数学建模报告

合集下载

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模的实验报告

数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。

2.熟悉掌握matlab软件的文件操作和命令环境。

3.掌握数据可视化的基本操作步骤。

4.通过matlab绘制二维图形以及三维图形。

二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。

即要求出二次多项式: y=a+b x2的系数。

2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。

数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。

2.利用Matlab进行编程求近似解。

二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。

2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。

所以选择采用计算机模拟的方法, 求得近似结果。

(2)通过增加试验次数, 使近似解越来越接近真实情况。

3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。

例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

数学建模实验报告范文

数学建模实验报告范文

数学建模实验报告范文实验目的本次实验旨在运用数学建模的方法和技巧,对给定的问题进行分析和求解,以提高我们的问题解决能力和创新思维。

实验背景在现实生活中,我们经常面临各种各样的问题,但是如何从复杂的问题中提取关键信息,并通过数学建模的方法进行求解,是一个非常有挑战性的任务。

通过本次实验的学习和训练,我们可以更好地应对复杂问题,提高解决问题的能力和效率。

实验过程和方法本次实验我们选择了一个关于货车配送问题的案例进行研究。

具体过程如下:1. 问题理解:我们首先详细了解了货车配送问题的背景和要求,明确问题的目标和限制条件。

根据问题的描述,我们可以得到基本的数学模型:- 假设有N个配送点,每个配送点有固定的货物数量和配送时长。

- 有M辆货车,每辆货车的最大载重量和最大配送时长是已知的。

- 目标是使得总配送时间最短的同时,不超过货车的最大载重量。

2. 数据处理:我们将问题中给出的具体数据转化为计算机可处理的数据结构,并进行必要的预处理工作。

包括计算各个点之间的距离、货物数量等信息。

3. 建模与求解:我们根据问题的特点和要求,选用相应的数学模型和求解方法。

在本次实验中,我们选择了基于图论的算法,如最短路径算法和旅行商问题算法,来优化货车的配送路径和时间。

4. 结果分析:我们根据得到的结果,对货车的配送路径和时间进行分析和评估。

通过对比不同算法和参数设置的结果,找出最优解,并对结果进行可视化展示。

实验结果经过模型求解和分析,我们得到了一组满足条件的最优解。

在我们的实验中,总配送时间最短的方案是:...通过对比和分析不同算法和参数设置的结果,我们可以发现...实验总结本次实验通过对货车配送问题的研究和实践,我们学习了数学建模的基本方法和技巧。

通过模型建立、求解和分析的全过程,我们深入理解了数学建模的重要性和应用价值。

在实验过程中,我们遇到了一些困难和挑战,如如何选择合适的数学模型和求解算法等。

通过克服这些困难,我们不断提高了自己的问题解决能力和创新思维。

高中数学建模活动研究报告范文

高中数学建模活动研究报告范文

高中数学建模活动研究报告一、概述高中数学建模活动作为一种新兴的数学教学方法,逐渐受到了教育界的关注和肯定。

本研究报告旨在对高中数学建模活动进行深入研究,探讨其在学生数学学习中的作用与意义,从而为数学教育的改革提供借鉴和参考。

二、高中数学建模活动概述1.1 数学建模的概念和特点数学建模是指利用数学方法对实际问题进行抽象、建立数学模型,并通过模型的求解和分析获得实际问题解决方案的一种方法。

其特点是贴近实际、综合性强、跨学科性强。

1.2 高中数学建模活动的目的和意义高中数学建模活动旨在培养学生的数学建模能力、实践能力和创新精神,提高学生对数学知识的综合运用能力和解决实际问题的能力,加强学生对数学的兴趣和信心。

1.3 高中数学建模活动的形式高中数学建模活动可以以课堂教学、学科竞赛、课外拓展等形式进行,灵活多样,丰富多彩。

三、高中数学建模活动对学生数学学习的影响2.1 提高学生数学素养通过高中数学建模活动,学生能够将数学知识应用于实际问题中,培养他们的逻辑思维能力和数学建模能力,提高数学素养。

2.2 激发学生学习兴趣由于高中数学建模活动具有丰富的实际背景和问题情境,能够激发学生对数学的兴趣,使他们更加愿意投入到数学学习中。

2.3 培养学生综合能力通过高中数学建模活动,学生需要调动数学、科学、信息技术等各方面的知识和能力,培养他们的综合能力和创新意识,使他们具备解决实际问题的能力。

四、高中数学建模活动的实施策略3.1 教师的角色和作用教师在高中数学建模活动中的作用至关重要,需要充分激发学生的学习兴趣,引导学生主动参与,及时给予指导和反馈。

3.2 学生的角色和作用学生在高中数学建模活动中要积极主动地参与其中,勇于提出问题、探索解决方案,发挥个人的创造力和想象力。

3.3 学校的支持和保障学校应该重视高中数学建模活动,并提供相关的资源和支持,为活动的实施提供保障。

五、高中数学建模活动的拓展与展望高中数学建模活动作为一种全新的数学教学模式,仍有很大的拓展空间。

数学建模实验报告范文

一、实验目的通过本次数学建模实验,使学生掌握数学建模的基本步骤和方法,提高学生运用数学知识解决实际问题的能力,培养学生的创新意识和团队合作精神。

二、实验内容本次实验以某城市交通拥堵问题为背景,建立数学模型,并进行求解和分析。

三、问题分析近年来,随着城市化进程的加快,交通拥堵问题日益严重。

为了缓解交通拥堵,提高城市交通效率,需要建立数学模型对交通拥堵问题进行分析。

四、模型假设1. 交通流量的变化服从泊松分布;2. 交通信号灯周期固定,绿灯时间、红灯时间比例不变;3. 交通事故发生概率服从泊松分布;4. 交通拥堵程度用道路上的车辆数表示。

五、模型构建1. 建立交通流量模型:假设道路上车流量为λ,则道路上的车辆数N(t)满足泊松分布,即N(t)~Poisson(λt)。

2. 建立交通信号灯模型:假设绿灯时间为t_g,红灯时间为t_r,信号灯周期为T,则有t_g + t_r = T。

3. 建立交通事故模型:假设交通事故发生概率为p,则在时间t内发生交通事故的次数X(t)满足泊松分布,即X(t)~Poisson(pt)。

4. 建立交通拥堵模型:假设道路上的车辆数为N(t),则交通拥堵程度U(t)可以用N(t)表示。

六、模型求解1. 根据泊松分布的性质,求解N(t)的期望值和方差,即E(N(t))=λt,Var(N(t))=λt。

2. 根据信号灯模型,求解绿灯时间t_g和红灯时间t_r。

3. 根据交通事故模型,求解交通事故发生次数X(t)的期望值和方差,即E(X(t))=pt,Var(X(t))=pt。

4. 根据交通拥堵模型,求解交通拥堵程度U(t)的期望值和方差。

七、结果分析与解释1. 根据模型求解结果,分析不同时间段内的交通流量、交通事故和交通拥堵程度。

2. 结合实际情况,分析影响交通拥堵的关键因素,并提出相应的缓解措施。

3. 通过模型求解,为相关部门制定交通管理政策提供依据。

八、实验总结通过本次数学建模实验,学生掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。

数学建模全部实验报告

一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

2. 提高数学建模能力,培养创新思维和团队合作精神。

3. 熟练运用数学软件进行数据分析、建模和求解。

二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。

请为公司制定招聘计划。

3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。

请建立模型分析居民出行方式选择的影响因素。

三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。

2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。

3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。

4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。

5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。

四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。

(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。

(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。

(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。

(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。

2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。

社会实践数学建模报告

一、引言数学建模是一种将实际问题转化为数学问题,并利用数学工具进行求解的方法。

随着社会的不断发展,数学建模在各个领域都发挥着越来越重要的作用。

本报告旨在通过一次社会实践活动,探讨数学建模在解决实际问题中的应用,并总结实践经验。

二、项目背景与目标1. 项目背景随着城市化进程的加快,交通拥堵问题日益严重。

为了缓解这一问题,政府部门和交通管理部门需要科学合理地规划道路建设、优化交通信号控制等。

然而,由于交通系统复杂多变,传统的分析方法难以准确预测交通状况。

因此,利用数学建模方法研究交通拥堵问题具有重要的现实意义。

2. 项目目标本项目旨在通过数学建模方法,建立一套适用于我国某城市的交通拥堵预测模型,为政府部门和交通管理部门提供决策依据,从而优化交通资源配置,缓解交通拥堵问题。

三、模型建立与求解1. 模型建立(1)问题分析本项目以某城市主要道路为研究对象,通过收集历史交通流量数据,分析不同时间段、不同路段的交通流量变化规律。

(2)模型假设① 交通流量与时间、路段、天气等因素有关;② 交通流量呈非线性关系;③ 交通流量变化具有随机性。

(3)模型构建根据以上分析,建立以下数学模型:设交通流量为Q(t),时间t,路段为i,则有:Q(t) = f(t, i) + ε(t, i)其中,f(t, i)为确定性函数,ε(t, i)为随机误差项。

(4)模型求解利用历史数据对确定性函数f(t, i)进行拟合,得到:f(t, i) = α0 + α1t +α2i + α3ti + α4i^2 + α5ti^2 + ε(t, i)其中,α0, α1, α2, α3, α4, α5为待定系数。

利用最小二乘法求解待定系数,得到:α0 = 0.5, α1 = 0.1, α2 = 0.2, α3 = 0.05, α4 = 0.01, α5 = 0.005因此,数学模型为:Q(t) = 0.5 + 0.1t + 0.2i + 0.05ti + 0.01i^2 + 0.005ti^2 + ε(t, i)2. 模型验证为了验证模型的准确性,将模型预测结果与实际数据进行对比。

数学建模工作总结报告范文

一、前言数学建模作为一种综合性学科,在解决实际问题中发挥着重要作用。

本学期,我参与了数学建模课程的学习和实践,现将我的工作总结如下。

二、学习与实践过程1. 理论学习在数学建模课程中,我系统地学习了数学建模的基本概念、方法、步骤以及常用软件。

通过学习,我对数学建模有了更深入的理解,掌握了数学建模的基本技能。

2. 实践操作(1)选题与准备:在老师的指导下,我选择了“城市交通流量预测”这一课题。

在准备阶段,我收集了大量相关数据,包括历史交通流量、天气状况、节假日等因素。

(2)模型建立:根据收集到的数据,我运用线性回归、时间序列分析等方法建立了城市交通流量预测模型。

在模型建立过程中,我不断优化模型参数,提高预测精度。

(3)模型验证与优化:通过对比实际交通流量数据与预测结果,我发现模型存在一定的偏差。

针对这一问题,我调整了模型参数,并尝试了其他预测方法,如支持向量机、神经网络等,最终提高了模型的预测精度。

(4)论文撰写:在完成模型建立和优化后,我整理了相关资料,撰写了数学建模论文。

在论文中,我对模型原理、方法、结果进行了详细阐述,并对模型在实际应用中的价值进行了探讨。

三、工作成果1. 提高了数学建模能力:通过本学期的学习与实践,我对数学建模有了更深入的认识,掌握了数学建模的基本方法,提高了自己的数学建模能力。

2. 完成了城市交通流量预测模型:在课题研究过程中,我建立了城市交通流量预测模型,并成功将其应用于实际场景,为城市交通管理提供了有力支持。

3. 撰写了数学建模论文:在论文中,我对模型原理、方法、结果进行了详细阐述,为同行提供了有益参考。

四、不足与反思1. 模型精度有待提高:在模型验证过程中,我发现模型预测精度仍有待提高。

今后,我将进一步研究优化模型参数,提高预测精度。

2. 实践经验不足:在课题研究过程中,我发现自己在实际操作中存在一定不足,如数据处理、模型优化等方面。

今后,我将加强实践,积累更多经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模报告
数学建模报告是指一份关于数学建模过程、结果和结论的完整的、系统的、有条理的描述和分析的报告。

它通常包括以下几个部分:
1. 问题陈述:明确描述建模的问题,包括问题的背景、目标、限制和要求等。

2. 假设和符号定义:明确假设条件,并定义所有相关的符号和术语,包括量的定义、单位和量纲等。

3. 模型建立:详细描述建立数学模型的过程。

包括确定问题的模型类型(离散模型、连续模型、静态模型、动态模型等)、选择合适的数学方法和技巧、设定合适的方程和约束条件等。

4. 模型求解:具体描述模型的求解过程,包括使用的计算方法、算法和软件工具等。

5. 模型分析和结果:对模型的解进行定性和定量分析,包括求解结果的可行性、有效性和合理性等。

还可以进行灵敏度分析、稳定性分析等。

6. 结果评价和讨论:对模型的结果进行评价和讨论,包括与实际问题的关联性、可操作性等。

7. 模型的优缺点:对模型的优点和不足进行总结和分析。

8. 结论和建议:对模型的解结果进行总结和提出建议,包括对问题的解决方案、改进措施等。

9. 参考文献:列出所有参考文献的详细信息,包括书籍、期刊论文、互联网资源等。

数学建模报告的撰写应该清晰明了,逻辑严谨,数据准确可信,有助于读者理解模型的目的和结果,能够为实际问题的解决提供有利的信息和建议。

相关文档
最新文档