地合并成⼀堆。
规定每次只能选相邻的2 堆⽯⼦合并成新的⼀堆,并将新的⼀堆⽯⼦数记为该次合并的得分。
试设计⼀个算法,计算出将n堆⽯⼦合并成⼀堆的最⼩得分和最⼤得分。
开始以为通过贪⼼算法可能很快解决问题,可是是⾏不通的。
⾸先我们可以把这么堆⽯⼦看成⼀列我们假如5堆的⽯⼦,其中⽯⼦数分别为7,6,5,7,100•按照贪⼼法,合并的过程如下:每次合并得分第⼀次合并 7 6 5 7 100 =11 第⼆次合并 7 11 7 100=18 第三次合并 18 7 100 =25第四次合并 25 100 =125总得分=11+18+25+125=179•另⼀种合并⽅案每次合并得分 第⼀次合并 7 6 5 7 100 ->13第⼆次合并 13 5 7 100->12第三次合并 13 12 100 ->25第四次合并 25 100 ->125总得分=13+12+25+125=175显然利⽤贪⼼来做是错误的,贪⼼算法在⼦过程中得出的解只是局部最优,⽽不能保证使得全局的值最优。
如果N-1次合并的全局最优解包含了每⼀次合并的⼦问题的最优解,那么经这样的N-1次合并后的得分总和必然是最优的。
因此我们需要通过动态规划算法来求出最优解。
在此我们假设有n堆⽯⼦,⼀字排开,合并相邻两堆的⽯⼦,每合并两堆⽯⼦得到⼀个分数,最终合并后总分数最少的。
我们设m(i,j)定义为第i堆⽯⼦到第j堆⽯⼦合并后的最少总分数。
a(i)为第i堆⽯⼦得⽯⼦数量。
当合并的⽯⼦堆为1堆时,很明显m(i,i)的分数为0; 当合并的⽯⼦堆为2堆时,m(i,i+1)的分数为a(i)+a(i+1); 当合并的⽯⼦堆为3堆时,m(i,i+2)的分数为MIN((m(i,i)+m(i+1,i+2)+sum(i,i+2)),(m(i,i+1)+m(i+2,i+2)+sum(i,i+2)); 当合并的⽯⼦堆为4堆时......代码实现如下:1 #include<stdio.h>2#define N 1003/*4 *求合并过程中5 *最少合并堆数⽬6 **/7int MatrixChain_min(int p[N],int n)8 {9//定义⼆维数组m[i][j]来记录i到j的合并过成中最少⽯⼦数⽬10 //此处赋值为-11112int m[N][N];13for(int x=1;x<=n;x++)14for(int z=1;z<=n;z++)15 {16 m[x][z]=-1;17 }1819int min=0;2021//当⼀个单独合并时,m[i][i]设为0,表⽰没有⽯⼦22for(int g = 1;g<=n;g++) m[g][g]=0;2324//当相邻的两堆⽯⼦合并时,此时的m很容易可以看出是两者之和25for(int i=1;i<=n-1;i++)26 {27int j=i+1;28 m[i][j]=p[i]+p[j];29 }3031//当相邻的3堆以及到最后的n堆时,执⾏以下循环32for(int r=3; r<=n;r++)33for(int i=1;i<=n-r+1;i++)34 {35int j = i+r-1; //j总是距离i r-1的距离36int sum=0;37//当i到j堆⽯⼦合并时最后⾥⾯的⽯⼦数求和得sum38for(int b=i;b<=j;b++)39 sum+=p[b];4041// 此时m[i][j]为i~j堆⽯⼦间以m[i][i]+m[i+1][j]+sum结果,这是其中⼀种可能,不⼀定是最优42 //要与下⾯的情况相⽐较,唉,太详细了4344 m[i][j] = m[i+1][j]+sum;4546//除上⾯⼀种组合情况外的其他组合情况47for(int k=i+1;k<j;k++)48 {49int t=m[i][k]+m[k+1][j]+sum;50if(t<m[i][j])51 m[i][j] = t;5253 }54 }55//最终得到最优解56 min=m[1][n];57return min;585960 }6162/*63 *求合并过程中64 *最多合并堆数⽬65 **/6667int MatrixChain_max(int p[N],int n)68 {69int m[N][N];70for(int x=1;x<=n;x++)71for(int z=1;z<=n;z++)72 {73 m[x][z]=-1;74 }757677int max=0;78//⼀个独⾃组合时79for(int g = 1;g<=n;g++) m[g][g]=0;80//两个两两组合时81for(int i=1;i<=n-1;i++)82 {83int j=i+1;84 m[i][j]=p[i]+p[j];85 }8687for(int r=3; r<=n;r++)88for(int i=1;i<=n-r+1;i++)89 {90int j = i+r-1;91int sum=0;92for(int b=i;b<=j;b++)93 sum+=p[b];94 m[i][j] = m[i+1][j]+sum;9596for(int k=i+1;k<j;k++)97 {98int t=m[i][k]+m[k+1][j]+sum;99if(t>m[i][j])100 m[i][j] = t;101102 }103 }104105 max=m[1][n];106return max;107108109 }110int main()111 {112int stone[N];113int min=0;114int max=0;115int n;116 scanf("%d",&n);117for(int i=1;i<=n;i++)118 scanf("%d",&stone[i]);119120 min= MatrixChain_min(stone,n);121 max= MatrixChain_max(stone,n);122123//因为题⽬要求圆的原因,要把所有情况都要考虑到,总共有n种情况。
石子合并区间DP模板题
⽯⼦合并区间DP模板题题⽬链接:题意N堆⽯⼦摆成⼀条线。
现要将⽯⼦有次序地合并成⼀堆。
规定每次只能选相邻的2堆⽯⼦合并成新的⼀堆,并将新的⼀堆⽯⼦数记为该次合并的代价。
计算将N堆⽯⼦合并成⼀堆的最⼩代价。
例如:1 2 3 4,有不少合并⽅法1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)括号⾥⾯为总代价可以看出,第⼀种⽅法的代价最低,现在给出n堆⽯⼦的数量,计算最⼩合并代价。
输⼊第1⾏:N(2 <= N <= 100)第2 - N + 1:N堆⽯⼦的数量(1 <= A[i] <= 10000)输出输出最⼩合并代价样例输⼊41234样例输出19题解:这道题⽬如果其实我⾃⼰接触的时候还是很早的,我很早很早之前就在⼀场⽐赛当中接触到了这道题⽬,那是很久很久之前的⼀个春天,我⼤⼀的时候的⼀场校赛中,我唯⼀没有做出来TLE的题,因为当时还不知道记忆化搜索这个概念。
所以我当时的解法是⽤的dfs,没有使⽤记忆化进⾏剪枝。
这⾥的记忆化搜索其实可以对应动态规划的状态转移⽅程。
⾸先我们可以回到这道题⽬⾥⾯来,可以看到:区间[1..N]经过N-1次合并会获得最终的⼀个数,那么在经过N-2次合并的时候是会还剩2个数的,⽽且这两个数肯定还是连续的a[i]和a[i+1],所以,如果我们设dp[i][j]表⽰合并区间[i,j]的最⼩代价,那么:dp[i][j] = min(dp[i][k] + dp[k+1][j]) + sum(i,j) , 其中k=i,i+1,...,j-1这⾥的sum(i,j)表⽰a[i]+a[i+1]+...+a[j]。
那么dp[i][j]怎么求呢,我们可以通过定义⼀个函数dfs(i,j)来求得,但是可以通过记忆化搜索进⾏剪枝优化,其实就是写DP的时候记录的⼀些中间结果对应的重叠⼦问题。
石子合并dp表达式
石子合并dp表达式
石子合并问题可以使用动态规划来解决。
对于有N堆石子的情况,设
dp[i][j]表示将i至j之间的石子合并成一堆的最小花费。
初始时,对于任意i,都有dp[i][i]=0,因为合并一堆石子不需要花费。
对于区间[i,j],枚举合并点k,则该区间合并的最小花费为:dp[i][k]+ dp[k+1][j]+sum[i][j],其中sum[i][j]表示区间[i,j]中石子数量的和。
最终答案即为dp[1][n]。
对于有N堆石子,每次只能移动相邻的2堆石子合并的情况,最终的结果
为dp[1][n],表示合并全部石子的最小代价。
以上内容仅供参考,建议查阅相关资料文献,或者咨询数学领域专业人士,以获取更全面准确的信息。
石子合并问题原理
石子合并问题原理
石子合并问题是一个经典的动态规划问题。
假设有n堆石子,每堆石子的数量分别为a_1, a_2, ..., a_n。
当合并两堆石子时,合并的代价为两堆石子的数量之和。
最终目标是通过一系列合并操作,使得最终只剩下一堆石子,并且合并的总代价最小。
为了解决这个问题,可以使用动态规划的思想。
定义一个二维数组dp,其中dp[i][j]表示从第i堆石子到第j堆石子合并的最小代价。
当i=j时,即只有一堆石子,不需要进行任何合并,所以
dp[i][j]=0。
当i<j时,假设k是i和j之间的一个分割点,那么dp[i][j]的值可以通过枚举所有可能的分割点k来求得。
具体计算dp[i][j]的方法如下:
- 首先,将dp[i][j]初始化为一个较大的值,比如无穷大。
- 然后,枚举分割点k,计算合并左侧和右侧的代价,即
dp[i][k]+dp[k+1][j]+sum(a_i to a_j)。
- 最后,选取所有分割点中代价最小的那个作为dp[i][j]的值。
最终,dp[1][n]就是合并所有石子的最小代价。
实际上,可以通过动态规划的方式先计算出所有长度为2、3、...、n的子问题的解,然后再利用这些子问题的解来递推计
算整个问题的解,这就是动态规划的思想。
总结起来,石子合并问题的原理就是使用动态规划,通过定义状态和状态转移方程,逐步递推计算出最终的结果。
石子合并(动态规划)详细解题报告
二.算法分析竞赛中多数选手都不约而同地采用了尽可能逼近目标的贪心法来逐次合并:从最上面的一堆开始,沿顺时针方向排成一个序列。
第一次选得分最小(最大)的相邻两堆合并,形成新的一堆;接下来,在N-1堆中选得分最小(最大)的相邻两堆合并……,依次类推,直至所有石子经N-1次合并后形成一堆。
例如有6堆石子,每堆石子数(从最上面一堆数起,顺时针数)依次为346542要求选择一种合并石子的方案,使得做5次合并,得分的总和最小。
按照贪心法,合并的过程如下:每次合并得分第一次合并346542 ->5第二次合并54654 ->9第三次合并9654 ->9第四次合并969 ->15第五次合并159 ->2424总得分=5+9+9+15+24=62但是当我们仔细琢磨后,可得出另一个合并石子的方案:每次合并得分第一次合并346542 ->7第二次合并76542 ->13第三次合并13542 ->6第四次合并1356 ->11第五次合并1311 ->2424总得分=7+6+11+13+24=61显然,后者比贪心法得出的合并方案更优。
题目中的示例故意造成一个贪心法解题的假像,诱使读者进入“陷阱”。
为了帮助读者从这个“陷阱”里走出来,我们先来明确一个问题:1.最佳合并过程符合最佳原理使用贪心法至所以可能出错,是因为每一次选择得分最小(最大)的相邻两堆合并,不一定保证余下的合并过程能导致最优解。
聪明的读者马上会想到一种理想的假设:如果N-1次合并的全局最优解包含了每一次合并的子问题的最优解,那么经这样的N-1次合并后的得分总和必然是最优的。
例如上例中第五次合并石子数分别为13和11的相邻两堆。
这两堆石头分别由最初的第1,2,3堆(石头数分别为3,4,6)和第4,5,6堆(石头数分别为5,4,2)经4次合并后形成的。
于是问题又归结为如何使得这两个子序列的N-2次合并的得分总和最优。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划石子合并问题
【石子合并】
在一个圆形操场的四周摆放着n 堆石子。
现要将石子有次序地合并成一堆。
规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
【输入文件】
包含两行,第1 行是正整数n(1<=n<=100),表示有n堆石子。
第2行有n个数,分别表示每堆石子的个数。
【输出文件】
输出两行。
第1 行中的数是最小得分;第2 行中的数是最大得分。
【输入样例】
4
4 4
5 9
【输出样例】
43
54
【分析】
本题初看以为可以使用贪心法解决问题,但是事实上因为有必须相邻两堆才能合并这个条件在,用贪心法就无法保证每次都能取到所有堆中石子数最多的两堆。
例如下面这个例子:
6
3 4 6 5 4 2
如果使用贪心法求最小得分,应该是如下的合并步骤:
第一次合并3 4 6 5 4 2 2,3合并得分是5
第二次合并5 4 6 5 4 5,4合并得分是9
第三次合并9 6 5 4 5,4合并得分是9
第四次合并9 6 9 9,6合并得分是15
第五次合并15 9 15,9合并得分是24
总得分=5+9+9+15+24=62
但是如果采用如下合并方法,却可以得到比上面得分更少的方法:
第一次合并3 4 6 5 4 2 3,4合并得分是7
第二次合并7 6 5 4 2 7,6合并得分是13
第三次合并13 5 4 2 4,2合并得分是6
第四次合并13 5 6 5,6合并得分是11
第五次合并13 11 13,11合并得分是24
总得分=7+13+6+11+24=61
由此我们知道本题是不可以使用贪心法求解的,上例中第五次合并石子数分别为13和11的相邻两堆。
这两堆石头分别由最初的第1,2,3堆(石头数分别为3,4,6)和第4,5,6堆(石头数分别为5,4,2)经4次合并后形成的。
于是问题又归结为如何使得这两个子序列的N-2次合并的得分总和最优。
为了实现这一目标,我们将第1个序列又一分为二:第1、2堆构成子序列1,第3堆为子序列2。
第一次合并子序列1中的两堆,得分7;第二次再将之与子序列2的一堆合并,得分13。
显然对于第1个子序列来说,这样的合并方案是最优的。
同样,我们将第2个子序列也一分为二;第4堆为子序列1,第5,6堆构成子序列2。
第三次合并子序列2中的2堆,得分6;第四次再将之与子序列1中的一堆合并,得分13。
显然对于第二个子序列来说,这样的合并方案也是最优的。
由此得出一个结论──6堆石子经过这样
的5次合并后,得分的总和最小。
动态规划思路:
阶段i:石子的每一次合并过程,先两两合并,再三三合并,...最后N堆合并
状态s:每一阶段中各个不同合并方法的石子合并总得分。
决策:把当前阶段的合并方法细分成前一阶段已计算出的方法,选择其中的最优方案
具体来说我们应该定义一个数组s[i,j]用来表示合并方法,i表示从编号为i的石头开始合并,j表示从i开始数j堆进行合并,s[i,j]为合并的最优得分。
对于上面的例子来说,初始阶段就是s[1,1],s[2,1],s[3,1],s[4,1],s[5,1],s[6,1],因为一开始还没有合并,所以这些值应该全部为0。
第二阶段:两两合并过程如下,其中sum(i,j)表示从i开始数j个数的和
s[1,2]=s[1,1]+s[2,1]+sum(1,2)
s[2,2]=s[2,1]+s[3,1]+sum(2,2)
s[3,2]=s[3,1]+s[4,1]+sum(3,2)
s[4,2]=s[4,1]+s[5,1]+sum(4,2)
s[5,2]=s[5,1]+s[6,1]+sum(5,2)
s[6,2]=s[6,1]+s[1,1]+sum(6,2)
第三阶段:三三合并可以拆成两两合并,拆分方法有两种,前两个为一组或后两个为一组s[1,3]=s[1,2]+s[3,1]+sum(1,3)或s[1,3]=s[1,1]+s[2,2]+sum(1,3),取其最优
s[2,3]=s[2,2]+s[4,1]+sum(2,3)或s[1,3]=s[2,1]+s[3,2]+sum(2,3),取其最优
.
.
.
第四阶段:四四合并的拆分方法用三种,同理求出三种分法的得分,取其最优即可。
以后第五阶段、第六阶段依次类推,最后在第六阶段中找出最优答案即可。
由此得到算法框架如下:
For j←2 to n do {枚举阶段,从两两合并开始计算}
For i←1 to n do {计算当前阶段的n种不同状态的值}
For k←1 to j-1 do {枚举不同的分段方法}
begin
If i+k>n then t←(i+k) mod n else t←i+k {最后一个连第一个的情况处理}
s[i,j]←最优{s[i,k]+s[t,j-k]+sum[1,3]} {sum[i,j]表示从i开始数j个数的和}
end;
var
n:integer;
a:array[1..100] of longint;
s:array[1..100,1..100] of longint;
t:array[0..100,0..100] of longint;
i,j,k,temp,max,min:longint;
begin
assign(input,'shizi.in');
reset(input);
readln(n);
fillchar(t,sizeof(t),0); {计算和数组}
for i:=1 to n do
read(a[i]);
for i:=1 to n do
for j:=1 to n do
for k:=i to i+j-1 do
begin
if k>n then temp:=k mod n else temp:=k;
t[i,j]:=t[i,j]+a[temp];
end;
{动态规划求最大得分}
fillchar(s,sizeof(s),0);
for j:=2 to n do
for i:=1 to n do
for k:=1 to j-1 do
begin
if i+k>n then temp:=(i+k) mod n else temp:=i+k; {处理环形问题} max:=s[i,k]+s[temp,j-k]+t[i,j];
if s[i,j]<max then s[i,j]:=max;
end;
max:=0; {在最后的阶段状态中找最大得分}
for i:=1 to n do
if max<s[i,n] then max:=s[i,n];
{动态规划求最小得分}
fillchar(s,sizeof(s),0);
for j:=2 to n do
for i:=1 to n do
begin
min:=maxlongint;
for k:=1 to j-1 do
begin
if i+k>n then temp:=(i+k) mod n else temp:=i+k; {处理环形问题} s[i,j]:=s[i,k]+s[temp,j-k]+t[i,j];
if min>s[i,j] then min:=s[i,j];
end;
s[i,j]:=min;
end;
min:=maxlongint; {在最后的阶段状态中找最小得分}
for i:=1 to n do
if min>s[i,n] then min:=s[i,n];
writeln(max);
writeln(min);
end.。