椭圆离心率总结汇总

椭圆离心率总结汇总
椭圆离心率总结汇总

关于椭圆离心率

设椭圆x a y b

a b 222

210+=>>()的左、右焦点分别为F F 12、,如果椭

圆上存在点P ,使∠=?F PF 1290,求离心率e 的取值范围。 解法1:利用曲线范围

设P (x ,y ),又知F c F c 1200(,),(,)-,则

F P x c y F P x c y F PF F P F P F P F P x c x c y x y c 121212122222

9000→→

=+=-∠=?⊥?=+-+=+=()()()(),,,由,知,

则,

即得

将这个方程与椭圆方程联立,消去y ,可解得

x a c a b a b F PF x a

a c a

b a b a

2

222222

1222

222222

2

9000=

--∠=?

≤<≤--<但由椭圆范围及知即

可得,即,且从而得,且所以,)

c b c a c c a e c a e c a e 2222222

2212

2

1≥≥-<=

≥=<∈[

解法2:利用二次方程有实根

由椭圆定义知

||||||||||||PF PF a PF PF PF PF a 121222122224+=?++=

又由,知则可得这样,与是方程的两个实根,因此

∠=?+===--+-=F PF PF PF F F c PF PF a c PF PF u au a c 12122212221222122229042220||||||||||()

||||()

?=--≥?=≥

?≥

4801

22

2

2222

22a a c e c a e ()

因此,e ∈[

)2

2

1 解法3:利用三角函数有界性

记∠=∠=PF F PF F 1221αβ,,由正弦定理有

||sin ||sin ||

sin ||||sin sin ||||||||sin sin sin

cos

cos

PF PF F F PF PF F F PF PF a F F c e c a 121212121212902211

22

2

122

βααβ

αβ

αβ

αβ

αβ

==

??++=+===

=+=+-=

-又,,则有

而知从而可得09002

45222

12

2

1

≤-

≤-

<-≤≤<||||cos αβαβαβ

e

解法4:利用焦半径 由焦半径公式得

||||||||||PF a ex PF a ex PF PF F F a cx e x a cx e x c

a e x c x c a e P x y x a x a 1212221222

2

2

2

2

2

2

2

2

2

2

2

22

2

22224220=+=-+=+++-+=+==

-≠±≤<,又由,所以有

即,又点(,)在椭圆上,且,则知,即

022

2

1222

2≤-<∈c a e a

e 得,)

[

解法5:利用基本不等式

由椭圆定义,有212a PF PF =+|||| 平方后得

42228212221212221222a PF PF PF PF PF PF F F c =++?≤+==||||||||(||||)||

得c a

2212≥ 所以有,)e ∈[

2

21 解法6:巧用图形的几何特性

由∠=?F PF 1290,知点P 在以||F F c 122=为直径的圆上。 又点P 在椭圆上,因此该圆与椭圆有公共点P 故有c b c b a c ≥?≥=-2

2

2

2

由此可得,)e ∈[

2

2

1

水深火热的演练

一、直接求出a c ,或求出a 与b 的比值,以求解e 。

在椭圆中,a c e =,222

22221a

b a b a a

c a c e -=-===

1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于2

2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为

2

2 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为

2

1 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为

12

。 5.若椭圆)0(,122

22>>=+b a b

y a x 短轴端点为P 满足21PF PF ⊥,

则椭圆的离心率为=

e 2

2

。 6..已知)0.0(121>>=+n m n m 则当mn 取得最小值时,椭圆1

22

22=+n

y m x 的的离心率为2

3

7.椭圆22

221(0)x y a b a b

+=>>的焦点为1F ,2F ,两条准线与x 轴的交点

分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是

1?

????

8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为=

e 2

2

。 9.P 是椭圆22a x +22

b

y =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知

,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 椭圆的离心率为=e 13-

10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若

75,151221=∠=∠F PF F PF , 则椭圆的离心率为

3

6 11.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为

2

2 12.设椭圆22

22b

y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1

且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是2

1

13.椭圆122

22=+b

y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F

到直线AB 的距离等于21∣AF∣,则椭圆的离心率是36

14.椭圆122

22=+b

y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD

的内切圆恰好过焦点,则椭圆的离心率是

2

1

5- 15.已知直线L 过椭圆122

22=+b

y a x (a>b>0)的顶点A (a,0)、B(0,b),

如果坐标原点到直线L 的距离为

2a ,则椭圆的离心率是3

6

16.在平面直角坐标系中,椭圆22

22x y a b +=1( a b >>0)的焦距为2,以O

为圆心,a 为半径作圆,过点2,0a c ??

???

作圆的两切线互相垂直,则离心

率e

17.设椭圆22221(0)x y a b a b

+=>>的离心率为1

e 2=,右焦点为(0)F c ,,

方程20ax bx c +-= 的两个实根分别为1x 和2x ,则点12()

P x x ,( A )

A.必在圆222x y +=内

B.必在圆222x y +=上 C.必在圆222x y +=外

D.以上三种情形都有可能

二、构造a c ,的齐次式,解出e

1.已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是

5

3

2.以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是

13-

3.以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13- 4.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点

P ,若△F 1PF 2

1 5.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是

3

3

6.设12F F 、分别是椭圆()22

2210x y a b a b

+=>>的左、右焦点,P 是其右

(c 为半焦距)的点,且122F F F P =,则椭

圆的离心率是

2

三、寻找特殊图形中的不等关系或解三角形。

1.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点

M 总在椭圆内部,则椭圆离心率的取值范围是(0,

)2

2.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且

9021=∠PF F ,

椭圆离心率e 的取值范围为???

?

???1,22 3.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且

6021=∠PF F ,

椭圆离心率e 的取值范围为??

????1,21

4.设椭圆122

22=+b

y a x (a>b>0)的两焦点为F 1、F 2,若椭圆上存在一点Q ,

使∠F 1QF 2=120o,椭圆离心率e 的取值范围为136

<≤e

5.在ABC △中,AB BC =,7

cos 18B =-.若以A B ,为焦点的椭圆

经过点C ,则该椭圆的离心率e =3

8.

6.设12F F ,分别是椭圆22

221x y a b

+=(0a b >>)的左、右焦点,若在其

右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值

范围是1?

????

7.如图,正六边形ABCDEF 的顶点A 、D 为一椭圆的两个焦点,其余四个顶点B 、C 、E 、F

椭圆离心率的解法

椭圆的几何性质中,对于离心率和离心率的取值范围的处理,同学们很茫然,没有方向性。题型变化很多,难以驾驭。以下,总结一些处理问题的常规思路,以帮助同学们理解和解决问题。

一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,

QF ⊥AD 于F,设椭圆的离心率为e ,则①e=|PF ||PD |②

e=|QF ||BF |③e=|AO ||BO |④e=|AF ||BA | ⑤e=|FO ||AO |

评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。

∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,|BO |= a 2

c

∴有③。

题目1:椭圆x 2

a 2 +y 2

b 2 =1(a>b >0)的两焦点为F 1 、

F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?

思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF 2 的中点B ,连接BF 1 ,把已知条件放在椭圆内,构造△F 1BF 2分析三角形的各边长及关系。

解:∵|F 1F 2|=2c |BF 1|=c |BF 2|

=3c

c+3c=2a ∴e= c

a

= 3-1

变形1:椭圆x2

a2

+

y2

b2

=1(a>b >0)的两焦点为F1、

F2,点P在椭圆上,使△OPF1为正三角形,求椭

圆离心率?

解:连接PF2,则|OF2|=|OF1|=|OP|,∠F1PF2 =90°图形如上图,e=3-1

变形2: 椭圆x2

a2

+

y2

b2

=1(a>b >0)的两焦点为

F1、F2,AB为椭圆的顶点,P是椭圆上一点,且PF1⊥X轴,PF2 ∥AB,求椭圆离心率?

解:∵|PF1|= b2

a

|F2 F1|=2c |OB|=b |

OA|=a

PF2 ∥AB ∴|PF1|

|F2 F1|

=

b

a

又∵b= a2-c2

∴a2=5c2 e=

5 5

点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的方程式,推导离心率。

二、运用正余弦定理解决图形中的三角形

题目2:椭圆x2

a2

+

y2

b2

=1(a>b >0),A是左顶点,

F是右焦点,B是短轴的一个顶点,∠ABF=90°,求e?

解:|AO |=a |OF |=c |BF |=a |AB |=a 2

+b 2

a 2

+b 2

+a 2

=(a+c)2

=a 2

+2ac+c 2

a 2

-c 2

-ac=0 两边同除以a 2

e 2

+e-1=0 e=-1+ 5 2 e=-1-52

(舍去)

变形:椭圆x 2 a 2 +y 2

b 2 =1(a>b >0),e=-1+ 5

2, A

是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF ?

点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。答案:90°

引申:此类e=5-1

2

的椭圆为优美椭圆。

性质:1、∠ABF=90°2、假设下端点为B 1 ,则ABFB 1 四点共圆。3、焦点与相应准线之间的距离等于长半轴长。

总结:焦点三角形以外的三角形的处理方法根据几何意义,找各边的表示,结合解斜三角形公式,列出有关e 的方程式。

题目3:椭圆x 2

a 2 +y 2

b 2 =1(a>b >0),过左焦点F 1 且

倾斜角为60°的直线交椭圆与AB 两点,若|F 1A |=2|BF 1|,求e?

解:设|BF 1|=m 则|AF 2|=2a-am |BF 2|=2a-m

在△AF 1F 2 及△BF 1F 2 中,由余弦定理得:

?

????a 2 –c 2=m(2a-c) 2(a 2-c 2)=m(2a+c) 两式相除:2a-c

2a+c

=12 ?e=23

题目4:椭圆x 2

a 2 +y 2

b 2 =1(a>b >0)的两焦点为F 1

(-c ,0)、F 2 (c,0),P 是以|F 1F 2|为直径的圆

与椭圆的一个交点,且

∠PF1F2 =5∠PF2F1 ,求e?

分析:此题有角的值,可以考虑正弦定理的应用。

解:由正弦定理:

|F1F2|

sin F1PF2

=

|F1P|

sin F1F2P

=

|PF2|sin PF1F2

根据和比性质:

|F1F2|sin F1PF2=

|F1P|+|PF2| sinF1F2P+sin PF1F2

变形得:

|F1F2|

|PF2|+|F1P|

=

sin F1PF2

sin F1F2P +sin PF1F2

=

=

2c

2a

=e

∠PF1F2 =75°∠PF2F1 =15°

e= sin90°

sin75°+sin15° =

6

3

点评:在焦点三角形中,使用第一定义和正弦定理可知

e=sin F 1PF 2

sin F 1F 2P +sin PF 1F 2

变形1:椭圆x 2

a 2 +y 2

b 2 =1(a>b >0)的两焦点为F 1

(-c ,0)、F 2 (c,0),P 是椭圆上一点,且∠F 1PF 2 =60°,求e 的取值范围? 分析:上题公式直接应用。

解:设∠F 1F 2P=α,则∠F 2F 1P=120°-α e=

sin F 1PF 2

sin F 1F 2P +sin PF 1F 2 = sin60°

sin α+sin(120°-α)

= 1 2sin(α+30°)≥12 ∴1

2

≤e<1

变形2:已知椭圆x 2

4+ y 2

4t 2 =1

(t>0) F 1F 2 为椭圆两焦点,M 为椭圆上任意一点(M 不与长轴两端点重合)设∠PF 1F 2 =α,∠PF 2F 1 =β若13

α 2< tan β2 <1

2

,求e 的取值范围?

分析:运用三角函数的公式,把正弦化正切。

解;根据上题结论e=

sin F 1PF 2

sin F 1F 2P +sin PF 1F 2 =sin(α+β)

sin α+sin β =2sin α+β 2 cos

α+β 2 2sin α+β 2 cos α-β

2

= cos α 2cos β 2 -sin α 2 sin β

2

cos α 2cos β 2 +sin α 2 sin β 2

=1- tan α 2 tan β2

1- tan α 2 tan β

2

=e

∵13<1-e 1+e <12 ∴13

2

三、 以直线与椭圆的位置关系为背景,用设而

不求的方法找e 所符合的关系式.

题目5:椭圆x 2

a 2 +y 2

b 2 =1(a>b >0),斜率为1,

且过椭圆右焦点F 的直线交椭圆于A 、B 两点,→OA +→

OB 与→ a =(3,-1)共线,求

e?

法一:设A(x 1,y 1) ,B(x 2,y 2)

?????b 2x 2+a 2y 2=a 2b 2 y=x-c

(a 2

+b 2

)x 2

-2a 2

cx+a 2c 2

-a 2b 2

=0 x 1+x 2=2a 2

c a 2+b 2 y 1+y 2=2a 2

c a 2+b 2-2c=-2b 2

c a 2+b 2

OA +→OB =(x 1+x 2,y 1+y 2)与(3,-1)共线,则 -(x 1+x 2)=3(y 1+y 2)既 a 2

=3b 2

e=63

法二:设AB 的中点N ,则2→

ON =→OA +→OB ?????x 12

a 2+ y 12

b 2

=1 ①

x 22a 2+ y 22 b

2

=1 ② ① -② 得: y 1-y 2x 1-x 2 =- b 2

a 2 x 1 +x 2 y 1+y 2 ∴1=-

b 2

a 2

(-3) 既

a 2

=3b 2

e=6

3

四、 由图形中暗含的不等关系,求离心率的取

值范围。

题目6:椭圆x 2

a 2 +y 2

b 2 =1(a>b >0)的两焦点为F 1

(-c ,0)、F 2 (c,0),满足→MF 1·→MF 2 =0的点M 总在椭圆内部,则e 的取值范围?

分析:∵→MF

1·→MF 2 =0∴以F 1F 2 为直径作圆,M 在圆O 上,与椭圆没有交点。 解:∴c

a 2

=b 2

+c 2

>2c 2

∴0

2

题目7:椭圆x2

a2

+

y2

b2

=1(a>b >0)的两焦点为F1

(-c,0)、F2(c,0),P为右准线L上一点,F1P 的垂直平分线恰过F2点,求e的取值范围?

分析:思路1,如图F1P与 F2M 垂直,根据向量垂直,找a、b、c的不等关系。

思路2:根据图形中的边长之间的不等关系,求e

解法一:F1(-c,0) F2 (c,0) P(a2

c

,y0 )

M(a2

c -c

2 ,

y0

2

)

既( b 2

2c , y 0 2 ) 则→PF 1 =-( a 2

c +c, y 0 ) →MF 2 =-( b 2

2c -c, y 0 2 ) →PF

1·→MF 2 =0 ( a 2

c +c, y 0 ) ·( b 2

2c -c, y 0

2 )=0

( a 2

c +c)·( b 2

2c -c)+ y 02

2 =0

a 2

-3c 2

≤0 ∴3

3

≤e<1

解法2:|F 1F 2|=|PF 2|=2c

|PF 2|≥a 2

c -c 则2c ≥a

2

c -c 3c ≥

a

2

c

3c 2

≥a 2

则3

3

≤e<1

总结:对比两种方法,不难看出法一具有代表性,可谓通法,而法二是运用了垂直平分线的几何性质,巧妙的运用三角形边的大小求解的妙法。所以垂直平分线这个条件经常在解析几何中出现,对于它的应用方法,值得大家注意。

椭圆、双曲线离心率难题专题

椭圆、双曲线离心率难题专题 1. (2018学年杭高高三开学考15)已知1F ,2F 分别是椭圆()22 22133 x y a a +=>的左右焦点,A 是椭圆上 一动点,圆C 与1F A 的延长线以及线段2AF 相切,若()2,0M 为一切点,则椭圆的离心率为 . 2. (2018学年杭十四中4月月考2)已知双曲线2221x y a -=的一条渐近线方程是y ,则双曲线的 离心率为( ) A B C D 3. (2018学年浙江名校协作体高三上开学考2)双曲线2 213 x y -=的焦距为( ) A .2 B . C . D .4 4. (2018学年浙江名校协作体高三下开学考12)已知直线l 为双曲线()22 22:10,0x y C a b a b -=>>的一条 渐近线,1F ,2F 是双曲线C 的左、右焦点,点1F 关于直线l 的对称点在双曲线C 的另一条渐近线上,则双曲线C 的渐近线的斜率为 ,离心率e 的值为 . 5. (2018学年浙江重点中学高三上期末热身联考3)已知双曲线2 221y x a -=的一条渐近线方程为y =, 则该双曲线的离心率是( ) A . 3 B C .2 D 6. (2019届超级全能生2月模拟16)已知椭圆()22 2210x y a b a b +=>>的左、右焦点分别为1F ,2F ,椭圆

上点P 满足122PF PF =,射线PM 平分12F PF ∠,过坐标原点O 作PM 的平行线交1PF 于点Q ,且 121 4PQ F F =,则椭圆的离心率是 . 7. (2019届慈溪中学5月模拟6)若椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点 的 曲线,且都过点B ,它们的离心率分别是1e ,2e ,则2212 11 e e +=( ) A . 32 B .2 C .3 D . 52 8. (2019届杭二仿真考16)存在第一象限的点()00,M x y 在椭圆()22 2210x y a b a b +=>>上,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点,02c ?? ??? (c 为椭圆半焦距),则椭圆离心率的取 值范围是 . 9. (2019届杭州4月模拟10)已知椭圆()22 22:10x y a b a b Γ+=>>,直线1x y +=与椭圆Γ交于,M N 两点, 以线段MN 为直径的圆经过原点.若椭圆Γ ,则a 的取值范围为( ) A .( B .? C .? ?? D .? ?? 10. (2019届湖州三校4月模拟17)已知椭圆()22 2210x y a b a b +=>>的两个顶点()(),0,0,A a B b ,过,A B 分别作AB 的垂线交该椭圆于不同的顶点C ,D 两点,若23BD AC =,则椭圆的离心率是 . 11. (2019届稽阳联谊4月模拟16)已知,C F 分别是椭圆22 22:1x y a b Γ+=的左顶点和左焦点,,A B 是椭圆 的下、上顶点,设AF 和BC 交于点D ,若2CD DB =u u u r u u u r ,则椭圆Γ的离心率为 .

离心率的五种求法专题

离心率的求法 椭圆的离心率10<e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e 已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式a c e = 来解决。 例1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( ) A. 4 3 B. 3 2 C. 2 1 D. 4 1 变式练习:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( ) A. 23 B. 2 6 C. 23 D 2 二、构造a 、c 的齐次式,解出e 根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。 例2:已知1F 、2F 是双曲线 12 22 2=- b y a x (0,0>>b a ) 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 2 13+ D. 13+ 变式练习1:双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,021120=∠MF F ,则双曲线的离心率为( )A 3 B 2 6 C 3 6 D 3 3 变式练习2.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .3 1B . 3 3 C .2 1D . 2 3 变式练习3:设双曲线12 22 2=- b y a x (b a <<0)的半焦距为c ,直线L 过()0,a ,()b ,0两点.已知原点到 直线的距离为 c 4 3,则双曲线的离心率为( )A. 2 B. 3 C. 2 D. 3 32 三、采用离心率的定义以及椭圆的定义求解 例3:设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若21PF F ?为等腰直角三角形,则椭圆的离心率是________。 变式练习1:设1F 、2F 分别是双曲线 12 22 2=- b y a x 的左、 右焦点,若双曲线上存在点A ,使0 2190=∠AF F ,且213AF AF =,则双曲线离心率为( )A 2 5 B 2 10 C 2 15 D 5 四、构建关于e 的不等式,求e 的取值范围 例4:已知双曲线 12 22 2=- b y a x (0,0>>b a )的右焦点为F ,若过点F 且倾斜角为0 60的直线与双曲线 的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A []2,1 B ()2,1 C [)+∞,2 D ()+∞,2 变式练习1.已知点1F ,2F 分别是双曲线 2 2 22 1 (0,0)x y a b a b -=>>的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若2A B F ?是锐角三角形,则该双曲线离心率的取值范围是 .

椭圆知识点总结及经典习题.docx

圆锥曲线与方程--椭圆 知识点 一?椭圆及其标准方程 1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c}; 这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。 (2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。 2 2 2 2?标准方程:c= a- b 2 2 χ+y _ 1 ①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0) a b 2 2 y X ②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C) a b 注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上; 2 2 ②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1 m n 二?椭圆的简单几何性质: 1. 范围 2 2 (1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤b a2b2 2 2 (2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤a a2b2 2. 对称性 椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心 3. 顶点 (1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b) (2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭

圆的长半轴长和短半轴长。 4 .离心率 (1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率, 2a a e = O 是圆; e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1 ( e 越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 ?椭圆的的内外部 2 2 x 2 y 2 亠 —x o + y o W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U2 1 a b a b 2 2 x 2 y 2 亠 X O * y O 彳 (2) 点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1. a b a b 6. 几何性质 (1) 点P 在椭圆上, 最大角? F 1PF 2 max =∕F 1 B 2F 2, (2) 最大距离,最小距离 7. 直线与椭圆的位置关系 (1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法 记作 e ( 0 < e < 1),

椭圆离心率求法总结

椭圆离心率的解法 一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率为e ,则①e=|PF ||PD |②e=|QF ||BF |③e=|AO | |BO |④ e=|AF ||BA |⑤e=|FO | |AO | 评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。 ∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,| BO |= a2 c ∴有③。 题目1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭 圆恰好平分正三角形的两边,则椭圆的离心率e ? 思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。 解:∵|F1F2|=2c |BF1|=c |BF2|=3c c+3c=2a ∴e= c a = 3-1 变形1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正

三角形,求椭圆离心率? 解:连接PF2 ,则|OF2|=|OF1|=|OP |,∠F1PF2 =90°图形如上图,e=3-1 变形2: 椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,AB 为椭圆的顶点,P 是椭圆上一 点,且PF1 ⊥X 轴,PF2 ∥AB,求椭圆离心率? 解:∵|PF1|= b2 a |F2 F1|=2c |OB |= b |OA |=a PF2 ∥AB ∴|PF1| |F2 F1|= b a 又 ∵b= a2-c2 ∴a2=5c2 e= 55 点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a 与c 的 方程式,推导离心率。 二、运用正余弦定理解决图形中的三角形 题目2:椭圆x2 a2 +y2 b2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ ABF=90°,求e?

关于椭圆离心率专项练习(1)

关于椭圆离心率的演练 一、直接求出a c ,或求出a 与b 的比值,以求解e 。 在椭圆中,a c e =,222 22221a b a b a a c a c e -=-=== 1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 5.若椭圆)0(,122 22>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥, 则椭圆的离心率为 6..已知)0.0(121>>=+n m n m 则当mn 取得最小值时,椭圆1 22 22=+n y m x 的的离心率为 7.椭圆22 221(0)x y a b a b +=>>的焦点为1F ,2F ,两条准线与x 轴的交点 分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是 8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为=e 。 9.P 是椭圆22a x +22 b y =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知 ,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 椭圆的离心率为=e 10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 11.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 12.设椭圆22 22b y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1 且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是 。 13.椭圆 12222=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F

椭圆离心率求法总结

椭圆离心率的解法 一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率为e ,则①e=|PF | |PD |② e=|QF ||BF |③e=|AO ||BO |④e=|AF ||BA |⑤e=|FO ||AO | 评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。 ∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,|BO |= a2 c ∴有③。 题目1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、 F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三

角形的两边,则椭圆的离心率e ? 思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。 解:∵|F1F2|=2c |BF1|=c |BF2|=3c c+3c=2a ∴e= c a = 3-1 变形1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正 三角形,求椭圆离心率? 解:连接PF2 ,则|OF2|=|OF1|=|OP |,∠F1PF2 =90°图形如上图,e=3-1 变形2: 椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,AB 为椭圆的顶点,P 是椭圆上一 点,且PF1 ⊥X 轴,PF2 ∥AB,求椭圆离心率?

解:∵|PF1|= b2 a |F2 F1|=2c |OB |= b |OA |=a PF2 ∥AB ∴|PF1| |F2 F1|= b a 又 ∵b= a2-c2 ∴a2=5c2 e= 55 点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a 与c 的 方程式,推导离心率。 二、运用正余弦定理解决图形中的三角形 题目2:椭圆x2 a2 +y2 b2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ ABF=90°,求e? 解:|AO |=a |OF |=c |BF |=a |AB |=a2+b2 a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2-c2-ac=0 两边同除以a2 e2+e-1=0 e=-1+ 5 2 e=-1-5 2 (舍去) 变形:椭圆x2 a2 +y2 b2 =1(a>b >0),e=-1+ 5 2, A 是左顶点,F 是右焦点,B 是短轴的一个 顶点,求∠ABF ? 点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。答案:90° 引申:此类e= 5-1 2 的椭圆为优美椭圆。 性质:1、∠ABF=90°2、假设下端点为B1 ,则ABFB1 四点共圆。3、焦点与相应准线之间的

椭圆离心率高考练习题

椭圆的离心率专题训练 一.选择题(共29小题) 1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值围是() A. B. C. D. 2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为() A. B. C. D. 3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值围为() A. B. C. D. 4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为() A. B. C. D. 5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为() A. B. C. D. 6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,心I,且有(其中λ为实数),椭圆C的离心率e=() A. B. C. D. 7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值围是() A. B.C.D. 8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为() A. B.2﹣C.2(2﹣) D. 9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值围是() A. B.C.D.或 10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是() A. B. C. D. 11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值围是() A.(0,)B.(0,)C. D. 12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为() A. B. C. D.

椭圆离心率的解法

椭圆离心率的解法 椭圆的几何性质中,对于离心率和离心率的取值围的处理,同学们很茫然,没有方向性。题型变化很多,难以驾驭。以下,总结一些处理问题的常规思路,以帮助同学们理解和解决问题。 一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率 为e ,则①e=|PF ||PD |②e=|QF ||BF |③e=|AO ||BO |④e=|AF | |BA | ⑤e=|FO | |AO | 评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。 ∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,|BO |= a 2 c ∴ 有③。 题目1:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,以 F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则

椭圆的离心率e ? 思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF 2 的中点B ,连接BF 1 ,把已知条件放在椭圆,构造△F 1BF 2分析三角形的各边长及关系。 解:∵|F 1F 2|=2c |BF 1|=c |BF 2|=3c c+3c=2a ∴e= c a = 3-1 变形1:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,点 P 在椭圆上,使△OPF 1 为正三角形,求椭圆离心率? 解:连接PF 2 ,则|OF 2|=|OF 1|=|OP |,∠F 1PF 2 =90°图形如上图,e=3-1

椭圆经典练习题两套(带答案)

椭圆练习题1 A组基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ). A.1 2 B. 2 2 C. 2 D. 3 2 解析由题意得2a=22b?a=2b,又a2=b2+c2 ?b=c?a=2c?e= 2 2 . 答案B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x2 81 + y2 72 =1 B. x2 81 + y2 9 =1 C. x2 81 + y2 45 =1 D.x2 81+ y2 36 =1

解析 依题意知:2a =18,∴a =9,2c =1 3×2a ,∴c =3, ∴b 2 =a 2 -c 2 =81-9=72,∴椭圆方程为x 2 81 + y 2 72 =1. 答案 A 3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A. 32 B.34 C.22 D.23 解析 先将 x 2+4y 2=1 化为标准方程x 21+y 214 =1,则a =1,b =12,c =a 2-b 2=3 2 . 离心率e =c a =3 2. 答案 A 4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2 =1的左、右焦点,P 是第一象 限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.26 3 解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24 +y 2=1在第一象限的交点, 解方程组???? ? x 2+y 2=3,x 24+y 2 =1,得点P 的横坐标为 26 3 . 答案 D 5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 3 2 ,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ).

椭圆的离心率求法

椭圆3 例7.椭圆22a x +22 b y =1(a >b >0)的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为3,求椭圆的方程. 122x +92 y =1 例8.根据条件,求出椭圆的方程:中心在原点,对称轴为坐标轴,焦点在x 轴上, 短轴的一个顶点B 与两个焦点12,F F 组成的三角形的周长为4+1223F BF π∠=. (2)设长轴为2a ,焦距为2c ,则在2F OB ?中,由23 F OB π∠= 得:2c a =,所以21F BF ? 的周长为2224a c a +==+ 22,1a c b ∴==∴=故得:22 141 x y +=. 四.怎么求椭圆的离心率. 引例. 已知椭圆长轴与短轴的比为2:1,求离心率. 例8、已知椭圆一焦点与短轴两端点连线的夹角为90?,求椭圆的离心率. 解:∵ |FO| = c , |OA| = b , |AF| = a ∴ 在△AOF 中, θcos =a c , θ = 45? ? cos45?=22 ∴ 椭圆的离心率e =22 说明:离心率与角度关系:θcos =e 例9.椭圆x 2 a 2 +y 2 b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ? 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2| . ( ) A. 16x 2+9y 2=1 B. 16x 2+12y 2=1 C. 4x 2+3y 2=1 D. 3x 2 +4 y 2=1 变式:椭圆12222=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等于21∣AF ∣,求椭圆的离心率.(3 6) 10.焦点在Y 轴上的椭圆1422=+m y x 的离心率为21,则=m .

椭圆练习题(经典归纳)

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点1,22?? ? ??? ,,M N 为平面上关于原点对称的两点,已知N 的 坐标为0,3? - ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材P .37 A 组.T3 T4 B组 T2 练习 1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)

(3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t 。 【反斜截式,1 m k 】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x (1)若直线过点)(4,0且与圆C 相交于A,B 两点,且2=AB ,求直线方程. (2)若直线过点) (3,1且与圆C 相切,求直线方程. (3)若直线过点) (0,4且与圆C 相切,求直线方程. 附加:4)4(3:22 =-+-y x C )( . 若直线过点)(0,1且与圆C 相交于P 、Q 两点,求CPQ S ?最大时的直线方程. 椭 圆

椭圆中的离心率问题

椭圆中的离心率 学习目标:掌握常见的求椭圆的离心率的值与范围的方法 一.课前预习: 1. 已知正三角形ABC,椭圆以B ,C 为焦点,且过AB、AC 的中点,椭圆的离心率是 。 2.椭圆122 22=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离 等于2 1 ∣AF 3.如图,从椭圆上一点P 向x 的一个焦点1F B 的连线与OP 4.椭圆()22 2210x y a b a b +=>>的两个焦点是12,F F ,P 是椭圆右准线上一点,若线段1PF 的 中垂线经过2F ,则椭圆离心率的取值范围是 。 二.例题解析: (一).求离心率的值: 1.椭圆122 22=+b y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰 好过焦点,求椭圆的离心率。 2.如图所示,A 、B 是椭圆122 22=+b y a x (a>b>0F 2是右焦点,且AB ⊥BF 2,求椭圆的离心率 3.椭圆()22 2210x y a b a b +=>>的直线l 过椭圆的左焦点F 且交椭圆于A 、B 两点,若AF =2BF ,求椭圆的离心率

(二).求离心率的范围: 1.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且1290F PF ∠=,求椭圆离心率e 的取值范围。 2.椭圆12222=+b y a x (a>b>0)和圆x 2+y 2=(c b +2)2有四个交点,其中c 2=a 2-b 2, 求椭圆 离心率e 的取值范围。 三.巩固练习: 1.已知椭圆M :122 22=+b y a x (a>b>0),D (2,1)是椭圆M 的一条弦AB 的中点,点 P (4,-1)在直线AB 上,求椭圆M 的离心率。 2. 以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是 。 3.设椭圆122 22=+b y a x (a>b>0)的两焦点为F 1、F 2,长轴两端点为A 、B ,若椭圆上存 在一点Q ,使∠AQB=120o,求椭圆离心率e 的取值范围。 4.椭圆()22 2210x y a b a b +=>>的两个焦点是12,F F ,Q 是椭圆右准线与x 轴的交点,P 是 椭圆上一点,若线段PQ 的中垂线经过2F ,则椭圆离心率的取值范围是_________.

专题椭圆的离心率解法大全

专题:椭圆的离心率 一,利用定义求椭圆的离心率(a c e = 或 2 21?? ? ??-=a b e ) 1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e 3 2,椭圆1422=+m y x 的离心率为2 1,则=m [解析]当焦点在x 轴上时, 32124=?=-m m ; 当焦点在y 轴上时,316 214=?=-m m m , 综上3 16 = m 或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是 5 3 4,已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 [解析]由??? ???≠=+=0 222 2mn n m n n m n ?? ?==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(12 1>>=+n m n m 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为23 6,设椭圆22 22b y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的 距离,则椭圆的离心率是2 1 。 二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e 1,在?Rt ABC 中,ο 90=∠A ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率 ( ) 36-= e 2, 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且ο 901=∠BDB , 则椭圆的离心率为( ) [解析] =?=-?-=-?e ac c a c b a b 221)(21 5- 3,以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13- 变式(1):以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-

椭圆离心率常见求法整理归纳

5 椭圆的离心率 1.设12F F ,分别是椭圆22221(0)x y a b a b +=>>的左、右焦点,若椭圆上存在点A ,使 1290F AF ∠=且123AF AF =,则椭圆的离心率为 . 2.设椭圆C :22 221x y a b +=(0a b >>)的左、右焦点分别为12,F F ,P 是C 上的点, 212PF F F ⊥,1230PF F ∠=?,则椭圆C 的离心率为_____________. 3.设1F 、2F 分别是椭圆()22 22:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线 段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为 . 4.已知椭圆22 221x y a b +=(0a b >>)的两个焦点为12,F F ,以12F F 为边作正三角形,若椭 圆恰好平分正三角形的另外两条边,且124F F =,则a 等于___________. 5.椭圆)0(122 22>>=+b a b y a x 的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若 1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为________. 6.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________. 7.设椭圆()22 22:10x y C a b a b +=>>的左右焦点为12F F , ,作2F 作x 轴的垂线与C 交于A B ,两点,1F B 与y 轴交于点D ,若1AD F B ⊥,则椭圆C 的离心率等于________. 8.过点(1,1)M 作斜率为1 2 -的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为 . 9.椭圆C :)0(122 22>>=+b a b y a x 左右焦21,F F ,若椭圆C 上恰有4个不同的点P ,使 得21F PF ?为等腰三角形,则C 的离心率的取值范围是 _______

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题 【重点知识温馨提示】 1.e =c a = 1- b2a2(01) 2.确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,c 的方程或不等式,进而得到关于e 的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O 为坐标原点,F 是椭圆C : 22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·福建)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直 线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5, 则椭圆E 的离心率的取值范围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·江西)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与 C 相交于A ,B 两点,F 1B 与y 轴相交于点 D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.

关于椭圆离心率求法(供参考)

水深火热的演练 一、直接求出a c ,或求出a 与b 的比值,以求解e 。 在椭圆中,a c e =,22 2 22221a b a b a a c a c e -=-=== 1.已知椭圆的长轴长是短轴长的2 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为 2 1 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 12 。 5.若椭圆)0(,12222>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥,则椭圆的离心率为=e 22 。 6..已知)0.0(12 1>>=+n m n m 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为23 8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为= e 2 2 。 9.P 是椭圆22a x +22 b y =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知,2,1221αα=∠=∠F PF F PF , 321α=∠PF F 椭圆的离心率为= e 13- 10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 3 6 13.椭圆12222=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等于2 1 ∣AF∣, 则椭圆的离心率是36 。 14.椭圆122 22=+b y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过焦点,则 椭圆的离心率是 2 1 5-

最新求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型解析 解题关键:挖掘题中的隐含条件,构造关于离心率e 的不等式. 一、利用曲线的范围,建立不等关系 例1已知椭圆22 22 1(0)x y a b a b +=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂 直于PA ,求椭圆的离心率e 的取值范围. 例2 已知椭圆22 221(0)x y a b a b +=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在 一点P 使 1221 sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 ( ) 21,1-.

二、利用曲线的平面几何性质,建立不等关系 例3已知12、F F 是椭圆的两个焦点,满足 的点P 总在椭圆内部,则椭圆离心 率的取值范围是( ) A.(0,1) B. 1(0,]2 C.2 (0, )2 D.2[,1)2 x y O F 1 F 2

三、利用点与椭圆的位置关系,建立不等关系 例4已知ABC ?的顶点B 为椭圆122 22=+b y a x )0(>>b a 短轴的一个端点,另两个顶点也在 椭圆上,若ABC ?的重心恰好为椭圆的一个焦点F )0,(c ,求椭圆离心率的范围. 四、利用函数的值域,建立不等关系 例5椭圆122 22=+b y a x )0(>>b a 与直线01=-+y x 相交于A 、B 两点,且0=?OB OA (O 为原点),若椭圆长轴长的取值范围为 []6,5,求椭圆离心率的范围. 五、利用均值不等式,建立不等关系. 例6 已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.求椭圆离心率的范围; 解 设椭圆方程为x 2a 2+y 2 b 2=1 (a>b>0),|PF 1|=m ,|PF 2|=n ,则m +n =2a. 在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mncos 60°=(m +n)2-3mn =4a 2-3mn ≥4a 2-3·? ?? ??m +n 22 =4a 2-3a 2=a 2 x y O A B F M C

椭圆离心率问题专题练习

椭圆离心率问题专题练习 1. 已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 2.椭圆122 22=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等 于 2 1 ∣AF ∣,椭圆的离心率为 3.椭圆122 22=+b y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过 焦点,椭圆的离心率为 4. 以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,椭圆的离心率为 5.以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两 点,如果∣MF ∣=∣MO ∣,椭圆的离心率为 6. 如图所示,A 、B 是椭圆122 22=+b y a x (a>b>0)的两个端点,F 2是右焦点, 且AB ⊥BF 2,椭圆的离心率为 7.已知直线L 过椭圆 122 22=+b y a x (a>b>0)的 顶点A (a,0)、B(0,b),如果坐标原点到直线L 距离为2 a ,椭圆的离心率为 · 8.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且 6021=∠PF F ,椭圆离心率e 的取值范围为 9.椭圆12222=+b y a x (a>b>0)和圆x 2+y 2=(c b +2 )2有四个交点,其中c 2=a 2-b 2 , 椭圆离心 率e 的取值范围为 10.设椭圆122 22=+b y a x (a>b>0)的两焦点为F 1、F 2,长轴两端点为A 、B ,若椭圆上存在一

椭圆离心率求法

离心率的五种求法 椭圆的离心率10<e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e 已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式a c e = 来解决。 例1:已知双曲线1222 =-y a x (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心 率为() A. 23 B. 23 C. 2 6 D. 332 解:抛物线x y 62 -=的准线是23=x ,即双曲线的右准线2 3122=-==c c c a x ,则02322=--c c , 解得2=c ,3= a ,3 3 2= = a c e ,故选D 变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为() A. 43 B. 32 C. 21 D. 4 1 解:由()0,11F 、()0,32F 知132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a , 1=c ,所以离心率2 1 ==a c e .故选C. 变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为() A. 23B. 26 C. 2 3 D 2 解:由题设2=a ,62=c ,则3=c ,2 3 == a c e ,因此选C 变式练习3:点P (-3,1)在椭圆122 22=+b y a x (0>>b a )的左准线上,过点P 且方向为()5,2-=的 光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为() A 33 B 31 C 22 D 2 1 解:由题意知,入射光线为()32 5 1+- =-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则?? ???=+-=0 553 2 c c a 解得3=a ,1=c ,则33==a c e ,故选A 二、构造a 、c 的齐次式,解出e 根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

相关文档
最新文档