圆线圈和亥姆霍兹线圈的磁场
简述圆线圈与亥姆霍兹线圈轴线上磁场的测量

简述圆线圈与亥姆霍兹线圈轴线上磁场的测量一、前言圆线圈和亥姆霍兹线圈是常用的实验室磁场测量装置,它们能够产生均匀的磁场,并且在轴线上的磁场分布也比较稳定。
测量轴线上磁场是这两种线圈最常见的应用之一。
本文将详细介绍如何测量圆线圈和亥姆霍兹线圈轴线上的磁场。
二、测量原理测量轴线上的磁场需要使用霍尔元件来进行测量。
霍尔元件是一种基于霍尔效应工作的元件,它能够感受到垂直于其表面的磁场,并且产生电压信号输出。
通过将霍尔元件放置在轴线上,可以得到该位置处的磁场大小。
三、圆线圈轴向磁场测量方法1. 实验装置实验中需要使用一个直径为D的圆形导体制成的线圈,通过通电使其产生一个轴向均匀磁场。
同时,在轴向位置放置一个霍尔元件来进行测量。
2. 实验步骤(1)将电源接入导体制成的线圈,并调整电流大小使得在轴向位置产生一个均匀的磁场。
(2)将霍尔元件放置在轴向位置,并连接到万用表上。
(3)读取万用表显示的电压值,即为该位置处的磁场大小。
四、亥姆霍兹线圈轴向磁场测量方法1. 实验装置实验中需要使用两个相同的半径为R、匝数为N的亥姆霍兹线圈,通过通电使其产生一个轴向均匀磁场。
同时,在轴向位置放置一个霍尔元件来进行测量。
2. 实验步骤(1)将两个亥姆霍兹线圈并排放置,并通过交流电源进行串联。
(2)将电流调整到合适大小,使得在轴向位置产生一个均匀的磁场。
(3)将霍尔元件放置在轴向位置,并连接到万用表上。
(4)读取万用表显示的电压值,即为该位置处的磁场大小。
五、误差分析由于实际情况中难以保证线圈和霍尔元件等设备完全精确,因此测量结果可能存在一定误差。
其中主要误差来源包括以下几个方面:1. 霍尔元件的灵敏度和非线性误差;2. 线圈的制作精度和电流稳定性;3. 测量位置的精度和环境磁场干扰。
六、总结通过对圆线圈和亥姆霍兹线圈轴向磁场测量方法的介绍,我们可以了解到在实验中如何准确地测量轴向磁场大小。
同时,在实际应用中需要注意以上误差来源,并尽可能采取措施减小误差,以保证测量结果的准确性。
3.10霍尔法测量圆线圈和亥姆霍兹线圈的磁场剖析

3.10霍尔法测量圆线圈和亥姆霍兹线圈的磁场剖析霍尔法是一种测量电器中磁场强度的方法,又称为霍尔效应。
它是利用霍尔元件来测量电流通过电器时引起的磁场强度的一种技术方法。
霍尔元件是一种半导体器件,它能够将磁场与电场相互作用所产生的电势差转换为电流信号输出。
霍尔元件的基本原理是磁场垂直于载流子运动方向,将导致载流子沿着霍尔元件的边缘方向偏移,从而形成电势差。
因此,当电流通过电器时,我们可以用霍尔元件来测量电器中的磁场强度。
本文将介绍在实验室中如何应用霍尔法来测量圆线圈和亥姆霍兹线圈的磁场强度。
在这两种线圈中,磁场的分布和大小是非常重要的参数。
圆线圈是由半径为R的导线匝数为N的同轴圆柱,通过其形成的一种线圈。
圆线圈的磁场分布是关于线圈轴对称的,具有最大值Br=μ0NI/2R和最小值Bθ=μ0NI/2。
其中μ0是真空磁导率,I是电流。
亥姆霍兹线圈是由两个同轴圆柱组成的线圈,它们具有相同的半径R、匝数N和电流方向,但是方向相反。
这两个线圈之间的距离为R,这种线圈的特点是有一均匀磁场分布。
这种线圈的磁场大小和磁场分布可以用B=μ0NI/2R来描述。
在测量圆线圈和亥姆霍兹线圈的磁场时,我们首先需要将线圈从电源中分离出来,然后将线圈的两端连接到一个恒流源。
在保持电流不变的情况下,我们需要确定测量霍尔元件的位置。
霍尔元件应该位于线圈轴线附近,并且应该垂直于轴线方向。
在每个位置上,我们可以测量霍尔元件输出的电势差并计算出磁场强度。
如果我们希望测量圆线圈的磁场分布,我们需要沿着圆线圈的半径方向调整霍尔元件的位置。
在实验中,我们可以使用霍尔元件和数字万用表来测量电势差和电流。
我们还需要一个可调电源来提供恒定的电流。
在实验中,我们需要注意以下几点:1.在测量时需要保持电流稳定,避免产生噪声影响测量结果。
2.在测量磁场分布时,需要多次测量并取平均值,以提高测量精度。
3.在测量位置选择上需要谨慎选择,以保证测量精度。
实验四圆线圈与亥姆霍兹线圈的磁场报告范例

实验四圆线圈与亥姆霍兹线圈的磁场报告范例本实验旨在研究圆线圈和亥姆霍兹线圈的磁场分布,通过实验测量得到磁场强度与位置之间的关系,探究两种线圈的特点和应用。
1.实验原理磁场是物理学的重要分支之一,其产生方式有很多种,其中电流是较常见的一种方式。
利用电流通过导线时会产生磁场,形成磁通量,为了观测和量化磁场的特性,可以通过磁场强度和磁通量密度来描述和表示。
圆线圈:当通过圆线圈时,其磁场强度在中心处最大,随着距离的增加,其值会逐渐减小,符合以下公式:$$B(r)={\mu_0 \over 2} {N I \over R} ({R^2 \over R^2+z^2})^{3/2}$$其中,B为磁场强度,$\mu_0$为磁导率,N为线圈匝数,I为通电电流,R为线圈半径,z为测量点至线圈中心距离。
亥姆霍兹线圈:亥姆霍兹线圈由两个相同半径的环形线圈组成,且距离相等,其磁场强度分布与圆线圈类似,但是其形状更为均匀,符合以下公式:2.实验装置和步骤装置:直流稳压电源,圆线圈,亥姆霍兹线圈,磁场强度计,电流表,多用万用表。
步骤:1)用万用表测量圆线圈和亥姆霍兹线圈的导线电阻,记录数据。
2)将直流稳压电源接入圆线圈,调节电源电压,使电流表读数为测量电流,记录数据。
3)将磁场强度计放置于不同位置,记录测量值,并计算磁场强度。
4)重复步骤2~3,改变亥姆霍兹线圈距离、线圈电流强度,记录测量值,计算磁场强度。
3.数据处理1)电线电阻$a.圆线圈电阻:0.512 \Omega$;$b.亥姆霍兹线圈电阻:0.205\Omega$。
2)圆线圈磁场测量数据:电流I/A 0.5 1 1.5 2 2.5位置r/cm 磁场B/mT 地磁场B0/mT 磁场B=mT-B0 求数值0 28.54 14.43 14.11 0.4912 20.22 14.43 5.79 0.2003 16.55 14.43 2.12 0.0734 11.73 14.43 -2.70 -0.0935 9.02 14.43 -5.41 -0.1866 5.35 14.43 -9.08 -0.3137 3.72 14.43 -10.71 -0.3708 2.54 14.43 -11.89 -0.410$d = 20$cm,I=1A4.数据分析4.1圆线圈根据公式,将测量数据计算得到图1.图1圆线圈磁场强度分布从图1中可以看出,随着距离的增加,圆线圈的磁场强度值逐渐降低,符合理论预测的规律,且磁场强度与距离的平方成反比关系。
霍尔法测量圆线圈和亥姆霍兹线圈的磁场wgd资料课件

研究方法与技术路线
技术路线
1. 搭建霍尔法磁场测量系统,包括磁场发生器、测量探头、数据采集和处理系统等 ;
2. 利用霍尔法测量圆线圈和亥姆霍兹线圈的磁场分布,并记录实验数据;
研究方法与技术路线
01
3. 对实验数据进行处理和分析,提取磁场分布特性 ;
02
4. 根据实验数据和理论模型,进行数值模拟和对比 分析;
同位置的输出电压,可以计算出磁场强度。
测量系统搭建
01
02
03
04
亥姆霍兹线圈
选择合适的亥姆霍兹线圈,确 保其尺寸和精度符合实验要求
。
电源和电流源
为亥姆霍兹线圈提供稳定的电 流源,以保证线圈中电流的稳
定。
信号发生器
产生适当的激励信号,以驱动 霍尔元件工作。
数据采集系统
采集霍尔元件在不同位置的输 出电压,并进行记录和分析。
霍尔法测量
霍尔法通过测量导体在磁场中产生的霍尔电压来推算磁场强 度,具有较高的测量精度和灵敏度。
亥姆霍兹线圈测量
亥姆霍兹线圈是一种产生均匀磁场的装置,通过测量线圈中 心磁感应强度来推算磁场强度,但测量精度和灵敏度相对较 低。
结果误差分析
霍尔法误差来源
霍尔法测量的误差主要来源于导体电 阻、温度变化、测量电路噪声等因素 。
测量原理
01
霍尔效应
当电流通过磁场中的导体时,导体中会产生横向电位差,这种现象称为
霍尔效应。
02
霍尔元件
利用霍尔效应制成的元件称为霍尔元件,它可以用来测量磁场强度。
03
测量原理
将霍尔元件放置在亥姆霍兹线圈的磁场中,当线圈通入电流时,线圈中
心磁场最强,随着距离的增加,磁场逐渐减小。通过测量霍尔元件在不
霍尔法测量圆线圈和亥姆霍兹线圈的磁场

3、励磁电流大小对磁场强度的影响
此时可以选择单线圈或者亥姆霍兹线圈磁场分布 测量的连线方法之一进行连线,仍然在励磁电流 为零的情况下将磁感应强度清零。 调节磁场测量仪的励磁电流调节电位器,使表头 显示值为100mA,将霍尔传感器的位置调节到以 圆电流线圈中心位置或者亥姆霍兹线圈中心位置。 调节励磁电流调节电位器,每增加100mA记下一 磁感应强度B的值,直到励磁电流显示为500mA 记下一磁感应强度B值为止。
4.励磁电流大小与磁场强度的关系
表4 励磁电流大小与磁场强度 测量的数据
励磁电流(mA) B(mT) 100 200 300 400 500
实验内容
1、测量圆电流线圈轴线上磁场的分布
连接好线路,调节励磁电流为零,将磁感应强 度清零。
调节磁场测量仪的励磁电流调节电位器, 使表头显示值为500mA,此时毫特计表头 应显示一对应的磁感应强度B值。 以圆电流线圈中心为坐标原点,每隔10.0 mm测一磁感应强度B的值,测量过程中注 意保持励磁电流值不变。
2、测量亥姆霍兹线圈轴线上磁场的分布
按图接线,然后在励磁电流为零的情况下将磁 感应强度清零。 调节磁场测量仪的励磁电流调节电位器,使表头 显示值为500mA,此时毫特计表头应显示一对应 的磁感应强度B值。 以亥姆霍兹线圈中心为坐标原点,每隔10.0 mm 测一磁感应强度B的值,测量过程中注意保持励 磁电流值不变。
集成霍尔传感器测量圆线圈和亥姆霍兹线圈的磁场实验报告

集成霍尔传感器测量圆线圈和亥姆霍兹线圈的磁场实验报告实验报告一、实验目的本实验旨在通过使用集成霍尔传感器测量圆线圈和亥姆霍兹线圈的磁场,加深对磁场基本概念及测量方法的理解,掌握霍尔效应原理及应用。
二、实验原理1.霍尔效应原理霍尔效应是指当电流垂直于外磁场方向通过半导体时,在垂直于电流和磁场的方向上会产生电动势的现象。
霍尔效应的原理可由下式表示:V_H = K_H * I * B其中,V_H为霍尔电压,K_H为霍尔系数,I为工作电流,B为磁感应强度。
2.圆线圈磁场分布通电线圈的磁场分布可用毕奥-萨伐尔定律描述。
对于圆线圈,其轴线上的磁感应强度可由下式计算:B = (μ₀I) / (2R) * [cos(θ₁) - cos(θ₂)]其中,μ₀为真空磁导率,I为线圈电流,R为线圈半径,θ₁和θ₂为线圈两端与轴线上某点的连线与线圈平面法线的夹角。
3.亥姆霍兹线圈磁场分布亥姆霍兹线圈是由两个相同线圈平行放置,通以同向电流构成。
在两线圈中心连线上的中点附近,磁场可近似看作均匀。
其磁感应强度可由下式计算:B = (8μ₀NI) / (5√5a)其中,N为线圈匝数,a为两线圈间距。
三、实验步骤与记录1.准备工作(1)将集成霍尔传感器、电流表、电压表、圆线圈、亥姆霍兹线圈、直流电源等连接成实验电路。
(2)检查实验装置连接是否正确,确保电源接地良好。
(3)预热集成霍尔传感器5分钟。
2.测量圆线圈磁场分布(1)将集成霍尔传感器放置在圆线圈轴线上,调整传感器位置,记录传感器与线圈中心的距离。
(2)通入不同大小的电流,记录电流值及对应的霍尔电压值。
(3)改变传感器与线圈中心的距离,重复步骤(2)。
(4)根据实验数据绘制圆线圈轴线上的磁感应强度分布曲线。
3.测量亥姆霍兹线圈磁场分布(1)将集成霍尔传感器放置在亥姆霍兹线圈中心连线上,调整传感器位置,使其位于两线圈中心连线的中点附近。
(2)通入不同大小的电流,记录电流值及对应的霍尔电压值。
3.10霍尔法测量圆线圈和亥姆霍兹线圈的磁场

3.10霍尔法测量圆线圈和亥姆霍兹线圈的磁场霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯•克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
【实验目的】1、测量单个通电圆线圈中磁感应强度;2、测量亥姆霍兹线圈轴线上各点的磁感应强度;3、测量两个通电圆线圈不同间距时的线圈轴线上各点的磁感应强度;4、测量通电圆线圈轴线外各点的磁感应强度。
【实验仪器】DH4501N型三维亥姆霍兹线圈磁场实验仪一套【实验原理】1霍尔效应霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图3-10-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(N型半导体材料),它沿着与电流Is相反的X负向运动。
由于洛仑兹力f L作用,电子即向图中虚线(称为工作电流),假设载流子为电子箭头所指的位于y轴负方向的BV H (A 、B 间电压)与Is 、B 的乘积成正比,与霍尔元件的厚度成R H =丄称为霍尔系数(严格来说,对于半导体材料,在弱磁场 下应引入一个修正因子ne ^—,从而有 R H =空丄),它是反映材料霍尔效8 8 ne应强弱的重要参数,根据材料的电导率b=n 曲的关系,还可以得到:R H =A /b=A P 或卩=|R H 卜(3-10-4)式中:卩为载流子的迁移率,即单位电场下载流子的运动速度, 一般电子迁 移率大于空穴迁移率,因此制作霍尔元件时大多采用N 型半导体材料。
[整理]圆线圈与亥姆霍兹线圈轴线上磁场的测量
![[整理]圆线圈与亥姆霍兹线圈轴线上磁场的测量](https://img.taocdn.com/s3/m/25155022effdc8d376eeaeaad1f34693daef1016.png)
圆线圈与亥姆霍兹线圈轴线上磁场的测量加灰色底纹部分是预习报告必写部分圆线圈和亥姆霍兹线圈磁场描绘是一般综合性大学和工科院校物理实验教学大纲中重要实验之一。
通过该实验可以使学生学习并掌握对弱磁场的测量方法,验证磁场的迭加原理,按教学要求描绘出磁场的分布图。
本实验仪器选用先进的玻莫合金磁阻传感器,测量圆线圈和亥姆霍兹线圈磁场。
该传感器与传统使用的探测线圈、霍尔传感器相比,具有灵敏度高、抗干扰性强、可靠性好及便于安装等诸多优点,可用于实验者深入研究弱磁场和地球磁场等,是描绘磁场分布的最佳升级换代产品。
【实验目的】1. 了解和掌握用一种新型高灵敏度的磁阻传感器测定磁场分布的原理;2. 测量和描绘圆线圈和亥姆霍兹线圈轴线上的磁场分布,验证毕—萨定理; 【实验仪器】1.516FB 型磁阻传感器法磁场描绘仪(见图5)套(共2件):2.仪器技术参数:① 线圈有效半径:cm 0.10R =,单线圈匝数: 匝100N =; ② 数显式恒流源输出电流:mA 0.199~0连续可调;稳定度为字1%2.0±;③ 数显式特斯拉计:μT 1 ,μT 1999~0 2,μT 1.0 ,μT 9.199~0 1分辨率量程分辨率量程;④ 测试平台:mm 160300⨯;⑤ 交流市电输入: Hz 50 %,10V 220AC ±。
【实验原理】 1. 磁阻效应与磁阻传感器:物质在磁场中电阻率发生变化的现象称为磁阻效应。
对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。
磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。
它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。
薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式: θρ-ρ+ρ=θρ⊥⊥2cos )()(∥ (1)其中//ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆线圈和亥姆霍兹线圈的磁场
磁场测量是磁测量中最基本的容,最常用的测量方法有三种;感应法、核磁共振法和霍尔效应法。
本实验要求学生用霍尔效应法测量载流亥姆霍兹线圈的磁感应强度沿轴线的分布。
〔实验目的〕
1. 掌握弱磁场测量原理及如何用集成霍尔传感器测量磁场的方法。
2. 验证磁场迭加原理。
3. 学习亥姆霍兹线圈产生均匀磁场的特性。
| |丨」
〔实验原理〕
一、圆线圈
载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图
B o =N I (3.14.2)
2R
轴线外的磁场分布情况较复杂,这里简略
、亥姆霍兹线圈
亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈, 每一线圈N 匝,两线 圈的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径 R 。
其轴线上磁场分布情况如图3.14.2所示,虚线为单线圈在轴线上的磁场分布情 况。
这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区, 故在生
产和科研中有较大的实用价值,也常用于弱磁场的计量标准。
线上任一点的磁感应强度大小B 为
R 2 (3.14.5)
四、霍尔传感器 1. 霍尔传感器
设x 为亥姆霍兹线圈中轴线上某点离中心点
O 处的距离,则亥姆霍兹线圈轴
B - 0 N I R 2
R 2
R
x
2 2
R 2
3/2
(3.14.3)
2 3/ 2
R 2
近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。
本实验用SS95A型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应。
本实验采用的SS95A型集成霍尔传感器由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成,测量时输出信号大,剩余电压的影响已被消除。
一般的霍尔元件有四根引线,两根为输入霍尔元件电流的“电流输入端”;另两根为霍尔元件的“霍尔电压输出端”。
本实验在设计安装时,传感器、圆线圈的工作回路相互独立,并且传感器的工作电流已设定为标准工作电流(定值)。
即©= K (常数)则有:U H KB,其中K为常数。
这样与B建立简单的正比对应关系,由U H 值可得出B的示值。
〔实验仪器〕
FD-HM-II型磁场测定仪,高灵敏度毫特计,数字式直流稳流电源。
实验装置见图3,FD-HM-I型磁场测定仪由圆线圈和亥姆霍兹线圈实验平台(包括两个圆线圈、固定夹、不锈钢直尺、铝尺)、高灵敏度毫特计和数字式直流稳流电源等组成。
210 A B G D
€54 3 & 7 9
图3 FD-HM- U 型磁场测定仪
1、毫特斯拉计
2、电流表 3 、直流电流源 4 、电流调节旋钮
1. 实验平台
两个线圈各500匝,圆线圈的径19.00cm 、外径21.00cm 、平均半径
R=10.00cm.。
实验平台的台面应在两个对称圆线圈轴线上(台面中心横刻线与 两个对称圆线圈轴线重合),台面上有相间1.00cm 的均匀网格线。
2. 高灵敏度毫特计
它采用两个参数相同的SS95A 型集成霍尔传感器,配对组成探测器,经信号 放大后,用三位半数字电压表测量探测器输出信号。
该仪器量程 0—2.000mT ,
分辨率为1 10 6T
3. 数字式直流稳流电源
它由直流稳流电源、三位半数字式电流表组成。
当两线圈串接时,电源输出 电流为50-200mA 连续可调;当两线圈并接时,电源输出电流为50-400mA 连续可 调。
数字式电流表显示输出电流时应注意:
(1) 开机后,应至少预热10分钟,才进行实验。
(2) 每测量一点磁感应强度值,换另一位置测量时,应断开线圈电路,在电 流为零时调零,然后接通线圈电路,进行测量和读数,调零的作用是抵消地磁场 的影响及对其它不稳定因素的补偿。
〔实验容〕
、测量前准备
5、调零旋钮 6 、传感器插头
9、大理石 10 、线圈
7、固定架 8 、霍尔传感器 A
、B 、C D 为接线柱
连接电路按图3,接通电源,开机预热10分钟以上。
用铝尺和钢板尺调整两线圈位置,使两线圈共轴且轴线与台面中心横刻线重合,两线圈距离为R=10.00cm(线圈半径),即组成一个亥姆霍兹线圈。
二、单线圈轴线上各点磁感应强度的测量
1.单线圈a轴线上各点的磁感应强度B a
按图接线(直流稳流电源中数字电流表已串接在电源的一个输出端),只给单线圈a通电,旋转电流调节旋纽,令电流I为100mA取台面中心为坐标原点O,通过O的横刻线为OX轴。
把传感器探头从一侧沿OX轴移动,每移动1.00cm 测一磁感应强度B a,测出一系列与坐标X对应的磁感应强度B a,数据填入表格 3.14.1中。
测量区域为-10cm〜+10cm。
表1单线圈a轴线上各点的磁感应强度b
实验中,应注意毫特计探头沿线圈轴线移动,每测量一个数据,必须先在直
流电流输出电路断开时(1=0)调零后,才测量和记录数据
2.单线圈b轴线上各点的磁感应强度B b
只给单线圈b通电,旋转电流调节旋纽,令电流I为100mA以上述同样的
测量方法,测出一系列x—B b数据,并将数据填入表格3.14.2中。
测量区域为
-10cm—+10cm>
b
3.在轴线上某点转动毫特计探头,观察一下该点磁感应强度的方向:转动探
头观测毫特计的读数值,读数最大时传感器法线方向,即是该点磁感应强度方向。
三、双线圈轴线上各点磁感应强度测量
1.令两线圈串连,流过的电流方向一致(红黑接线柱交错相接),组成亥姆霍兹线圈。
然后,旋转电流调节旋纽,在同样电流l=100mA条件下,测轴线上各点的磁感应强度B R值测量方法同上。
得出的一系列X- B R数据填入表格3.14.3 中。
测量区域为-10cm—+10cm用直角坐标纸,在同一坐标系作B R—X、B a —X、B b —X、B a + B b —X四条曲线,考察B R—X与B a+B b —X曲线,验证磁场叠加原理.
表3测双线圈轴线上各点的磁感应强度B R值
3.用直角坐标纸,在坐标系作B R — X 、B R ? — X 、B 2R — X 三条曲线,证明磁 场叠加原理。
〔注意事项〕
1. 注意霍尔传感器的放置方法。
由于磁感应强度B 是矢量,测量过程中,传 感器沿轴线放置时,毫特计可能指示负值,这里为了便于比较、验证叠加原理, 统一取其绝对值。
2. 在调节两线圈时,应注意两线圈是否共轴、轴线是否与台面中心横刻线重 合。
为了便于判断,这里给出判断依据(仅供参考):
(1)单线圈 B 值应关于单线圈的中心点(圆心)左右对称;若以亥姆霍 兹线圈轴线的中心点为坐标原点,则点 b=0.314 mT B i5=0.111 mT
B o =0.225 mT
(2)双线圈 B 值应关于双线圈的中心点左右对称;若以双线圈轴线的中
实测数据上下不应超出上述值的 3%(为仪器允许误差)
3. 两线圈采用串接或并接与电源相连时, 必须注意磁场的方向。
如果接错线 有可能使双线圈中间轴线上的磁场为零或极小。
4. 测每一点的B 值之前,毫特计必须事先调零
5. 测双线圈磁场分布时,两线圈应串联
心点为坐标原点,则有
双线圈距离为R 时: 双线圈距离为R2时:
双线圈距离为2R 时: B o =O.45O mT
B o =0.573mT
B =0.222 Bo =O.278 mT
B io =O.237 mT
B 1O
=O.342 B 5=0.425 mT B s =O.448 mT
[思考题]
1单线圈轴线上磁场的分布规律如何?亥姆霍兹线圈是怎样组成的?其基本条件有哪些?它的磁场分布特点又怎样?
2用霍尔效应测量磁场时,为何励磁电流为零时,显示的磁场值不为零?。